wdenk | 40c8555 | 2000-07-19 14:09:16 +0000 | [diff] [blame] | 1 | /* ---------- To make a malloc.h, start cutting here ------------ */ |
| 2 | |
| 3 | /* |
| 4 | A version of malloc/free/realloc written by Doug Lea and released to the |
| 5 | public domain. Send questions/comments/complaints/performance data |
| 6 | to dl@cs.oswego.edu |
| 7 | |
| 8 | * VERSION 2.6.6 Sun Mar 5 19:10:03 2000 Doug Lea (dl at gee) |
| 9 | |
| 10 | Note: There may be an updated version of this malloc obtainable at |
| 11 | ftp://g.oswego.edu/pub/misc/malloc.c |
| 12 | Check before installing! |
| 13 | |
| 14 | * Why use this malloc? |
| 15 | |
| 16 | This is not the fastest, most space-conserving, most portable, or |
| 17 | most tunable malloc ever written. However it is among the fastest |
| 18 | while also being among the most space-conserving, portable and tunable. |
| 19 | Consistent balance across these factors results in a good general-purpose |
| 20 | allocator. For a high-level description, see |
| 21 | http://g.oswego.edu/dl/html/malloc.html |
| 22 | |
| 23 | * Synopsis of public routines |
| 24 | |
| 25 | (Much fuller descriptions are contained in the program documentation below.) |
| 26 | |
| 27 | malloc(size_t n); |
| 28 | Return a pointer to a newly allocated chunk of at least n bytes, or null |
| 29 | if no space is available. |
| 30 | free(Void_t* p); |
| 31 | Release the chunk of memory pointed to by p, or no effect if p is null. |
| 32 | realloc(Void_t* p, size_t n); |
| 33 | Return a pointer to a chunk of size n that contains the same data |
| 34 | as does chunk p up to the minimum of (n, p's size) bytes, or null |
| 35 | if no space is available. The returned pointer may or may not be |
| 36 | the same as p. If p is null, equivalent to malloc. Unless the |
| 37 | #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a |
| 38 | size argument of zero (re)allocates a minimum-sized chunk. |
| 39 | memalign(size_t alignment, size_t n); |
| 40 | Return a pointer to a newly allocated chunk of n bytes, aligned |
| 41 | in accord with the alignment argument, which must be a power of |
| 42 | two. |
| 43 | valloc(size_t n); |
| 44 | Equivalent to memalign(pagesize, n), where pagesize is the page |
| 45 | size of the system (or as near to this as can be figured out from |
| 46 | all the includes/defines below.) |
| 47 | pvalloc(size_t n); |
| 48 | Equivalent to valloc(minimum-page-that-holds(n)), that is, |
| 49 | round up n to nearest pagesize. |
| 50 | calloc(size_t unit, size_t quantity); |
| 51 | Returns a pointer to quantity * unit bytes, with all locations |
| 52 | set to zero. |
| 53 | cfree(Void_t* p); |
| 54 | Equivalent to free(p). |
| 55 | malloc_trim(size_t pad); |
| 56 | Release all but pad bytes of freed top-most memory back |
| 57 | to the system. Return 1 if successful, else 0. |
| 58 | malloc_usable_size(Void_t* p); |
| 59 | Report the number usable allocated bytes associated with allocated |
| 60 | chunk p. This may or may not report more bytes than were requested, |
| 61 | due to alignment and minimum size constraints. |
| 62 | malloc_stats(); |
| 63 | Prints brief summary statistics on stderr. |
| 64 | mallinfo() |
| 65 | Returns (by copy) a struct containing various summary statistics. |
| 66 | mallopt(int parameter_number, int parameter_value) |
| 67 | Changes one of the tunable parameters described below. Returns |
| 68 | 1 if successful in changing the parameter, else 0. |
| 69 | |
| 70 | * Vital statistics: |
| 71 | |
| 72 | Alignment: 8-byte |
| 73 | 8 byte alignment is currently hardwired into the design. This |
| 74 | seems to suffice for all current machines and C compilers. |
| 75 | |
| 76 | Assumed pointer representation: 4 or 8 bytes |
| 77 | Code for 8-byte pointers is untested by me but has worked |
| 78 | reliably by Wolfram Gloger, who contributed most of the |
| 79 | changes supporting this. |
| 80 | |
| 81 | Assumed size_t representation: 4 or 8 bytes |
| 82 | Note that size_t is allowed to be 4 bytes even if pointers are 8. |
| 83 | |
| 84 | Minimum overhead per allocated chunk: 4 or 8 bytes |
| 85 | Each malloced chunk has a hidden overhead of 4 bytes holding size |
| 86 | and status information. |
| 87 | |
| 88 | Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead) |
| 89 | 8-byte ptrs: 24/32 bytes (including, 4/8 overhead) |
| 90 | |
| 91 | When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte |
| 92 | ptrs but 4 byte size) or 24 (for 8/8) additional bytes are |
| 93 | needed; 4 (8) for a trailing size field |
| 94 | and 8 (16) bytes for free list pointers. Thus, the minimum |
| 95 | allocatable size is 16/24/32 bytes. |
| 96 | |
| 97 | Even a request for zero bytes (i.e., malloc(0)) returns a |
| 98 | pointer to something of the minimum allocatable size. |
| 99 | |
| 100 | Maximum allocated size: 4-byte size_t: 2^31 - 8 bytes |
| 101 | 8-byte size_t: 2^63 - 16 bytes |
| 102 | |
| 103 | It is assumed that (possibly signed) size_t bit values suffice to |
| 104 | represent chunk sizes. `Possibly signed' is due to the fact |
| 105 | that `size_t' may be defined on a system as either a signed or |
| 106 | an unsigned type. To be conservative, values that would appear |
| 107 | as negative numbers are avoided. |
| 108 | Requests for sizes with a negative sign bit when the request |
| 109 | size is treaded as a long will return null. |
| 110 | |
| 111 | Maximum overhead wastage per allocated chunk: normally 15 bytes |
| 112 | |
| 113 | Alignnment demands, plus the minimum allocatable size restriction |
| 114 | make the normal worst-case wastage 15 bytes (i.e., up to 15 |
| 115 | more bytes will be allocated than were requested in malloc), with |
| 116 | two exceptions: |
| 117 | 1. Because requests for zero bytes allocate non-zero space, |
| 118 | the worst case wastage for a request of zero bytes is 24 bytes. |
| 119 | 2. For requests >= mmap_threshold that are serviced via |
| 120 | mmap(), the worst case wastage is 8 bytes plus the remainder |
| 121 | from a system page (the minimal mmap unit); typically 4096 bytes. |
| 122 | |
| 123 | * Limitations |
| 124 | |
| 125 | Here are some features that are NOT currently supported |
| 126 | |
| 127 | * No user-definable hooks for callbacks and the like. |
| 128 | * No automated mechanism for fully checking that all accesses |
| 129 | to malloced memory stay within their bounds. |
| 130 | * No support for compaction. |
| 131 | |
| 132 | * Synopsis of compile-time options: |
| 133 | |
| 134 | People have reported using previous versions of this malloc on all |
| 135 | versions of Unix, sometimes by tweaking some of the defines |
| 136 | below. It has been tested most extensively on Solaris and |
| 137 | Linux. It is also reported to work on WIN32 platforms. |
| 138 | People have also reported adapting this malloc for use in |
| 139 | stand-alone embedded systems. |
| 140 | |
| 141 | The implementation is in straight, hand-tuned ANSI C. Among other |
| 142 | consequences, it uses a lot of macros. Because of this, to be at |
| 143 | all usable, this code should be compiled using an optimizing compiler |
| 144 | (for example gcc -O2) that can simplify expressions and control |
| 145 | paths. |
| 146 | |
| 147 | __STD_C (default: derived from C compiler defines) |
| 148 | Nonzero if using ANSI-standard C compiler, a C++ compiler, or |
| 149 | a C compiler sufficiently close to ANSI to get away with it. |
| 150 | DEBUG (default: NOT defined) |
| 151 | Define to enable debugging. Adds fairly extensive assertion-based |
| 152 | checking to help track down memory errors, but noticeably slows down |
| 153 | execution. |
| 154 | REALLOC_ZERO_BYTES_FREES (default: NOT defined) |
| 155 | Define this if you think that realloc(p, 0) should be equivalent |
| 156 | to free(p). Otherwise, since malloc returns a unique pointer for |
| 157 | malloc(0), so does realloc(p, 0). |
| 158 | HAVE_MEMCPY (default: defined) |
| 159 | Define if you are not otherwise using ANSI STD C, but still |
| 160 | have memcpy and memset in your C library and want to use them. |
| 161 | Otherwise, simple internal versions are supplied. |
| 162 | USE_MEMCPY (default: 1 if HAVE_MEMCPY is defined, 0 otherwise) |
| 163 | Define as 1 if you want the C library versions of memset and |
| 164 | memcpy called in realloc and calloc (otherwise macro versions are used). |
| 165 | At least on some platforms, the simple macro versions usually |
| 166 | outperform libc versions. |
| 167 | HAVE_MMAP (default: defined as 1) |
| 168 | Define to non-zero to optionally make malloc() use mmap() to |
| 169 | allocate very large blocks. |
| 170 | HAVE_MREMAP (default: defined as 0 unless Linux libc set) |
| 171 | Define to non-zero to optionally make realloc() use mremap() to |
| 172 | reallocate very large blocks. |
| 173 | malloc_getpagesize (default: derived from system #includes) |
| 174 | Either a constant or routine call returning the system page size. |
| 175 | HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined) |
| 176 | Optionally define if you are on a system with a /usr/include/malloc.h |
| 177 | that declares struct mallinfo. It is not at all necessary to |
| 178 | define this even if you do, but will ensure consistency. |
| 179 | INTERNAL_SIZE_T (default: size_t) |
| 180 | Define to a 32-bit type (probably `unsigned int') if you are on a |
| 181 | 64-bit machine, yet do not want or need to allow malloc requests of |
| 182 | greater than 2^31 to be handled. This saves space, especially for |
| 183 | very small chunks. |
| 184 | INTERNAL_LINUX_C_LIB (default: NOT defined) |
| 185 | Defined only when compiled as part of Linux libc. |
| 186 | Also note that there is some odd internal name-mangling via defines |
| 187 | (for example, internally, `malloc' is named `mALLOc') needed |
| 188 | when compiling in this case. These look funny but don't otherwise |
| 189 | affect anything. |
| 190 | WIN32 (default: undefined) |
| 191 | Define this on MS win (95, nt) platforms to compile in sbrk emulation. |
| 192 | LACKS_UNISTD_H (default: undefined if not WIN32) |
| 193 | Define this if your system does not have a <unistd.h>. |
| 194 | LACKS_SYS_PARAM_H (default: undefined if not WIN32) |
| 195 | Define this if your system does not have a <sys/param.h>. |
| 196 | MORECORE (default: sbrk) |
| 197 | The name of the routine to call to obtain more memory from the system. |
| 198 | MORECORE_FAILURE (default: -1) |
| 199 | The value returned upon failure of MORECORE. |
| 200 | MORECORE_CLEARS (default 1) |
| 201 | True (1) if the routine mapped to MORECORE zeroes out memory (which |
| 202 | holds for sbrk). |
| 203 | DEFAULT_TRIM_THRESHOLD |
| 204 | DEFAULT_TOP_PAD |
| 205 | DEFAULT_MMAP_THRESHOLD |
| 206 | DEFAULT_MMAP_MAX |
| 207 | Default values of tunable parameters (described in detail below) |
| 208 | controlling interaction with host system routines (sbrk, mmap, etc). |
| 209 | These values may also be changed dynamically via mallopt(). The |
| 210 | preset defaults are those that give best performance for typical |
| 211 | programs/systems. |
| 212 | USE_DL_PREFIX (default: undefined) |
| 213 | Prefix all public routines with the string 'dl'. Useful to |
| 214 | quickly avoid procedure declaration conflicts and linker symbol |
| 215 | conflicts with existing memory allocation routines. |
| 216 | |
| 217 | |
| 218 | */ |
| 219 | |
| 220 | |
| 221 | |
| 222 | |
| 223 | /* Preliminaries */ |
| 224 | |
| 225 | #ifndef __STD_C |
| 226 | #ifdef __STDC__ |
| 227 | #define __STD_C 1 |
| 228 | #else |
| 229 | #if __cplusplus |
| 230 | #define __STD_C 1 |
| 231 | #else |
| 232 | #define __STD_C 0 |
| 233 | #endif /*__cplusplus*/ |
| 234 | #endif /*__STDC__*/ |
| 235 | #endif /*__STD_C*/ |
| 236 | |
| 237 | #ifndef Void_t |
| 238 | #if (__STD_C || defined(WIN32)) |
| 239 | #define Void_t void |
| 240 | #else |
| 241 | #define Void_t char |
| 242 | #endif |
| 243 | #endif /*Void_t*/ |
| 244 | |
| 245 | #if __STD_C |
| 246 | #include <stddef.h> /* for size_t */ |
| 247 | #else |
| 248 | #include <sys/types.h> |
| 249 | #endif |
| 250 | |
| 251 | #ifdef __cplusplus |
| 252 | extern "C" { |
| 253 | #endif |
| 254 | |
| 255 | #include <stdio.h> /* needed for malloc_stats */ |
| 256 | |
| 257 | |
| 258 | /* |
| 259 | Compile-time options |
| 260 | */ |
| 261 | |
| 262 | |
| 263 | /* |
| 264 | Debugging: |
| 265 | |
| 266 | Because freed chunks may be overwritten with link fields, this |
| 267 | malloc will often die when freed memory is overwritten by user |
| 268 | programs. This can be very effective (albeit in an annoying way) |
| 269 | in helping track down dangling pointers. |
| 270 | |
| 271 | If you compile with -DDEBUG, a number of assertion checks are |
| 272 | enabled that will catch more memory errors. You probably won't be |
| 273 | able to make much sense of the actual assertion errors, but they |
| 274 | should help you locate incorrectly overwritten memory. The |
| 275 | checking is fairly extensive, and will slow down execution |
| 276 | noticeably. Calling malloc_stats or mallinfo with DEBUG set will |
| 277 | attempt to check every non-mmapped allocated and free chunk in the |
| 278 | course of computing the summmaries. (By nature, mmapped regions |
| 279 | cannot be checked very much automatically.) |
| 280 | |
| 281 | Setting DEBUG may also be helpful if you are trying to modify |
| 282 | this code. The assertions in the check routines spell out in more |
| 283 | detail the assumptions and invariants underlying the algorithms. |
| 284 | |
| 285 | */ |
| 286 | |
| 287 | #if DEBUG |
| 288 | #include <assert.h> |
| 289 | #else |
| 290 | #define assert(x) ((void)0) |
| 291 | #endif |
| 292 | |
| 293 | |
| 294 | /* |
| 295 | INTERNAL_SIZE_T is the word-size used for internal bookkeeping |
| 296 | of chunk sizes. On a 64-bit machine, you can reduce malloc |
| 297 | overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int' |
| 298 | at the expense of not being able to handle requests greater than |
| 299 | 2^31. This limitation is hardly ever a concern; you are encouraged |
| 300 | to set this. However, the default version is the same as size_t. |
| 301 | */ |
| 302 | |
| 303 | #ifndef INTERNAL_SIZE_T |
| 304 | #define INTERNAL_SIZE_T size_t |
| 305 | #endif |
| 306 | |
| 307 | /* |
| 308 | REALLOC_ZERO_BYTES_FREES should be set if a call to |
| 309 | realloc with zero bytes should be the same as a call to free. |
| 310 | Some people think it should. Otherwise, since this malloc |
| 311 | returns a unique pointer for malloc(0), so does realloc(p, 0). |
| 312 | */ |
| 313 | |
| 314 | |
| 315 | /* #define REALLOC_ZERO_BYTES_FREES */ |
| 316 | |
| 317 | |
| 318 | /* |
| 319 | WIN32 causes an emulation of sbrk to be compiled in |
| 320 | mmap-based options are not currently supported in WIN32. |
| 321 | */ |
| 322 | |
| 323 | /* #define WIN32 */ |
| 324 | #ifdef WIN32 |
| 325 | #define MORECORE wsbrk |
| 326 | #define HAVE_MMAP 0 |
| 327 | |
| 328 | #define LACKS_UNISTD_H |
| 329 | #define LACKS_SYS_PARAM_H |
| 330 | |
| 331 | /* |
| 332 | Include 'windows.h' to get the necessary declarations for the |
| 333 | Microsoft Visual C++ data structures and routines used in the 'sbrk' |
| 334 | emulation. |
| 335 | |
| 336 | Define WIN32_LEAN_AND_MEAN so that only the essential Microsoft |
| 337 | Visual C++ header files are included. |
| 338 | */ |
| 339 | #define WIN32_LEAN_AND_MEAN |
| 340 | #include <windows.h> |
| 341 | #endif |
| 342 | |
| 343 | |
| 344 | /* |
| 345 | HAVE_MEMCPY should be defined if you are not otherwise using |
| 346 | ANSI STD C, but still have memcpy and memset in your C library |
| 347 | and want to use them in calloc and realloc. Otherwise simple |
| 348 | macro versions are defined here. |
| 349 | |
| 350 | USE_MEMCPY should be defined as 1 if you actually want to |
| 351 | have memset and memcpy called. People report that the macro |
| 352 | versions are often enough faster than libc versions on many |
| 353 | systems that it is better to use them. |
| 354 | |
| 355 | */ |
| 356 | |
| 357 | #define HAVE_MEMCPY |
| 358 | |
| 359 | #ifndef USE_MEMCPY |
| 360 | #ifdef HAVE_MEMCPY |
| 361 | #define USE_MEMCPY 1 |
| 362 | #else |
| 363 | #define USE_MEMCPY 0 |
| 364 | #endif |
| 365 | #endif |
| 366 | |
| 367 | #if (__STD_C || defined(HAVE_MEMCPY)) |
| 368 | |
| 369 | #if __STD_C |
| 370 | void* memset(void*, int, size_t); |
| 371 | void* memcpy(void*, const void*, size_t); |
| 372 | #else |
| 373 | #ifdef WIN32 |
| 374 | // On Win32 platforms, 'memset()' and 'memcpy()' are already declared in |
| 375 | // 'windows.h' |
| 376 | #else |
| 377 | Void_t* memset(); |
| 378 | Void_t* memcpy(); |
| 379 | #endif |
| 380 | #endif |
| 381 | #endif |
| 382 | |
| 383 | #if USE_MEMCPY |
| 384 | |
| 385 | /* The following macros are only invoked with (2n+1)-multiples of |
| 386 | INTERNAL_SIZE_T units, with a positive integer n. This is exploited |
| 387 | for fast inline execution when n is small. */ |
| 388 | |
| 389 | #define MALLOC_ZERO(charp, nbytes) \ |
| 390 | do { \ |
| 391 | INTERNAL_SIZE_T mzsz = (nbytes); \ |
| 392 | if(mzsz <= 9*sizeof(mzsz)) { \ |
| 393 | INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp); \ |
| 394 | if(mzsz >= 5*sizeof(mzsz)) { *mz++ = 0; \ |
| 395 | *mz++ = 0; \ |
| 396 | if(mzsz >= 7*sizeof(mzsz)) { *mz++ = 0; \ |
| 397 | *mz++ = 0; \ |
| 398 | if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0; \ |
| 399 | *mz++ = 0; }}} \ |
| 400 | *mz++ = 0; \ |
| 401 | *mz++ = 0; \ |
| 402 | *mz = 0; \ |
| 403 | } else memset((charp), 0, mzsz); \ |
| 404 | } while(0) |
| 405 | |
| 406 | #define MALLOC_COPY(dest,src,nbytes) \ |
| 407 | do { \ |
| 408 | INTERNAL_SIZE_T mcsz = (nbytes); \ |
| 409 | if(mcsz <= 9*sizeof(mcsz)) { \ |
| 410 | INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src); \ |
| 411 | INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest); \ |
| 412 | if(mcsz >= 5*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \ |
| 413 | *mcdst++ = *mcsrc++; \ |
| 414 | if(mcsz >= 7*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \ |
| 415 | *mcdst++ = *mcsrc++; \ |
| 416 | if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \ |
| 417 | *mcdst++ = *mcsrc++; }}} \ |
| 418 | *mcdst++ = *mcsrc++; \ |
| 419 | *mcdst++ = *mcsrc++; \ |
| 420 | *mcdst = *mcsrc ; \ |
| 421 | } else memcpy(dest, src, mcsz); \ |
| 422 | } while(0) |
| 423 | |
| 424 | #else /* !USE_MEMCPY */ |
| 425 | |
| 426 | /* Use Duff's device for good zeroing/copying performance. */ |
| 427 | |
| 428 | #define MALLOC_ZERO(charp, nbytes) \ |
| 429 | do { \ |
| 430 | INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp); \ |
| 431 | long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \ |
| 432 | if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \ |
| 433 | switch (mctmp) { \ |
| 434 | case 0: for(;;) { *mzp++ = 0; \ |
| 435 | case 7: *mzp++ = 0; \ |
| 436 | case 6: *mzp++ = 0; \ |
| 437 | case 5: *mzp++ = 0; \ |
| 438 | case 4: *mzp++ = 0; \ |
| 439 | case 3: *mzp++ = 0; \ |
| 440 | case 2: *mzp++ = 0; \ |
| 441 | case 1: *mzp++ = 0; if(mcn <= 0) break; mcn--; } \ |
| 442 | } \ |
| 443 | } while(0) |
| 444 | |
| 445 | #define MALLOC_COPY(dest,src,nbytes) \ |
| 446 | do { \ |
| 447 | INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src; \ |
| 448 | INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest; \ |
| 449 | long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \ |
| 450 | if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \ |
| 451 | switch (mctmp) { \ |
| 452 | case 0: for(;;) { *mcdst++ = *mcsrc++; \ |
| 453 | case 7: *mcdst++ = *mcsrc++; \ |
| 454 | case 6: *mcdst++ = *mcsrc++; \ |
| 455 | case 5: *mcdst++ = *mcsrc++; \ |
| 456 | case 4: *mcdst++ = *mcsrc++; \ |
| 457 | case 3: *mcdst++ = *mcsrc++; \ |
| 458 | case 2: *mcdst++ = *mcsrc++; \ |
| 459 | case 1: *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; } \ |
| 460 | } \ |
| 461 | } while(0) |
| 462 | |
| 463 | #endif |
| 464 | |
| 465 | |
| 466 | /* |
| 467 | Define HAVE_MMAP to optionally make malloc() use mmap() to |
| 468 | allocate very large blocks. These will be returned to the |
| 469 | operating system immediately after a free(). |
| 470 | */ |
| 471 | |
| 472 | #ifndef HAVE_MMAP |
| 473 | #define HAVE_MMAP 1 |
| 474 | #endif |
| 475 | |
| 476 | /* |
| 477 | Define HAVE_MREMAP to make realloc() use mremap() to re-allocate |
| 478 | large blocks. This is currently only possible on Linux with |
| 479 | kernel versions newer than 1.3.77. |
| 480 | */ |
| 481 | |
| 482 | #ifndef HAVE_MREMAP |
| 483 | #ifdef INTERNAL_LINUX_C_LIB |
| 484 | #define HAVE_MREMAP 1 |
| 485 | #else |
| 486 | #define HAVE_MREMAP 0 |
| 487 | #endif |
| 488 | #endif |
| 489 | |
| 490 | #if HAVE_MMAP |
| 491 | |
| 492 | #include <unistd.h> |
| 493 | #include <fcntl.h> |
| 494 | #include <sys/mman.h> |
| 495 | |
| 496 | #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON) |
| 497 | #define MAP_ANONYMOUS MAP_ANON |
| 498 | #endif |
| 499 | |
| 500 | #endif /* HAVE_MMAP */ |
| 501 | |
| 502 | /* |
| 503 | Access to system page size. To the extent possible, this malloc |
| 504 | manages memory from the system in page-size units. |
| 505 | |
| 506 | The following mechanics for getpagesize were adapted from |
| 507 | bsd/gnu getpagesize.h |
| 508 | */ |
| 509 | |
| 510 | #ifndef LACKS_UNISTD_H |
| 511 | # include <unistd.h> |
| 512 | #endif |
| 513 | |
| 514 | #ifndef malloc_getpagesize |
| 515 | # ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */ |
| 516 | # ifndef _SC_PAGE_SIZE |
| 517 | # define _SC_PAGE_SIZE _SC_PAGESIZE |
| 518 | # endif |
| 519 | # endif |
| 520 | # ifdef _SC_PAGE_SIZE |
| 521 | # define malloc_getpagesize sysconf(_SC_PAGE_SIZE) |
| 522 | # else |
| 523 | # if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE) |
| 524 | extern size_t getpagesize(); |
| 525 | # define malloc_getpagesize getpagesize() |
| 526 | # else |
| 527 | # ifdef WIN32 |
| 528 | # define malloc_getpagesize (4096) /* TBD: Use 'GetSystemInfo' instead */ |
| 529 | # else |
| 530 | # ifndef LACKS_SYS_PARAM_H |
| 531 | # include <sys/param.h> |
| 532 | # endif |
| 533 | # ifdef EXEC_PAGESIZE |
| 534 | # define malloc_getpagesize EXEC_PAGESIZE |
| 535 | # else |
| 536 | # ifdef NBPG |
| 537 | # ifndef CLSIZE |
| 538 | # define malloc_getpagesize NBPG |
| 539 | # else |
| 540 | # define malloc_getpagesize (NBPG * CLSIZE) |
| 541 | # endif |
| 542 | # else |
| 543 | # ifdef NBPC |
| 544 | # define malloc_getpagesize NBPC |
| 545 | # else |
| 546 | # ifdef PAGESIZE |
| 547 | # define malloc_getpagesize PAGESIZE |
| 548 | # else |
| 549 | # define malloc_getpagesize (4096) /* just guess */ |
| 550 | # endif |
| 551 | # endif |
| 552 | # endif |
| 553 | # endif |
| 554 | # endif |
| 555 | # endif |
| 556 | # endif |
| 557 | #endif |
| 558 | |
| 559 | |
| 560 | |
| 561 | /* |
| 562 | |
| 563 | This version of malloc supports the standard SVID/XPG mallinfo |
| 564 | routine that returns a struct containing the same kind of |
| 565 | information you can get from malloc_stats. It should work on |
| 566 | any SVID/XPG compliant system that has a /usr/include/malloc.h |
| 567 | defining struct mallinfo. (If you'd like to install such a thing |
| 568 | yourself, cut out the preliminary declarations as described above |
| 569 | and below and save them in a malloc.h file. But there's no |
| 570 | compelling reason to bother to do this.) |
| 571 | |
| 572 | The main declaration needed is the mallinfo struct that is returned |
| 573 | (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a |
| 574 | bunch of fields, most of which are not even meaningful in this |
| 575 | version of malloc. Some of these fields are are instead filled by |
| 576 | mallinfo() with other numbers that might possibly be of interest. |
| 577 | |
| 578 | HAVE_USR_INCLUDE_MALLOC_H should be set if you have a |
| 579 | /usr/include/malloc.h file that includes a declaration of struct |
| 580 | mallinfo. If so, it is included; else an SVID2/XPG2 compliant |
| 581 | version is declared below. These must be precisely the same for |
| 582 | mallinfo() to work. |
| 583 | |
| 584 | */ |
| 585 | |
| 586 | /* #define HAVE_USR_INCLUDE_MALLOC_H */ |
| 587 | |
| 588 | #if HAVE_USR_INCLUDE_MALLOC_H |
| 589 | #include "/usr/include/malloc.h" |
| 590 | #else |
| 591 | |
| 592 | /* SVID2/XPG mallinfo structure */ |
| 593 | |
| 594 | struct mallinfo { |
| 595 | int arena; /* total space allocated from system */ |
| 596 | int ordblks; /* number of non-inuse chunks */ |
| 597 | int smblks; /* unused -- always zero */ |
| 598 | int hblks; /* number of mmapped regions */ |
| 599 | int hblkhd; /* total space in mmapped regions */ |
| 600 | int usmblks; /* unused -- always zero */ |
| 601 | int fsmblks; /* unused -- always zero */ |
| 602 | int uordblks; /* total allocated space */ |
| 603 | int fordblks; /* total non-inuse space */ |
| 604 | int keepcost; /* top-most, releasable (via malloc_trim) space */ |
| 605 | }; |
| 606 | |
| 607 | /* SVID2/XPG mallopt options */ |
| 608 | |
| 609 | #define M_MXFAST 1 /* UNUSED in this malloc */ |
| 610 | #define M_NLBLKS 2 /* UNUSED in this malloc */ |
| 611 | #define M_GRAIN 3 /* UNUSED in this malloc */ |
| 612 | #define M_KEEP 4 /* UNUSED in this malloc */ |
| 613 | |
| 614 | #endif |
| 615 | |
| 616 | /* mallopt options that actually do something */ |
| 617 | |
| 618 | #define M_TRIM_THRESHOLD -1 |
| 619 | #define M_TOP_PAD -2 |
| 620 | #define M_MMAP_THRESHOLD -3 |
| 621 | #define M_MMAP_MAX -4 |
| 622 | |
| 623 | |
| 624 | |
| 625 | #ifndef DEFAULT_TRIM_THRESHOLD |
| 626 | #define DEFAULT_TRIM_THRESHOLD (128 * 1024) |
| 627 | #endif |
| 628 | |
| 629 | /* |
| 630 | M_TRIM_THRESHOLD is the maximum amount of unused top-most memory |
| 631 | to keep before releasing via malloc_trim in free(). |
| 632 | |
| 633 | Automatic trimming is mainly useful in long-lived programs. |
| 634 | Because trimming via sbrk can be slow on some systems, and can |
| 635 | sometimes be wasteful (in cases where programs immediately |
| 636 | afterward allocate more large chunks) the value should be high |
| 637 | enough so that your overall system performance would improve by |
| 638 | releasing. |
| 639 | |
| 640 | The trim threshold and the mmap control parameters (see below) |
| 641 | can be traded off with one another. Trimming and mmapping are |
| 642 | two different ways of releasing unused memory back to the |
| 643 | system. Between these two, it is often possible to keep |
| 644 | system-level demands of a long-lived program down to a bare |
| 645 | minimum. For example, in one test suite of sessions measuring |
| 646 | the XF86 X server on Linux, using a trim threshold of 128K and a |
| 647 | mmap threshold of 192K led to near-minimal long term resource |
| 648 | consumption. |
| 649 | |
| 650 | If you are using this malloc in a long-lived program, it should |
| 651 | pay to experiment with these values. As a rough guide, you |
| 652 | might set to a value close to the average size of a process |
| 653 | (program) running on your system. Releasing this much memory |
| 654 | would allow such a process to run in memory. Generally, it's |
| 655 | worth it to tune for trimming rather tham memory mapping when a |
| 656 | program undergoes phases where several large chunks are |
| 657 | allocated and released in ways that can reuse each other's |
| 658 | storage, perhaps mixed with phases where there are no such |
| 659 | chunks at all. And in well-behaved long-lived programs, |
| 660 | controlling release of large blocks via trimming versus mapping |
| 661 | is usually faster. |
| 662 | |
| 663 | However, in most programs, these parameters serve mainly as |
| 664 | protection against the system-level effects of carrying around |
| 665 | massive amounts of unneeded memory. Since frequent calls to |
| 666 | sbrk, mmap, and munmap otherwise degrade performance, the default |
| 667 | parameters are set to relatively high values that serve only as |
| 668 | safeguards. |
| 669 | |
| 670 | The default trim value is high enough to cause trimming only in |
| 671 | fairly extreme (by current memory consumption standards) cases. |
| 672 | It must be greater than page size to have any useful effect. To |
| 673 | disable trimming completely, you can set to (unsigned long)(-1); |
| 674 | |
| 675 | |
| 676 | */ |
| 677 | |
| 678 | |
| 679 | #ifndef DEFAULT_TOP_PAD |
| 680 | #define DEFAULT_TOP_PAD (0) |
| 681 | #endif |
| 682 | |
| 683 | /* |
| 684 | M_TOP_PAD is the amount of extra `padding' space to allocate or |
| 685 | retain whenever sbrk is called. It is used in two ways internally: |
| 686 | |
| 687 | * When sbrk is called to extend the top of the arena to satisfy |
| 688 | a new malloc request, this much padding is added to the sbrk |
| 689 | request. |
| 690 | |
| 691 | * When malloc_trim is called automatically from free(), |
| 692 | it is used as the `pad' argument. |
| 693 | |
| 694 | In both cases, the actual amount of padding is rounded |
| 695 | so that the end of the arena is always a system page boundary. |
| 696 | |
| 697 | The main reason for using padding is to avoid calling sbrk so |
| 698 | often. Having even a small pad greatly reduces the likelihood |
| 699 | that nearly every malloc request during program start-up (or |
| 700 | after trimming) will invoke sbrk, which needlessly wastes |
| 701 | time. |
| 702 | |
| 703 | Automatic rounding-up to page-size units is normally sufficient |
| 704 | to avoid measurable overhead, so the default is 0. However, in |
| 705 | systems where sbrk is relatively slow, it can pay to increase |
| 706 | this value, at the expense of carrying around more memory than |
| 707 | the program needs. |
| 708 | |
| 709 | */ |
| 710 | |
| 711 | |
| 712 | #ifndef DEFAULT_MMAP_THRESHOLD |
| 713 | #define DEFAULT_MMAP_THRESHOLD (128 * 1024) |
| 714 | #endif |
| 715 | |
| 716 | /* |
| 717 | |
| 718 | M_MMAP_THRESHOLD is the request size threshold for using mmap() |
| 719 | to service a request. Requests of at least this size that cannot |
| 720 | be allocated using already-existing space will be serviced via mmap. |
| 721 | (If enough normal freed space already exists it is used instead.) |
| 722 | |
| 723 | Using mmap segregates relatively large chunks of memory so that |
| 724 | they can be individually obtained and released from the host |
| 725 | system. A request serviced through mmap is never reused by any |
| 726 | other request (at least not directly; the system may just so |
| 727 | happen to remap successive requests to the same locations). |
| 728 | |
| 729 | Segregating space in this way has the benefit that mmapped space |
| 730 | can ALWAYS be individually released back to the system, which |
| 731 | helps keep the system level memory demands of a long-lived |
| 732 | program low. Mapped memory can never become `locked' between |
| 733 | other chunks, as can happen with normally allocated chunks, which |
| 734 | menas that even trimming via malloc_trim would not release them. |
| 735 | |
| 736 | However, it has the disadvantages that: |
| 737 | |
| 738 | 1. The space cannot be reclaimed, consolidated, and then |
| 739 | used to service later requests, as happens with normal chunks. |
| 740 | 2. It can lead to more wastage because of mmap page alignment |
| 741 | requirements |
| 742 | 3. It causes malloc performance to be more dependent on host |
| 743 | system memory management support routines which may vary in |
| 744 | implementation quality and may impose arbitrary |
| 745 | limitations. Generally, servicing a request via normal |
| 746 | malloc steps is faster than going through a system's mmap. |
| 747 | |
| 748 | All together, these considerations should lead you to use mmap |
| 749 | only for relatively large requests. |
| 750 | |
| 751 | |
| 752 | */ |
| 753 | |
| 754 | |
| 755 | |
| 756 | #ifndef DEFAULT_MMAP_MAX |
| 757 | #if HAVE_MMAP |
| 758 | #define DEFAULT_MMAP_MAX (64) |
| 759 | #else |
| 760 | #define DEFAULT_MMAP_MAX (0) |
| 761 | #endif |
| 762 | #endif |
| 763 | |
| 764 | /* |
| 765 | M_MMAP_MAX is the maximum number of requests to simultaneously |
| 766 | service using mmap. This parameter exists because: |
| 767 | |
| 768 | 1. Some systems have a limited number of internal tables for |
| 769 | use by mmap. |
| 770 | 2. In most systems, overreliance on mmap can degrade overall |
| 771 | performance. |
| 772 | 3. If a program allocates many large regions, it is probably |
| 773 | better off using normal sbrk-based allocation routines that |
| 774 | can reclaim and reallocate normal heap memory. Using a |
| 775 | small value allows transition into this mode after the |
| 776 | first few allocations. |
| 777 | |
| 778 | Setting to 0 disables all use of mmap. If HAVE_MMAP is not set, |
| 779 | the default value is 0, and attempts to set it to non-zero values |
| 780 | in mallopt will fail. |
| 781 | */ |
| 782 | |
| 783 | |
| 784 | |
| 785 | |
| 786 | /* |
| 787 | USE_DL_PREFIX will prefix all public routines with the string 'dl'. |
| 788 | Useful to quickly avoid procedure declaration conflicts and linker |
| 789 | symbol conflicts with existing memory allocation routines. |
| 790 | |
| 791 | */ |
| 792 | |
| 793 | /* #define USE_DL_PREFIX */ |
| 794 | |
| 795 | |
| 796 | |
| 797 | |
| 798 | /* |
| 799 | |
| 800 | Special defines for linux libc |
| 801 | |
| 802 | Except when compiled using these special defines for Linux libc |
| 803 | using weak aliases, this malloc is NOT designed to work in |
| 804 | multithreaded applications. No semaphores or other concurrency |
| 805 | control are provided to ensure that multiple malloc or free calls |
| 806 | don't run at the same time, which could be disasterous. A single |
| 807 | semaphore could be used across malloc, realloc, and free (which is |
| 808 | essentially the effect of the linux weak alias approach). It would |
| 809 | be hard to obtain finer granularity. |
| 810 | |
| 811 | */ |
| 812 | |
| 813 | |
| 814 | #ifdef INTERNAL_LINUX_C_LIB |
| 815 | |
| 816 | #if __STD_C |
| 817 | |
| 818 | Void_t * __default_morecore_init (ptrdiff_t); |
| 819 | Void_t *(*__morecore)(ptrdiff_t) = __default_morecore_init; |
| 820 | |
| 821 | #else |
| 822 | |
| 823 | Void_t * __default_morecore_init (); |
| 824 | Void_t *(*__morecore)() = __default_morecore_init; |
| 825 | |
| 826 | #endif |
| 827 | |
| 828 | #define MORECORE (*__morecore) |
| 829 | #define MORECORE_FAILURE 0 |
| 830 | #define MORECORE_CLEARS 1 |
| 831 | |
| 832 | #else /* INTERNAL_LINUX_C_LIB */ |
| 833 | |
| 834 | #if __STD_C |
| 835 | extern Void_t* sbrk(ptrdiff_t); |
| 836 | #else |
| 837 | extern Void_t* sbrk(); |
| 838 | #endif |
| 839 | |
| 840 | #ifndef MORECORE |
| 841 | #define MORECORE sbrk |
| 842 | #endif |
| 843 | |
| 844 | #ifndef MORECORE_FAILURE |
| 845 | #define MORECORE_FAILURE -1 |
| 846 | #endif |
| 847 | |
| 848 | #ifndef MORECORE_CLEARS |
| 849 | #define MORECORE_CLEARS 1 |
| 850 | #endif |
| 851 | |
| 852 | #endif /* INTERNAL_LINUX_C_LIB */ |
| 853 | |
| 854 | #if defined(INTERNAL_LINUX_C_LIB) && defined(__ELF__) |
| 855 | |
| 856 | #define cALLOc __libc_calloc |
| 857 | #define fREe __libc_free |
| 858 | #define mALLOc __libc_malloc |
| 859 | #define mEMALIGn __libc_memalign |
| 860 | #define rEALLOc __libc_realloc |
| 861 | #define vALLOc __libc_valloc |
| 862 | #define pvALLOc __libc_pvalloc |
| 863 | #define mALLINFo __libc_mallinfo |
| 864 | #define mALLOPt __libc_mallopt |
| 865 | |
| 866 | #pragma weak calloc = __libc_calloc |
| 867 | #pragma weak free = __libc_free |
| 868 | #pragma weak cfree = __libc_free |
| 869 | #pragma weak malloc = __libc_malloc |
| 870 | #pragma weak memalign = __libc_memalign |
| 871 | #pragma weak realloc = __libc_realloc |
| 872 | #pragma weak valloc = __libc_valloc |
| 873 | #pragma weak pvalloc = __libc_pvalloc |
| 874 | #pragma weak mallinfo = __libc_mallinfo |
| 875 | #pragma weak mallopt = __libc_mallopt |
| 876 | |
| 877 | #else |
| 878 | |
| 879 | #ifdef USE_DL_PREFIX |
| 880 | #define cALLOc dlcalloc |
| 881 | #define fREe dlfree |
| 882 | #define mALLOc dlmalloc |
| 883 | #define mEMALIGn dlmemalign |
| 884 | #define rEALLOc dlrealloc |
| 885 | #define vALLOc dlvalloc |
| 886 | #define pvALLOc dlpvalloc |
| 887 | #define mALLINFo dlmallinfo |
| 888 | #define mALLOPt dlmallopt |
| 889 | #else /* USE_DL_PREFIX */ |
| 890 | #define cALLOc calloc |
| 891 | #define fREe free |
| 892 | #define mALLOc malloc |
| 893 | #define mEMALIGn memalign |
| 894 | #define rEALLOc realloc |
| 895 | #define vALLOc valloc |
| 896 | #define pvALLOc pvalloc |
| 897 | #define mALLINFo mallinfo |
| 898 | #define mALLOPt mallopt |
| 899 | #endif /* USE_DL_PREFIX */ |
| 900 | |
| 901 | #endif |
| 902 | |
| 903 | /* Public routines */ |
| 904 | |
| 905 | #if __STD_C |
| 906 | |
| 907 | Void_t* mALLOc(size_t); |
| 908 | void fREe(Void_t*); |
| 909 | Void_t* rEALLOc(Void_t*, size_t); |
| 910 | Void_t* mEMALIGn(size_t, size_t); |
| 911 | Void_t* vALLOc(size_t); |
| 912 | Void_t* pvALLOc(size_t); |
| 913 | Void_t* cALLOc(size_t, size_t); |
| 914 | void cfree(Void_t*); |
| 915 | int malloc_trim(size_t); |
| 916 | size_t malloc_usable_size(Void_t*); |
| 917 | void malloc_stats(); |
| 918 | int mALLOPt(int, int); |
| 919 | struct mallinfo mALLINFo(void); |
| 920 | #else |
| 921 | Void_t* mALLOc(); |
| 922 | void fREe(); |
| 923 | Void_t* rEALLOc(); |
| 924 | Void_t* mEMALIGn(); |
| 925 | Void_t* vALLOc(); |
| 926 | Void_t* pvALLOc(); |
| 927 | Void_t* cALLOc(); |
| 928 | void cfree(); |
| 929 | int malloc_trim(); |
| 930 | size_t malloc_usable_size(); |
| 931 | void malloc_stats(); |
| 932 | int mALLOPt(); |
| 933 | struct mallinfo mALLINFo(); |
| 934 | #endif |
| 935 | |
| 936 | |
| 937 | #ifdef __cplusplus |
| 938 | }; /* end of extern "C" */ |
| 939 | #endif |
| 940 | |
| 941 | /* ---------- To make a malloc.h, end cutting here ------------ */ |
| 942 | |
| 943 | |
| 944 | /* |
| 945 | Emulation of sbrk for WIN32 |
| 946 | All code within the ifdef WIN32 is untested by me. |
| 947 | |
| 948 | Thanks to Martin Fong and others for supplying this. |
| 949 | */ |
| 950 | |
| 951 | |
| 952 | #ifdef WIN32 |
| 953 | |
| 954 | #define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \ |
| 955 | ~(malloc_getpagesize-1)) |
| 956 | #define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1)) |
| 957 | |
| 958 | /* resrve 64MB to insure large contiguous space */ |
| 959 | #define RESERVED_SIZE (1024*1024*64) |
| 960 | #define NEXT_SIZE (2048*1024) |
| 961 | #define TOP_MEMORY ((unsigned long)2*1024*1024*1024) |
| 962 | |
| 963 | struct GmListElement; |
| 964 | typedef struct GmListElement GmListElement; |
| 965 | |
| 966 | struct GmListElement |
| 967 | { |
| 968 | GmListElement* next; |
| 969 | void* base; |
| 970 | }; |
| 971 | |
| 972 | static GmListElement* head = 0; |
| 973 | static unsigned int gNextAddress = 0; |
| 974 | static unsigned int gAddressBase = 0; |
| 975 | static unsigned int gAllocatedSize = 0; |
| 976 | |
| 977 | static |
| 978 | GmListElement* makeGmListElement (void* bas) |
| 979 | { |
| 980 | GmListElement* this; |
| 981 | this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement)); |
| 982 | assert (this); |
| 983 | if (this) |
| 984 | { |
| 985 | this->base = bas; |
| 986 | this->next = head; |
| 987 | head = this; |
| 988 | } |
| 989 | return this; |
| 990 | } |
| 991 | |
| 992 | void gcleanup () |
| 993 | { |
| 994 | BOOL rval; |
| 995 | assert ( (head == NULL) || (head->base == (void*)gAddressBase)); |
| 996 | if (gAddressBase && (gNextAddress - gAddressBase)) |
| 997 | { |
| 998 | rval = VirtualFree ((void*)gAddressBase, |
| 999 | gNextAddress - gAddressBase, |
| 1000 | MEM_DECOMMIT); |
| 1001 | assert (rval); |
| 1002 | } |
| 1003 | while (head) |
| 1004 | { |
| 1005 | GmListElement* next = head->next; |
| 1006 | rval = VirtualFree (head->base, 0, MEM_RELEASE); |
| 1007 | assert (rval); |
| 1008 | LocalFree (head); |
| 1009 | head = next; |
| 1010 | } |
| 1011 | } |
| 1012 | |
| 1013 | static |
| 1014 | void* findRegion (void* start_address, unsigned long size) |
| 1015 | { |
| 1016 | MEMORY_BASIC_INFORMATION info; |
| 1017 | if (size >= TOP_MEMORY) return NULL; |
| 1018 | |
| 1019 | while ((unsigned long)start_address + size < TOP_MEMORY) |
| 1020 | { |
| 1021 | VirtualQuery (start_address, &info, sizeof (info)); |
| 1022 | if ((info.State == MEM_FREE) && (info.RegionSize >= size)) |
| 1023 | return start_address; |
| 1024 | else |
| 1025 | { |
| 1026 | // Requested region is not available so see if the |
| 1027 | // next region is available. Set 'start_address' |
| 1028 | // to the next region and call 'VirtualQuery()' |
| 1029 | // again. |
| 1030 | |
| 1031 | start_address = (char*)info.BaseAddress + info.RegionSize; |
| 1032 | |
| 1033 | // Make sure we start looking for the next region |
| 1034 | // on the *next* 64K boundary. Otherwise, even if |
| 1035 | // the new region is free according to |
| 1036 | // 'VirtualQuery()', the subsequent call to |
| 1037 | // 'VirtualAlloc()' (which follows the call to |
| 1038 | // this routine in 'wsbrk()') will round *down* |
| 1039 | // the requested address to a 64K boundary which |
| 1040 | // we already know is an address in the |
| 1041 | // unavailable region. Thus, the subsequent call |
| 1042 | // to 'VirtualAlloc()' will fail and bring us back |
| 1043 | // here, causing us to go into an infinite loop. |
| 1044 | |
| 1045 | start_address = |
| 1046 | (void *) AlignPage64K((unsigned long) start_address); |
| 1047 | } |
| 1048 | } |
| 1049 | return NULL; |
| 1050 | |
| 1051 | } |
| 1052 | |
| 1053 | |
| 1054 | void* wsbrk (long size) |
| 1055 | { |
| 1056 | void* tmp; |
| 1057 | if (size > 0) |
| 1058 | { |
| 1059 | if (gAddressBase == 0) |
| 1060 | { |
| 1061 | gAllocatedSize = max (RESERVED_SIZE, AlignPage (size)); |
| 1062 | gNextAddress = gAddressBase = |
| 1063 | (unsigned int)VirtualAlloc (NULL, gAllocatedSize, |
| 1064 | MEM_RESERVE, PAGE_NOACCESS); |
| 1065 | } else if (AlignPage (gNextAddress + size) > (gAddressBase + |
| 1066 | gAllocatedSize)) |
| 1067 | { |
| 1068 | long new_size = max (NEXT_SIZE, AlignPage (size)); |
| 1069 | void* new_address = (void*)(gAddressBase+gAllocatedSize); |
| 1070 | do |
| 1071 | { |
| 1072 | new_address = findRegion (new_address, new_size); |
| 1073 | |
| 1074 | if (new_address == 0) |
| 1075 | return (void*)-1; |
| 1076 | |
| 1077 | gAddressBase = gNextAddress = |
| 1078 | (unsigned int)VirtualAlloc (new_address, new_size, |
| 1079 | MEM_RESERVE, PAGE_NOACCESS); |
| 1080 | // repeat in case of race condition |
| 1081 | // The region that we found has been snagged |
| 1082 | // by another thread |
| 1083 | } |
| 1084 | while (gAddressBase == 0); |
| 1085 | |
| 1086 | assert (new_address == (void*)gAddressBase); |
| 1087 | |
| 1088 | gAllocatedSize = new_size; |
| 1089 | |
| 1090 | if (!makeGmListElement ((void*)gAddressBase)) |
| 1091 | return (void*)-1; |
| 1092 | } |
| 1093 | if ((size + gNextAddress) > AlignPage (gNextAddress)) |
| 1094 | { |
| 1095 | void* res; |
| 1096 | res = VirtualAlloc ((void*)AlignPage (gNextAddress), |
| 1097 | (size + gNextAddress - |
| 1098 | AlignPage (gNextAddress)), |
| 1099 | MEM_COMMIT, PAGE_READWRITE); |
| 1100 | if (res == 0) |
| 1101 | return (void*)-1; |
| 1102 | } |
| 1103 | tmp = (void*)gNextAddress; |
| 1104 | gNextAddress = (unsigned int)tmp + size; |
| 1105 | return tmp; |
| 1106 | } |
| 1107 | else if (size < 0) |
| 1108 | { |
| 1109 | unsigned int alignedGoal = AlignPage (gNextAddress + size); |
| 1110 | /* Trim by releasing the virtual memory */ |
| 1111 | if (alignedGoal >= gAddressBase) |
| 1112 | { |
| 1113 | VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal, |
| 1114 | MEM_DECOMMIT); |
| 1115 | gNextAddress = gNextAddress + size; |
| 1116 | return (void*)gNextAddress; |
| 1117 | } |
| 1118 | else |
| 1119 | { |
| 1120 | VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase, |
| 1121 | MEM_DECOMMIT); |
| 1122 | gNextAddress = gAddressBase; |
| 1123 | return (void*)-1; |
| 1124 | } |
| 1125 | } |
| 1126 | else |
| 1127 | { |
| 1128 | return (void*)gNextAddress; |
| 1129 | } |
| 1130 | } |
| 1131 | |
| 1132 | #endif |
| 1133 | |
| 1134 | |
| 1135 | |
| 1136 | /* |
| 1137 | Type declarations |
| 1138 | */ |
| 1139 | |
| 1140 | |
| 1141 | struct malloc_chunk |
| 1142 | { |
| 1143 | INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */ |
| 1144 | INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */ |
| 1145 | struct malloc_chunk* fd; /* double links -- used only if free. */ |
| 1146 | struct malloc_chunk* bk; |
| 1147 | }; |
| 1148 | |
| 1149 | typedef struct malloc_chunk* mchunkptr; |
| 1150 | |
| 1151 | /* |
| 1152 | |
| 1153 | malloc_chunk details: |
| 1154 | |
| 1155 | (The following includes lightly edited explanations by Colin Plumb.) |
| 1156 | |
| 1157 | Chunks of memory are maintained using a `boundary tag' method as |
| 1158 | described in e.g., Knuth or Standish. (See the paper by Paul |
| 1159 | Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a |
| 1160 | survey of such techniques.) Sizes of free chunks are stored both |
| 1161 | in the front of each chunk and at the end. This makes |
| 1162 | consolidating fragmented chunks into bigger chunks very fast. The |
| 1163 | size fields also hold bits representing whether chunks are free or |
| 1164 | in use. |
| 1165 | |
| 1166 | An allocated chunk looks like this: |
| 1167 | |
| 1168 | |
| 1169 | chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1170 | | Size of previous chunk, if allocated | | |
| 1171 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1172 | | Size of chunk, in bytes |P| |
| 1173 | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1174 | | User data starts here... . |
| 1175 | . . |
| 1176 | . (malloc_usable_space() bytes) . |
| 1177 | . | |
| 1178 | nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1179 | | Size of chunk | |
| 1180 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1181 | |
| 1182 | |
| 1183 | Where "chunk" is the front of the chunk for the purpose of most of |
| 1184 | the malloc code, but "mem" is the pointer that is returned to the |
| 1185 | user. "Nextchunk" is the beginning of the next contiguous chunk. |
| 1186 | |
| 1187 | Chunks always begin on even word boundries, so the mem portion |
| 1188 | (which is returned to the user) is also on an even word boundary, and |
| 1189 | thus double-word aligned. |
| 1190 | |
| 1191 | Free chunks are stored in circular doubly-linked lists, and look like this: |
| 1192 | |
| 1193 | chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1194 | | Size of previous chunk | |
| 1195 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1196 | `head:' | Size of chunk, in bytes |P| |
| 1197 | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1198 | | Forward pointer to next chunk in list | |
| 1199 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1200 | | Back pointer to previous chunk in list | |
| 1201 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1202 | | Unused space (may be 0 bytes long) . |
| 1203 | . . |
| 1204 | . | |
| 1205 | nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1206 | `foot:' | Size of chunk, in bytes | |
| 1207 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1208 | |
| 1209 | The P (PREV_INUSE) bit, stored in the unused low-order bit of the |
| 1210 | chunk size (which is always a multiple of two words), is an in-use |
| 1211 | bit for the *previous* chunk. If that bit is *clear*, then the |
| 1212 | word before the current chunk size contains the previous chunk |
| 1213 | size, and can be used to find the front of the previous chunk. |
| 1214 | (The very first chunk allocated always has this bit set, |
| 1215 | preventing access to non-existent (or non-owned) memory.) |
| 1216 | |
| 1217 | Note that the `foot' of the current chunk is actually represented |
| 1218 | as the prev_size of the NEXT chunk. (This makes it easier to |
| 1219 | deal with alignments etc). |
| 1220 | |
| 1221 | The two exceptions to all this are |
| 1222 | |
| 1223 | 1. The special chunk `top', which doesn't bother using the |
| 1224 | trailing size field since there is no |
| 1225 | next contiguous chunk that would have to index off it. (After |
| 1226 | initialization, `top' is forced to always exist. If it would |
| 1227 | become less than MINSIZE bytes long, it is replenished via |
| 1228 | malloc_extend_top.) |
| 1229 | |
| 1230 | 2. Chunks allocated via mmap, which have the second-lowest-order |
| 1231 | bit (IS_MMAPPED) set in their size fields. Because they are |
| 1232 | never merged or traversed from any other chunk, they have no |
| 1233 | foot size or inuse information. |
| 1234 | |
| 1235 | Available chunks are kept in any of several places (all declared below): |
| 1236 | |
| 1237 | * `av': An array of chunks serving as bin headers for consolidated |
| 1238 | chunks. Each bin is doubly linked. The bins are approximately |
| 1239 | proportionally (log) spaced. There are a lot of these bins |
| 1240 | (128). This may look excessive, but works very well in |
| 1241 | practice. All procedures maintain the invariant that no |
| 1242 | consolidated chunk physically borders another one. Chunks in |
| 1243 | bins are kept in size order, with ties going to the |
| 1244 | approximately least recently used chunk. |
| 1245 | |
| 1246 | The chunks in each bin are maintained in decreasing sorted order by |
| 1247 | size. This is irrelevant for the small bins, which all contain |
| 1248 | the same-sized chunks, but facilitates best-fit allocation for |
| 1249 | larger chunks. (These lists are just sequential. Keeping them in |
| 1250 | order almost never requires enough traversal to warrant using |
| 1251 | fancier ordered data structures.) Chunks of the same size are |
| 1252 | linked with the most recently freed at the front, and allocations |
| 1253 | are taken from the back. This results in LRU or FIFO allocation |
| 1254 | order, which tends to give each chunk an equal opportunity to be |
| 1255 | consolidated with adjacent freed chunks, resulting in larger free |
| 1256 | chunks and less fragmentation. |
| 1257 | |
| 1258 | * `top': The top-most available chunk (i.e., the one bordering the |
| 1259 | end of available memory) is treated specially. It is never |
| 1260 | included in any bin, is used only if no other chunk is |
| 1261 | available, and is released back to the system if it is very |
| 1262 | large (see M_TRIM_THRESHOLD). |
| 1263 | |
| 1264 | * `last_remainder': A bin holding only the remainder of the |
| 1265 | most recently split (non-top) chunk. This bin is checked |
| 1266 | before other non-fitting chunks, so as to provide better |
| 1267 | locality for runs of sequentially allocated chunks. |
| 1268 | |
| 1269 | * Implicitly, through the host system's memory mapping tables. |
| 1270 | If supported, requests greater than a threshold are usually |
| 1271 | serviced via calls to mmap, and then later released via munmap. |
| 1272 | |
| 1273 | */ |
| 1274 | |
| 1275 | |
| 1276 | |
| 1277 | |
| 1278 | |
| 1279 | |
| 1280 | /* sizes, alignments */ |
| 1281 | |
| 1282 | #define SIZE_SZ (sizeof(INTERNAL_SIZE_T)) |
| 1283 | #define MALLOC_ALIGNMENT (SIZE_SZ + SIZE_SZ) |
| 1284 | #define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1) |
| 1285 | #define MINSIZE (sizeof(struct malloc_chunk)) |
| 1286 | |
| 1287 | /* conversion from malloc headers to user pointers, and back */ |
| 1288 | |
| 1289 | #define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ)) |
| 1290 | #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ)) |
| 1291 | |
| 1292 | /* pad request bytes into a usable size */ |
| 1293 | |
| 1294 | #define request2size(req) \ |
| 1295 | (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \ |
| 1296 | (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \ |
| 1297 | (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK))) |
| 1298 | |
| 1299 | /* Check if m has acceptable alignment */ |
| 1300 | |
| 1301 | #define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0) |
| 1302 | |
| 1303 | |
| 1304 | |
| 1305 | |
| 1306 | /* |
| 1307 | Physical chunk operations |
| 1308 | */ |
| 1309 | |
| 1310 | |
| 1311 | /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */ |
| 1312 | |
| 1313 | #define PREV_INUSE 0x1 |
| 1314 | |
| 1315 | /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */ |
| 1316 | |
| 1317 | #define IS_MMAPPED 0x2 |
| 1318 | |
| 1319 | /* Bits to mask off when extracting size */ |
| 1320 | |
| 1321 | #define SIZE_BITS (PREV_INUSE|IS_MMAPPED) |
| 1322 | |
| 1323 | |
| 1324 | /* Ptr to next physical malloc_chunk. */ |
| 1325 | |
| 1326 | #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) )) |
| 1327 | |
| 1328 | /* Ptr to previous physical malloc_chunk */ |
| 1329 | |
| 1330 | #define prev_chunk(p)\ |
| 1331 | ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) )) |
| 1332 | |
| 1333 | |
| 1334 | /* Treat space at ptr + offset as a chunk */ |
| 1335 | |
| 1336 | #define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s))) |
| 1337 | |
| 1338 | |
| 1339 | |
| 1340 | |
| 1341 | /* |
| 1342 | Dealing with use bits |
| 1343 | */ |
| 1344 | |
| 1345 | /* extract p's inuse bit */ |
| 1346 | |
| 1347 | #define inuse(p)\ |
| 1348 | ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE) |
| 1349 | |
| 1350 | /* extract inuse bit of previous chunk */ |
| 1351 | |
| 1352 | #define prev_inuse(p) ((p)->size & PREV_INUSE) |
| 1353 | |
| 1354 | /* check for mmap()'ed chunk */ |
| 1355 | |
| 1356 | #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED) |
| 1357 | |
| 1358 | /* set/clear chunk as in use without otherwise disturbing */ |
| 1359 | |
| 1360 | #define set_inuse(p)\ |
| 1361 | ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE |
| 1362 | |
| 1363 | #define clear_inuse(p)\ |
| 1364 | ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE) |
| 1365 | |
| 1366 | /* check/set/clear inuse bits in known places */ |
| 1367 | |
| 1368 | #define inuse_bit_at_offset(p, s)\ |
| 1369 | (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE) |
| 1370 | |
| 1371 | #define set_inuse_bit_at_offset(p, s)\ |
| 1372 | (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE) |
| 1373 | |
| 1374 | #define clear_inuse_bit_at_offset(p, s)\ |
| 1375 | (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE)) |
| 1376 | |
| 1377 | |
| 1378 | |
| 1379 | |
| 1380 | /* |
| 1381 | Dealing with size fields |
| 1382 | */ |
| 1383 | |
| 1384 | /* Get size, ignoring use bits */ |
| 1385 | |
| 1386 | #define chunksize(p) ((p)->size & ~(SIZE_BITS)) |
| 1387 | |
| 1388 | /* Set size at head, without disturbing its use bit */ |
| 1389 | |
| 1390 | #define set_head_size(p, s) ((p)->size = (((p)->size & PREV_INUSE) | (s))) |
| 1391 | |
| 1392 | /* Set size/use ignoring previous bits in header */ |
| 1393 | |
| 1394 | #define set_head(p, s) ((p)->size = (s)) |
| 1395 | |
| 1396 | /* Set size at footer (only when chunk is not in use) */ |
| 1397 | |
| 1398 | #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s)) |
| 1399 | |
| 1400 | |
| 1401 | |
| 1402 | |
| 1403 | |
| 1404 | /* |
| 1405 | Bins |
| 1406 | |
| 1407 | The bins, `av_' are an array of pairs of pointers serving as the |
| 1408 | heads of (initially empty) doubly-linked lists of chunks, laid out |
| 1409 | in a way so that each pair can be treated as if it were in a |
| 1410 | malloc_chunk. (This way, the fd/bk offsets for linking bin heads |
| 1411 | and chunks are the same). |
| 1412 | |
| 1413 | Bins for sizes < 512 bytes contain chunks of all the same size, spaced |
| 1414 | 8 bytes apart. Larger bins are approximately logarithmically |
| 1415 | spaced. (See the table below.) The `av_' array is never mentioned |
| 1416 | directly in the code, but instead via bin access macros. |
| 1417 | |
| 1418 | Bin layout: |
| 1419 | |
| 1420 | 64 bins of size 8 |
| 1421 | 32 bins of size 64 |
| 1422 | 16 bins of size 512 |
| 1423 | 8 bins of size 4096 |
| 1424 | 4 bins of size 32768 |
| 1425 | 2 bins of size 262144 |
| 1426 | 1 bin of size what's left |
| 1427 | |
| 1428 | There is actually a little bit of slop in the numbers in bin_index |
| 1429 | for the sake of speed. This makes no difference elsewhere. |
| 1430 | |
| 1431 | The special chunks `top' and `last_remainder' get their own bins, |
| 1432 | (this is implemented via yet more trickery with the av_ array), |
| 1433 | although `top' is never properly linked to its bin since it is |
| 1434 | always handled specially. |
| 1435 | |
| 1436 | */ |
| 1437 | |
| 1438 | #define NAV 128 /* number of bins */ |
| 1439 | |
| 1440 | typedef struct malloc_chunk* mbinptr; |
| 1441 | |
| 1442 | /* access macros */ |
| 1443 | |
| 1444 | #define bin_at(i) ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ)) |
| 1445 | #define next_bin(b) ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr))) |
| 1446 | #define prev_bin(b) ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr))) |
| 1447 | |
| 1448 | /* |
| 1449 | The first 2 bins are never indexed. The corresponding av_ cells are instead |
| 1450 | used for bookkeeping. This is not to save space, but to simplify |
| 1451 | indexing, maintain locality, and avoid some initialization tests. |
| 1452 | */ |
| 1453 | |
| 1454 | #define top (bin_at(0)->fd) /* The topmost chunk */ |
| 1455 | #define last_remainder (bin_at(1)) /* remainder from last split */ |
| 1456 | |
| 1457 | |
| 1458 | /* |
| 1459 | Because top initially points to its own bin with initial |
| 1460 | zero size, thus forcing extension on the first malloc request, |
| 1461 | we avoid having any special code in malloc to check whether |
| 1462 | it even exists yet. But we still need to in malloc_extend_top. |
| 1463 | */ |
| 1464 | |
| 1465 | #define initial_top ((mchunkptr)(bin_at(0))) |
| 1466 | |
| 1467 | /* Helper macro to initialize bins */ |
| 1468 | |
| 1469 | #define IAV(i) bin_at(i), bin_at(i) |
| 1470 | |
| 1471 | static mbinptr av_[NAV * 2 + 2] = { |
| 1472 | 0, 0, |
| 1473 | IAV(0), IAV(1), IAV(2), IAV(3), IAV(4), IAV(5), IAV(6), IAV(7), |
| 1474 | IAV(8), IAV(9), IAV(10), IAV(11), IAV(12), IAV(13), IAV(14), IAV(15), |
| 1475 | IAV(16), IAV(17), IAV(18), IAV(19), IAV(20), IAV(21), IAV(22), IAV(23), |
| 1476 | IAV(24), IAV(25), IAV(26), IAV(27), IAV(28), IAV(29), IAV(30), IAV(31), |
| 1477 | IAV(32), IAV(33), IAV(34), IAV(35), IAV(36), IAV(37), IAV(38), IAV(39), |
| 1478 | IAV(40), IAV(41), IAV(42), IAV(43), IAV(44), IAV(45), IAV(46), IAV(47), |
| 1479 | IAV(48), IAV(49), IAV(50), IAV(51), IAV(52), IAV(53), IAV(54), IAV(55), |
| 1480 | IAV(56), IAV(57), IAV(58), IAV(59), IAV(60), IAV(61), IAV(62), IAV(63), |
| 1481 | IAV(64), IAV(65), IAV(66), IAV(67), IAV(68), IAV(69), IAV(70), IAV(71), |
| 1482 | IAV(72), IAV(73), IAV(74), IAV(75), IAV(76), IAV(77), IAV(78), IAV(79), |
| 1483 | IAV(80), IAV(81), IAV(82), IAV(83), IAV(84), IAV(85), IAV(86), IAV(87), |
| 1484 | IAV(88), IAV(89), IAV(90), IAV(91), IAV(92), IAV(93), IAV(94), IAV(95), |
| 1485 | IAV(96), IAV(97), IAV(98), IAV(99), IAV(100), IAV(101), IAV(102), IAV(103), |
| 1486 | IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111), |
| 1487 | IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119), |
| 1488 | IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127) |
| 1489 | }; |
| 1490 | |
| 1491 | |
| 1492 | |
| 1493 | /* field-extraction macros */ |
| 1494 | |
| 1495 | #define first(b) ((b)->fd) |
| 1496 | #define last(b) ((b)->bk) |
| 1497 | |
| 1498 | /* |
| 1499 | Indexing into bins |
| 1500 | */ |
| 1501 | |
| 1502 | #define bin_index(sz) \ |
| 1503 | (((((unsigned long)(sz)) >> 9) == 0) ? (((unsigned long)(sz)) >> 3): \ |
| 1504 | ((((unsigned long)(sz)) >> 9) <= 4) ? 56 + (((unsigned long)(sz)) >> 6): \ |
| 1505 | ((((unsigned long)(sz)) >> 9) <= 20) ? 91 + (((unsigned long)(sz)) >> 9): \ |
| 1506 | ((((unsigned long)(sz)) >> 9) <= 84) ? 110 + (((unsigned long)(sz)) >> 12): \ |
| 1507 | ((((unsigned long)(sz)) >> 9) <= 340) ? 119 + (((unsigned long)(sz)) >> 15): \ |
| 1508 | ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \ |
| 1509 | 126) |
| 1510 | /* |
| 1511 | bins for chunks < 512 are all spaced 8 bytes apart, and hold |
| 1512 | identically sized chunks. This is exploited in malloc. |
| 1513 | */ |
| 1514 | |
| 1515 | #define MAX_SMALLBIN 63 |
| 1516 | #define MAX_SMALLBIN_SIZE 512 |
| 1517 | #define SMALLBIN_WIDTH 8 |
| 1518 | |
| 1519 | #define smallbin_index(sz) (((unsigned long)(sz)) >> 3) |
| 1520 | |
| 1521 | /* |
| 1522 | Requests are `small' if both the corresponding and the next bin are small |
| 1523 | */ |
| 1524 | |
| 1525 | #define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH) |
| 1526 | |
| 1527 | |
| 1528 | |
| 1529 | /* |
| 1530 | To help compensate for the large number of bins, a one-level index |
| 1531 | structure is used for bin-by-bin searching. `binblocks' is a |
| 1532 | one-word bitvector recording whether groups of BINBLOCKWIDTH bins |
| 1533 | have any (possibly) non-empty bins, so they can be skipped over |
| 1534 | all at once during during traversals. The bits are NOT always |
| 1535 | cleared as soon as all bins in a block are empty, but instead only |
| 1536 | when all are noticed to be empty during traversal in malloc. |
| 1537 | */ |
| 1538 | |
| 1539 | #define BINBLOCKWIDTH 4 /* bins per block */ |
| 1540 | |
| 1541 | #define binblocks (bin_at(0)->size) /* bitvector of nonempty blocks */ |
| 1542 | |
| 1543 | /* bin<->block macros */ |
| 1544 | |
| 1545 | #define idx2binblock(ix) ((unsigned)1 << (ix / BINBLOCKWIDTH)) |
| 1546 | #define mark_binblock(ii) (binblocks |= idx2binblock(ii)) |
| 1547 | #define clear_binblock(ii) (binblocks &= ~(idx2binblock(ii))) |
| 1548 | |
| 1549 | |
| 1550 | |
| 1551 | |
| 1552 | |
| 1553 | /* Other static bookkeeping data */ |
| 1554 | |
| 1555 | /* variables holding tunable values */ |
| 1556 | |
| 1557 | static unsigned long trim_threshold = DEFAULT_TRIM_THRESHOLD; |
| 1558 | static unsigned long top_pad = DEFAULT_TOP_PAD; |
| 1559 | static unsigned int n_mmaps_max = DEFAULT_MMAP_MAX; |
| 1560 | static unsigned long mmap_threshold = DEFAULT_MMAP_THRESHOLD; |
| 1561 | |
| 1562 | /* The first value returned from sbrk */ |
| 1563 | static char* sbrk_base = (char*)(-1); |
| 1564 | |
| 1565 | /* The maximum memory obtained from system via sbrk */ |
| 1566 | static unsigned long max_sbrked_mem = 0; |
| 1567 | |
| 1568 | /* The maximum via either sbrk or mmap */ |
| 1569 | static unsigned long max_total_mem = 0; |
| 1570 | |
| 1571 | /* internal working copy of mallinfo */ |
| 1572 | static struct mallinfo current_mallinfo = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; |
| 1573 | |
| 1574 | /* The total memory obtained from system via sbrk */ |
| 1575 | #define sbrked_mem (current_mallinfo.arena) |
| 1576 | |
| 1577 | /* Tracking mmaps */ |
| 1578 | |
| 1579 | static unsigned int n_mmaps = 0; |
| 1580 | static unsigned int max_n_mmaps = 0; |
| 1581 | static unsigned long mmapped_mem = 0; |
| 1582 | static unsigned long max_mmapped_mem = 0; |
| 1583 | |
| 1584 | |
| 1585 | |
| 1586 | /* |
| 1587 | Debugging support |
| 1588 | */ |
| 1589 | |
| 1590 | #if DEBUG |
| 1591 | |
| 1592 | |
| 1593 | /* |
| 1594 | These routines make a number of assertions about the states |
| 1595 | of data structures that should be true at all times. If any |
| 1596 | are not true, it's very likely that a user program has somehow |
| 1597 | trashed memory. (It's also possible that there is a coding error |
| 1598 | in malloc. In which case, please report it!) |
| 1599 | */ |
| 1600 | |
| 1601 | #if __STD_C |
| 1602 | static void do_check_chunk(mchunkptr p) |
| 1603 | #else |
| 1604 | static void do_check_chunk(p) mchunkptr p; |
| 1605 | #endif |
| 1606 | { |
| 1607 | INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE; |
| 1608 | |
| 1609 | /* No checkable chunk is mmapped */ |
| 1610 | assert(!chunk_is_mmapped(p)); |
| 1611 | |
| 1612 | /* Check for legal address ... */ |
| 1613 | assert((char*)p >= sbrk_base); |
| 1614 | if (p != top) |
| 1615 | assert((char*)p + sz <= (char*)top); |
| 1616 | else |
| 1617 | assert((char*)p + sz <= sbrk_base + sbrked_mem); |
| 1618 | |
| 1619 | } |
| 1620 | |
| 1621 | |
| 1622 | #if __STD_C |
| 1623 | static void do_check_free_chunk(mchunkptr p) |
| 1624 | #else |
| 1625 | static void do_check_free_chunk(p) mchunkptr p; |
| 1626 | #endif |
| 1627 | { |
| 1628 | INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE; |
| 1629 | mchunkptr next = chunk_at_offset(p, sz); |
| 1630 | |
| 1631 | do_check_chunk(p); |
| 1632 | |
| 1633 | /* Check whether it claims to be free ... */ |
| 1634 | assert(!inuse(p)); |
| 1635 | |
| 1636 | /* Unless a special marker, must have OK fields */ |
| 1637 | if ((long)sz >= (long)MINSIZE) |
| 1638 | { |
| 1639 | assert((sz & MALLOC_ALIGN_MASK) == 0); |
| 1640 | assert(aligned_OK(chunk2mem(p))); |
| 1641 | /* ... matching footer field */ |
| 1642 | assert(next->prev_size == sz); |
| 1643 | /* ... and is fully consolidated */ |
| 1644 | assert(prev_inuse(p)); |
| 1645 | assert (next == top || inuse(next)); |
| 1646 | |
| 1647 | /* ... and has minimally sane links */ |
| 1648 | assert(p->fd->bk == p); |
| 1649 | assert(p->bk->fd == p); |
| 1650 | } |
| 1651 | else /* markers are always of size SIZE_SZ */ |
| 1652 | assert(sz == SIZE_SZ); |
| 1653 | } |
| 1654 | |
| 1655 | #if __STD_C |
| 1656 | static void do_check_inuse_chunk(mchunkptr p) |
| 1657 | #else |
| 1658 | static void do_check_inuse_chunk(p) mchunkptr p; |
| 1659 | #endif |
| 1660 | { |
| 1661 | mchunkptr next = next_chunk(p); |
| 1662 | do_check_chunk(p); |
| 1663 | |
| 1664 | /* Check whether it claims to be in use ... */ |
| 1665 | assert(inuse(p)); |
| 1666 | |
| 1667 | /* ... and is surrounded by OK chunks. |
| 1668 | Since more things can be checked with free chunks than inuse ones, |
| 1669 | if an inuse chunk borders them and debug is on, it's worth doing them. |
| 1670 | */ |
| 1671 | if (!prev_inuse(p)) |
| 1672 | { |
| 1673 | mchunkptr prv = prev_chunk(p); |
| 1674 | assert(next_chunk(prv) == p); |
| 1675 | do_check_free_chunk(prv); |
| 1676 | } |
| 1677 | if (next == top) |
| 1678 | { |
| 1679 | assert(prev_inuse(next)); |
| 1680 | assert(chunksize(next) >= MINSIZE); |
| 1681 | } |
| 1682 | else if (!inuse(next)) |
| 1683 | do_check_free_chunk(next); |
| 1684 | |
| 1685 | } |
| 1686 | |
| 1687 | #if __STD_C |
| 1688 | static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s) |
| 1689 | #else |
| 1690 | static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s; |
| 1691 | #endif |
| 1692 | { |
| 1693 | INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE; |
| 1694 | long room = sz - s; |
| 1695 | |
| 1696 | do_check_inuse_chunk(p); |
| 1697 | |
| 1698 | /* Legal size ... */ |
| 1699 | assert((long)sz >= (long)MINSIZE); |
| 1700 | assert((sz & MALLOC_ALIGN_MASK) == 0); |
| 1701 | assert(room >= 0); |
| 1702 | assert(room < (long)MINSIZE); |
| 1703 | |
| 1704 | /* ... and alignment */ |
| 1705 | assert(aligned_OK(chunk2mem(p))); |
| 1706 | |
| 1707 | |
| 1708 | /* ... and was allocated at front of an available chunk */ |
| 1709 | assert(prev_inuse(p)); |
| 1710 | |
| 1711 | } |
| 1712 | |
| 1713 | |
| 1714 | #define check_free_chunk(P) do_check_free_chunk(P) |
| 1715 | #define check_inuse_chunk(P) do_check_inuse_chunk(P) |
| 1716 | #define check_chunk(P) do_check_chunk(P) |
| 1717 | #define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N) |
| 1718 | #else |
| 1719 | #define check_free_chunk(P) |
| 1720 | #define check_inuse_chunk(P) |
| 1721 | #define check_chunk(P) |
| 1722 | #define check_malloced_chunk(P,N) |
| 1723 | #endif |
| 1724 | |
| 1725 | |
| 1726 | |
| 1727 | /* |
| 1728 | Macro-based internal utilities |
| 1729 | */ |
| 1730 | |
| 1731 | |
| 1732 | /* |
| 1733 | Linking chunks in bin lists. |
| 1734 | Call these only with variables, not arbitrary expressions, as arguments. |
| 1735 | */ |
| 1736 | |
| 1737 | /* |
| 1738 | Place chunk p of size s in its bin, in size order, |
| 1739 | putting it ahead of others of same size. |
| 1740 | */ |
| 1741 | |
| 1742 | |
| 1743 | #define frontlink(P, S, IDX, BK, FD) \ |
| 1744 | { \ |
| 1745 | if (S < MAX_SMALLBIN_SIZE) \ |
| 1746 | { \ |
| 1747 | IDX = smallbin_index(S); \ |
| 1748 | mark_binblock(IDX); \ |
| 1749 | BK = bin_at(IDX); \ |
| 1750 | FD = BK->fd; \ |
| 1751 | P->bk = BK; \ |
| 1752 | P->fd = FD; \ |
| 1753 | FD->bk = BK->fd = P; \ |
| 1754 | } \ |
| 1755 | else \ |
| 1756 | { \ |
| 1757 | IDX = bin_index(S); \ |
| 1758 | BK = bin_at(IDX); \ |
| 1759 | FD = BK->fd; \ |
| 1760 | if (FD == BK) mark_binblock(IDX); \ |
| 1761 | else \ |
| 1762 | { \ |
| 1763 | while (FD != BK && S < chunksize(FD)) FD = FD->fd; \ |
| 1764 | BK = FD->bk; \ |
| 1765 | } \ |
| 1766 | P->bk = BK; \ |
| 1767 | P->fd = FD; \ |
| 1768 | FD->bk = BK->fd = P; \ |
| 1769 | } \ |
| 1770 | } |
| 1771 | |
| 1772 | |
| 1773 | /* take a chunk off a list */ |
| 1774 | |
| 1775 | #define unlink(P, BK, FD) \ |
| 1776 | { \ |
| 1777 | BK = P->bk; \ |
| 1778 | FD = P->fd; \ |
| 1779 | FD->bk = BK; \ |
| 1780 | BK->fd = FD; \ |
| 1781 | } \ |
| 1782 | |
| 1783 | /* Place p as the last remainder */ |
| 1784 | |
| 1785 | #define link_last_remainder(P) \ |
| 1786 | { \ |
| 1787 | last_remainder->fd = last_remainder->bk = P; \ |
| 1788 | P->fd = P->bk = last_remainder; \ |
| 1789 | } |
| 1790 | |
| 1791 | /* Clear the last_remainder bin */ |
| 1792 | |
| 1793 | #define clear_last_remainder \ |
| 1794 | (last_remainder->fd = last_remainder->bk = last_remainder) |
| 1795 | |
| 1796 | |
| 1797 | |
| 1798 | |
| 1799 | |
| 1800 | |
| 1801 | /* Routines dealing with mmap(). */ |
| 1802 | |
| 1803 | #if HAVE_MMAP |
| 1804 | |
| 1805 | #if __STD_C |
| 1806 | static mchunkptr mmap_chunk(size_t size) |
| 1807 | #else |
| 1808 | static mchunkptr mmap_chunk(size) size_t size; |
| 1809 | #endif |
| 1810 | { |
| 1811 | size_t page_mask = malloc_getpagesize - 1; |
| 1812 | mchunkptr p; |
| 1813 | |
| 1814 | #ifndef MAP_ANONYMOUS |
| 1815 | static int fd = -1; |
| 1816 | #endif |
| 1817 | |
| 1818 | if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */ |
| 1819 | |
| 1820 | /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because |
| 1821 | * there is no following chunk whose prev_size field could be used. |
| 1822 | */ |
| 1823 | size = (size + SIZE_SZ + page_mask) & ~page_mask; |
| 1824 | |
| 1825 | #ifdef MAP_ANONYMOUS |
| 1826 | p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, |
| 1827 | MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); |
| 1828 | #else /* !MAP_ANONYMOUS */ |
| 1829 | if (fd < 0) |
| 1830 | { |
| 1831 | fd = open("/dev/zero", O_RDWR); |
| 1832 | if(fd < 0) return 0; |
| 1833 | } |
| 1834 | p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0); |
| 1835 | #endif |
| 1836 | |
| 1837 | if(p == (mchunkptr)-1) return 0; |
| 1838 | |
| 1839 | n_mmaps++; |
| 1840 | if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps; |
| 1841 | |
| 1842 | /* We demand that eight bytes into a page must be 8-byte aligned. */ |
| 1843 | assert(aligned_OK(chunk2mem(p))); |
| 1844 | |
| 1845 | /* The offset to the start of the mmapped region is stored |
| 1846 | * in the prev_size field of the chunk; normally it is zero, |
| 1847 | * but that can be changed in memalign(). |
| 1848 | */ |
| 1849 | p->prev_size = 0; |
| 1850 | set_head(p, size|IS_MMAPPED); |
| 1851 | |
| 1852 | mmapped_mem += size; |
| 1853 | if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem) |
| 1854 | max_mmapped_mem = mmapped_mem; |
| 1855 | if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem) |
| 1856 | max_total_mem = mmapped_mem + sbrked_mem; |
| 1857 | return p; |
| 1858 | } |
| 1859 | |
| 1860 | #if __STD_C |
| 1861 | static void munmap_chunk(mchunkptr p) |
| 1862 | #else |
| 1863 | static void munmap_chunk(p) mchunkptr p; |
| 1864 | #endif |
| 1865 | { |
| 1866 | INTERNAL_SIZE_T size = chunksize(p); |
| 1867 | int ret; |
| 1868 | |
| 1869 | assert (chunk_is_mmapped(p)); |
| 1870 | assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem)); |
| 1871 | assert((n_mmaps > 0)); |
| 1872 | assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0); |
| 1873 | |
| 1874 | n_mmaps--; |
| 1875 | mmapped_mem -= (size + p->prev_size); |
| 1876 | |
| 1877 | ret = munmap((char *)p - p->prev_size, size + p->prev_size); |
| 1878 | |
| 1879 | /* munmap returns non-zero on failure */ |
| 1880 | assert(ret == 0); |
| 1881 | } |
| 1882 | |
| 1883 | #if HAVE_MREMAP |
| 1884 | |
| 1885 | #if __STD_C |
| 1886 | static mchunkptr mremap_chunk(mchunkptr p, size_t new_size) |
| 1887 | #else |
| 1888 | static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size; |
| 1889 | #endif |
| 1890 | { |
| 1891 | size_t page_mask = malloc_getpagesize - 1; |
| 1892 | INTERNAL_SIZE_T offset = p->prev_size; |
| 1893 | INTERNAL_SIZE_T size = chunksize(p); |
| 1894 | char *cp; |
| 1895 | |
| 1896 | assert (chunk_is_mmapped(p)); |
| 1897 | assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem)); |
| 1898 | assert((n_mmaps > 0)); |
| 1899 | assert(((size + offset) & (malloc_getpagesize-1)) == 0); |
| 1900 | |
| 1901 | /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */ |
| 1902 | new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask; |
| 1903 | |
| 1904 | cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1); |
| 1905 | |
| 1906 | if (cp == (char *)-1) return 0; |
| 1907 | |
| 1908 | p = (mchunkptr)(cp + offset); |
| 1909 | |
| 1910 | assert(aligned_OK(chunk2mem(p))); |
| 1911 | |
| 1912 | assert((p->prev_size == offset)); |
| 1913 | set_head(p, (new_size - offset)|IS_MMAPPED); |
| 1914 | |
| 1915 | mmapped_mem -= size + offset; |
| 1916 | mmapped_mem += new_size; |
| 1917 | if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem) |
| 1918 | max_mmapped_mem = mmapped_mem; |
| 1919 | if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem) |
| 1920 | max_total_mem = mmapped_mem + sbrked_mem; |
| 1921 | return p; |
| 1922 | } |
| 1923 | |
| 1924 | #endif /* HAVE_MREMAP */ |
| 1925 | |
| 1926 | #endif /* HAVE_MMAP */ |
| 1927 | |
| 1928 | |
| 1929 | |
| 1930 | |
| 1931 | /* |
| 1932 | Extend the top-most chunk by obtaining memory from system. |
| 1933 | Main interface to sbrk (but see also malloc_trim). |
| 1934 | */ |
| 1935 | |
| 1936 | #if __STD_C |
| 1937 | static void malloc_extend_top(INTERNAL_SIZE_T nb) |
| 1938 | #else |
| 1939 | static void malloc_extend_top(nb) INTERNAL_SIZE_T nb; |
| 1940 | #endif |
| 1941 | { |
| 1942 | char* brk; /* return value from sbrk */ |
| 1943 | INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */ |
| 1944 | INTERNAL_SIZE_T correction; /* bytes for 2nd sbrk call */ |
| 1945 | char* new_brk; /* return of 2nd sbrk call */ |
| 1946 | INTERNAL_SIZE_T top_size; /* new size of top chunk */ |
| 1947 | |
| 1948 | mchunkptr old_top = top; /* Record state of old top */ |
| 1949 | INTERNAL_SIZE_T old_top_size = chunksize(old_top); |
| 1950 | char* old_end = (char*)(chunk_at_offset(old_top, old_top_size)); |
| 1951 | |
| 1952 | /* Pad request with top_pad plus minimal overhead */ |
| 1953 | |
| 1954 | INTERNAL_SIZE_T sbrk_size = nb + top_pad + MINSIZE; |
| 1955 | unsigned long pagesz = malloc_getpagesize; |
| 1956 | |
| 1957 | /* If not the first time through, round to preserve page boundary */ |
| 1958 | /* Otherwise, we need to correct to a page size below anyway. */ |
| 1959 | /* (We also correct below if an intervening foreign sbrk call.) */ |
| 1960 | |
| 1961 | if (sbrk_base != (char*)(-1)) |
| 1962 | sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1); |
| 1963 | |
| 1964 | brk = (char*)(MORECORE (sbrk_size)); |
| 1965 | |
| 1966 | /* Fail if sbrk failed or if a foreign sbrk call killed our space */ |
| 1967 | if (brk == (char*)(MORECORE_FAILURE) || |
| 1968 | (brk < old_end && old_top != initial_top)) |
| 1969 | return; |
| 1970 | |
| 1971 | sbrked_mem += sbrk_size; |
| 1972 | |
| 1973 | if (brk == old_end) /* can just add bytes to current top */ |
| 1974 | { |
| 1975 | top_size = sbrk_size + old_top_size; |
| 1976 | set_head(top, top_size | PREV_INUSE); |
| 1977 | } |
| 1978 | else |
| 1979 | { |
| 1980 | if (sbrk_base == (char*)(-1)) /* First time through. Record base */ |
| 1981 | sbrk_base = brk; |
| 1982 | else /* Someone else called sbrk(). Count those bytes as sbrked_mem. */ |
| 1983 | sbrked_mem += brk - (char*)old_end; |
| 1984 | |
| 1985 | /* Guarantee alignment of first new chunk made from this space */ |
| 1986 | front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK; |
| 1987 | if (front_misalign > 0) |
| 1988 | { |
| 1989 | correction = (MALLOC_ALIGNMENT) - front_misalign; |
| 1990 | brk += correction; |
| 1991 | } |
| 1992 | else |
| 1993 | correction = 0; |
| 1994 | |
| 1995 | /* Guarantee the next brk will be at a page boundary */ |
| 1996 | |
| 1997 | correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) & |
| 1998 | ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size)); |
| 1999 | |
| 2000 | /* Allocate correction */ |
| 2001 | new_brk = (char*)(MORECORE (correction)); |
| 2002 | if (new_brk == (char*)(MORECORE_FAILURE)) return; |
| 2003 | |
| 2004 | sbrked_mem += correction; |
| 2005 | |
| 2006 | top = (mchunkptr)brk; |
| 2007 | top_size = new_brk - brk + correction; |
| 2008 | set_head(top, top_size | PREV_INUSE); |
| 2009 | |
| 2010 | if (old_top != initial_top) |
| 2011 | { |
| 2012 | |
| 2013 | /* There must have been an intervening foreign sbrk call. */ |
| 2014 | /* A double fencepost is necessary to prevent consolidation */ |
| 2015 | |
| 2016 | /* If not enough space to do this, then user did something very wrong */ |
| 2017 | if (old_top_size < MINSIZE) |
| 2018 | { |
| 2019 | set_head(top, PREV_INUSE); /* will force null return from malloc */ |
| 2020 | return; |
| 2021 | } |
| 2022 | |
| 2023 | /* Also keep size a multiple of MALLOC_ALIGNMENT */ |
| 2024 | old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK; |
| 2025 | set_head_size(old_top, old_top_size); |
| 2026 | chunk_at_offset(old_top, old_top_size )->size = |
| 2027 | SIZE_SZ|PREV_INUSE; |
| 2028 | chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size = |
| 2029 | SIZE_SZ|PREV_INUSE; |
| 2030 | /* If possible, release the rest. */ |
| 2031 | if (old_top_size >= MINSIZE) |
| 2032 | fREe(chunk2mem(old_top)); |
| 2033 | } |
| 2034 | } |
| 2035 | |
| 2036 | if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem) |
| 2037 | max_sbrked_mem = sbrked_mem; |
| 2038 | if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem) |
| 2039 | max_total_mem = mmapped_mem + sbrked_mem; |
| 2040 | |
| 2041 | /* We always land on a page boundary */ |
| 2042 | assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0); |
| 2043 | } |
| 2044 | |
| 2045 | |
| 2046 | |
| 2047 | |
| 2048 | /* Main public routines */ |
| 2049 | |
| 2050 | |
| 2051 | /* |
| 2052 | Malloc Algorthim: |
| 2053 | |
| 2054 | The requested size is first converted into a usable form, `nb'. |
| 2055 | This currently means to add 4 bytes overhead plus possibly more to |
| 2056 | obtain 8-byte alignment and/or to obtain a size of at least |
| 2057 | MINSIZE (currently 16 bytes), the smallest allocatable size. |
| 2058 | (All fits are considered `exact' if they are within MINSIZE bytes.) |
| 2059 | |
| 2060 | From there, the first successful of the following steps is taken: |
| 2061 | |
| 2062 | 1. The bin corresponding to the request size is scanned, and if |
| 2063 | a chunk of exactly the right size is found, it is taken. |
| 2064 | |
| 2065 | 2. The most recently remaindered chunk is used if it is big |
| 2066 | enough. This is a form of (roving) first fit, used only in |
| 2067 | the absence of exact fits. Runs of consecutive requests use |
| 2068 | the remainder of the chunk used for the previous such request |
| 2069 | whenever possible. This limited use of a first-fit style |
| 2070 | allocation strategy tends to give contiguous chunks |
| 2071 | coextensive lifetimes, which improves locality and can reduce |
| 2072 | fragmentation in the long run. |
| 2073 | |
| 2074 | 3. Other bins are scanned in increasing size order, using a |
| 2075 | chunk big enough to fulfill the request, and splitting off |
| 2076 | any remainder. This search is strictly by best-fit; i.e., |
| 2077 | the smallest (with ties going to approximately the least |
| 2078 | recently used) chunk that fits is selected. |
| 2079 | |
| 2080 | 4. If large enough, the chunk bordering the end of memory |
| 2081 | (`top') is split off. (This use of `top' is in accord with |
| 2082 | the best-fit search rule. In effect, `top' is treated as |
| 2083 | larger (and thus less well fitting) than any other available |
| 2084 | chunk since it can be extended to be as large as necessary |
| 2085 | (up to system limitations). |
| 2086 | |
| 2087 | 5. If the request size meets the mmap threshold and the |
| 2088 | system supports mmap, and there are few enough currently |
| 2089 | allocated mmapped regions, and a call to mmap succeeds, |
| 2090 | the request is allocated via direct memory mapping. |
| 2091 | |
| 2092 | 6. Otherwise, the top of memory is extended by |
| 2093 | obtaining more space from the system (normally using sbrk, |
| 2094 | but definable to anything else via the MORECORE macro). |
| 2095 | Memory is gathered from the system (in system page-sized |
| 2096 | units) in a way that allows chunks obtained across different |
| 2097 | sbrk calls to be consolidated, but does not require |
| 2098 | contiguous memory. Thus, it should be safe to intersperse |
| 2099 | mallocs with other sbrk calls. |
| 2100 | |
| 2101 | |
| 2102 | All allocations are made from the the `lowest' part of any found |
| 2103 | chunk. (The implementation invariant is that prev_inuse is |
| 2104 | always true of any allocated chunk; i.e., that each allocated |
| 2105 | chunk borders either a previously allocated and still in-use chunk, |
| 2106 | or the base of its memory arena.) |
| 2107 | |
| 2108 | */ |
| 2109 | |
| 2110 | #if __STD_C |
| 2111 | Void_t* mALLOc(size_t bytes) |
| 2112 | #else |
| 2113 | Void_t* mALLOc(bytes) size_t bytes; |
| 2114 | #endif |
| 2115 | { |
| 2116 | mchunkptr victim; /* inspected/selected chunk */ |
| 2117 | INTERNAL_SIZE_T victim_size; /* its size */ |
| 2118 | int idx; /* index for bin traversal */ |
| 2119 | mbinptr bin; /* associated bin */ |
| 2120 | mchunkptr remainder; /* remainder from a split */ |
| 2121 | long remainder_size; /* its size */ |
| 2122 | int remainder_index; /* its bin index */ |
| 2123 | unsigned long block; /* block traverser bit */ |
| 2124 | int startidx; /* first bin of a traversed block */ |
| 2125 | mchunkptr fwd; /* misc temp for linking */ |
| 2126 | mchunkptr bck; /* misc temp for linking */ |
| 2127 | mbinptr q; /* misc temp */ |
| 2128 | |
| 2129 | INTERNAL_SIZE_T nb; |
| 2130 | |
| 2131 | if ((long)bytes < 0) return 0; |
| 2132 | |
| 2133 | nb = request2size(bytes); /* padded request size; */ |
| 2134 | |
| 2135 | /* Check for exact match in a bin */ |
| 2136 | |
| 2137 | if (is_small_request(nb)) /* Faster version for small requests */ |
| 2138 | { |
| 2139 | idx = smallbin_index(nb); |
| 2140 | |
| 2141 | /* No traversal or size check necessary for small bins. */ |
| 2142 | |
| 2143 | q = bin_at(idx); |
| 2144 | victim = last(q); |
| 2145 | |
| 2146 | /* Also scan the next one, since it would have a remainder < MINSIZE */ |
| 2147 | if (victim == q) |
| 2148 | { |
| 2149 | q = next_bin(q); |
| 2150 | victim = last(q); |
| 2151 | } |
| 2152 | if (victim != q) |
| 2153 | { |
| 2154 | victim_size = chunksize(victim); |
| 2155 | unlink(victim, bck, fwd); |
| 2156 | set_inuse_bit_at_offset(victim, victim_size); |
| 2157 | check_malloced_chunk(victim, nb); |
| 2158 | return chunk2mem(victim); |
| 2159 | } |
| 2160 | |
| 2161 | idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */ |
| 2162 | |
| 2163 | } |
| 2164 | else |
| 2165 | { |
| 2166 | idx = bin_index(nb); |
| 2167 | bin = bin_at(idx); |
| 2168 | |
| 2169 | for (victim = last(bin); victim != bin; victim = victim->bk) |
| 2170 | { |
| 2171 | victim_size = chunksize(victim); |
| 2172 | remainder_size = victim_size - nb; |
| 2173 | |
| 2174 | if (remainder_size >= (long)MINSIZE) /* too big */ |
| 2175 | { |
| 2176 | --idx; /* adjust to rescan below after checking last remainder */ |
| 2177 | break; |
| 2178 | } |
| 2179 | |
| 2180 | else if (remainder_size >= 0) /* exact fit */ |
| 2181 | { |
| 2182 | unlink(victim, bck, fwd); |
| 2183 | set_inuse_bit_at_offset(victim, victim_size); |
| 2184 | check_malloced_chunk(victim, nb); |
| 2185 | return chunk2mem(victim); |
| 2186 | } |
| 2187 | } |
| 2188 | |
| 2189 | ++idx; |
| 2190 | |
| 2191 | } |
| 2192 | |
| 2193 | /* Try to use the last split-off remainder */ |
| 2194 | |
| 2195 | if ( (victim = last_remainder->fd) != last_remainder) |
| 2196 | { |
| 2197 | victim_size = chunksize(victim); |
| 2198 | remainder_size = victim_size - nb; |
| 2199 | |
| 2200 | if (remainder_size >= (long)MINSIZE) /* re-split */ |
| 2201 | { |
| 2202 | remainder = chunk_at_offset(victim, nb); |
| 2203 | set_head(victim, nb | PREV_INUSE); |
| 2204 | link_last_remainder(remainder); |
| 2205 | set_head(remainder, remainder_size | PREV_INUSE); |
| 2206 | set_foot(remainder, remainder_size); |
| 2207 | check_malloced_chunk(victim, nb); |
| 2208 | return chunk2mem(victim); |
| 2209 | } |
| 2210 | |
| 2211 | clear_last_remainder; |
| 2212 | |
| 2213 | if (remainder_size >= 0) /* exhaust */ |
| 2214 | { |
| 2215 | set_inuse_bit_at_offset(victim, victim_size); |
| 2216 | check_malloced_chunk(victim, nb); |
| 2217 | return chunk2mem(victim); |
| 2218 | } |
| 2219 | |
| 2220 | /* Else place in bin */ |
| 2221 | |
| 2222 | frontlink(victim, victim_size, remainder_index, bck, fwd); |
| 2223 | } |
| 2224 | |
| 2225 | /* |
| 2226 | If there are any possibly nonempty big-enough blocks, |
| 2227 | search for best fitting chunk by scanning bins in blockwidth units. |
| 2228 | */ |
| 2229 | |
| 2230 | if ( (block = idx2binblock(idx)) <= binblocks) |
| 2231 | { |
| 2232 | |
| 2233 | /* Get to the first marked block */ |
| 2234 | |
| 2235 | if ( (block & binblocks) == 0) |
| 2236 | { |
| 2237 | /* force to an even block boundary */ |
| 2238 | idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH; |
| 2239 | block <<= 1; |
| 2240 | while ((block & binblocks) == 0) |
| 2241 | { |
| 2242 | idx += BINBLOCKWIDTH; |
| 2243 | block <<= 1; |
| 2244 | } |
| 2245 | } |
| 2246 | |
| 2247 | /* For each possibly nonempty block ... */ |
| 2248 | for (;;) |
| 2249 | { |
| 2250 | startidx = idx; /* (track incomplete blocks) */ |
| 2251 | q = bin = bin_at(idx); |
| 2252 | |
| 2253 | /* For each bin in this block ... */ |
| 2254 | do |
| 2255 | { |
| 2256 | /* Find and use first big enough chunk ... */ |
| 2257 | |
| 2258 | for (victim = last(bin); victim != bin; victim = victim->bk) |
| 2259 | { |
| 2260 | victim_size = chunksize(victim); |
| 2261 | remainder_size = victim_size - nb; |
| 2262 | |
| 2263 | if (remainder_size >= (long)MINSIZE) /* split */ |
| 2264 | { |
| 2265 | remainder = chunk_at_offset(victim, nb); |
| 2266 | set_head(victim, nb | PREV_INUSE); |
| 2267 | unlink(victim, bck, fwd); |
| 2268 | link_last_remainder(remainder); |
| 2269 | set_head(remainder, remainder_size | PREV_INUSE); |
| 2270 | set_foot(remainder, remainder_size); |
| 2271 | check_malloced_chunk(victim, nb); |
| 2272 | return chunk2mem(victim); |
| 2273 | } |
| 2274 | |
| 2275 | else if (remainder_size >= 0) /* take */ |
| 2276 | { |
| 2277 | set_inuse_bit_at_offset(victim, victim_size); |
| 2278 | unlink(victim, bck, fwd); |
| 2279 | check_malloced_chunk(victim, nb); |
| 2280 | return chunk2mem(victim); |
| 2281 | } |
| 2282 | |
| 2283 | } |
| 2284 | |
| 2285 | bin = next_bin(bin); |
| 2286 | |
| 2287 | } while ((++idx & (BINBLOCKWIDTH - 1)) != 0); |
| 2288 | |
| 2289 | /* Clear out the block bit. */ |
| 2290 | |
| 2291 | do /* Possibly backtrack to try to clear a partial block */ |
| 2292 | { |
| 2293 | if ((startidx & (BINBLOCKWIDTH - 1)) == 0) |
| 2294 | { |
| 2295 | binblocks &= ~block; |
| 2296 | break; |
| 2297 | } |
| 2298 | --startidx; |
| 2299 | q = prev_bin(q); |
| 2300 | } while (first(q) == q); |
| 2301 | |
| 2302 | /* Get to the next possibly nonempty block */ |
| 2303 | |
| 2304 | if ( (block <<= 1) <= binblocks && (block != 0) ) |
| 2305 | { |
| 2306 | while ((block & binblocks) == 0) |
| 2307 | { |
| 2308 | idx += BINBLOCKWIDTH; |
| 2309 | block <<= 1; |
| 2310 | } |
| 2311 | } |
| 2312 | else |
| 2313 | break; |
| 2314 | } |
| 2315 | } |
| 2316 | |
| 2317 | |
| 2318 | /* Try to use top chunk */ |
| 2319 | |
| 2320 | /* Require that there be a remainder, ensuring top always exists */ |
| 2321 | if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE) |
| 2322 | { |
| 2323 | |
| 2324 | #if HAVE_MMAP |
| 2325 | /* If big and would otherwise need to extend, try to use mmap instead */ |
| 2326 | if ((unsigned long)nb >= (unsigned long)mmap_threshold && |
| 2327 | (victim = mmap_chunk(nb)) != 0) |
| 2328 | return chunk2mem(victim); |
| 2329 | #endif |
| 2330 | |
| 2331 | /* Try to extend */ |
| 2332 | malloc_extend_top(nb); |
| 2333 | if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE) |
| 2334 | return 0; /* propagate failure */ |
| 2335 | } |
| 2336 | |
| 2337 | victim = top; |
| 2338 | set_head(victim, nb | PREV_INUSE); |
| 2339 | top = chunk_at_offset(victim, nb); |
| 2340 | set_head(top, remainder_size | PREV_INUSE); |
| 2341 | check_malloced_chunk(victim, nb); |
| 2342 | return chunk2mem(victim); |
| 2343 | |
| 2344 | } |
| 2345 | |
| 2346 | |
| 2347 | |
| 2348 | |
| 2349 | /* |
| 2350 | |
| 2351 | free() algorithm : |
| 2352 | |
| 2353 | cases: |
| 2354 | |
| 2355 | 1. free(0) has no effect. |
| 2356 | |
| 2357 | 2. If the chunk was allocated via mmap, it is release via munmap(). |
| 2358 | |
| 2359 | 3. If a returned chunk borders the current high end of memory, |
| 2360 | it is consolidated into the top, and if the total unused |
| 2361 | topmost memory exceeds the trim threshold, malloc_trim is |
| 2362 | called. |
| 2363 | |
| 2364 | 4. Other chunks are consolidated as they arrive, and |
| 2365 | placed in corresponding bins. (This includes the case of |
| 2366 | consolidating with the current `last_remainder'). |
| 2367 | |
| 2368 | */ |
| 2369 | |
| 2370 | |
| 2371 | #if __STD_C |
| 2372 | void fREe(Void_t* mem) |
| 2373 | #else |
| 2374 | void fREe(mem) Void_t* mem; |
| 2375 | #endif |
| 2376 | { |
| 2377 | mchunkptr p; /* chunk corresponding to mem */ |
| 2378 | INTERNAL_SIZE_T hd; /* its head field */ |
| 2379 | INTERNAL_SIZE_T sz; /* its size */ |
| 2380 | int idx; /* its bin index */ |
| 2381 | mchunkptr next; /* next contiguous chunk */ |
| 2382 | INTERNAL_SIZE_T nextsz; /* its size */ |
| 2383 | INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */ |
| 2384 | mchunkptr bck; /* misc temp for linking */ |
| 2385 | mchunkptr fwd; /* misc temp for linking */ |
| 2386 | int islr; /* track whether merging with last_remainder */ |
| 2387 | |
| 2388 | if (mem == 0) /* free(0) has no effect */ |
| 2389 | return; |
| 2390 | |
| 2391 | p = mem2chunk(mem); |
| 2392 | hd = p->size; |
| 2393 | |
| 2394 | #if HAVE_MMAP |
| 2395 | if (hd & IS_MMAPPED) /* release mmapped memory. */ |
| 2396 | { |
| 2397 | munmap_chunk(p); |
| 2398 | return; |
| 2399 | } |
| 2400 | #endif |
| 2401 | |
| 2402 | check_inuse_chunk(p); |
| 2403 | |
| 2404 | sz = hd & ~PREV_INUSE; |
| 2405 | next = chunk_at_offset(p, sz); |
| 2406 | nextsz = chunksize(next); |
| 2407 | |
| 2408 | if (next == top) /* merge with top */ |
| 2409 | { |
| 2410 | sz += nextsz; |
| 2411 | |
| 2412 | if (!(hd & PREV_INUSE)) /* consolidate backward */ |
| 2413 | { |
| 2414 | prevsz = p->prev_size; |
| 2415 | p = chunk_at_offset(p, -((long) prevsz)); |
| 2416 | sz += prevsz; |
| 2417 | unlink(p, bck, fwd); |
| 2418 | } |
| 2419 | |
| 2420 | set_head(p, sz | PREV_INUSE); |
| 2421 | top = p; |
| 2422 | if ((unsigned long)(sz) >= (unsigned long)trim_threshold) |
| 2423 | malloc_trim(top_pad); |
| 2424 | return; |
| 2425 | } |
| 2426 | |
| 2427 | set_head(next, nextsz); /* clear inuse bit */ |
| 2428 | |
| 2429 | islr = 0; |
| 2430 | |
| 2431 | if (!(hd & PREV_INUSE)) /* consolidate backward */ |
| 2432 | { |
| 2433 | prevsz = p->prev_size; |
| 2434 | p = chunk_at_offset(p, -((long) prevsz)); |
| 2435 | sz += prevsz; |
| 2436 | |
| 2437 | if (p->fd == last_remainder) /* keep as last_remainder */ |
| 2438 | islr = 1; |
| 2439 | else |
| 2440 | unlink(p, bck, fwd); |
| 2441 | } |
| 2442 | |
| 2443 | if (!(inuse_bit_at_offset(next, nextsz))) /* consolidate forward */ |
| 2444 | { |
| 2445 | sz += nextsz; |
| 2446 | |
| 2447 | if (!islr && next->fd == last_remainder) /* re-insert last_remainder */ |
| 2448 | { |
| 2449 | islr = 1; |
| 2450 | link_last_remainder(p); |
| 2451 | } |
| 2452 | else |
| 2453 | unlink(next, bck, fwd); |
| 2454 | } |
| 2455 | |
| 2456 | |
| 2457 | set_head(p, sz | PREV_INUSE); |
| 2458 | set_foot(p, sz); |
| 2459 | if (!islr) |
| 2460 | frontlink(p, sz, idx, bck, fwd); |
| 2461 | } |
| 2462 | |
| 2463 | |
| 2464 | |
| 2465 | |
| 2466 | |
| 2467 | /* |
| 2468 | |
| 2469 | Realloc algorithm: |
| 2470 | |
| 2471 | Chunks that were obtained via mmap cannot be extended or shrunk |
| 2472 | unless HAVE_MREMAP is defined, in which case mremap is used. |
| 2473 | Otherwise, if their reallocation is for additional space, they are |
| 2474 | copied. If for less, they are just left alone. |
| 2475 | |
| 2476 | Otherwise, if the reallocation is for additional space, and the |
| 2477 | chunk can be extended, it is, else a malloc-copy-free sequence is |
| 2478 | taken. There are several different ways that a chunk could be |
| 2479 | extended. All are tried: |
| 2480 | |
| 2481 | * Extending forward into following adjacent free chunk. |
| 2482 | * Shifting backwards, joining preceding adjacent space |
| 2483 | * Both shifting backwards and extending forward. |
| 2484 | * Extending into newly sbrked space |
| 2485 | |
| 2486 | Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a |
| 2487 | size argument of zero (re)allocates a minimum-sized chunk. |
| 2488 | |
| 2489 | If the reallocation is for less space, and the new request is for |
| 2490 | a `small' (<512 bytes) size, then the newly unused space is lopped |
| 2491 | off and freed. |
| 2492 | |
| 2493 | The old unix realloc convention of allowing the last-free'd chunk |
| 2494 | to be used as an argument to realloc is no longer supported. |
| 2495 | I don't know of any programs still relying on this feature, |
| 2496 | and allowing it would also allow too many other incorrect |
| 2497 | usages of realloc to be sensible. |
| 2498 | |
| 2499 | |
| 2500 | */ |
| 2501 | |
| 2502 | |
| 2503 | #if __STD_C |
| 2504 | Void_t* rEALLOc(Void_t* oldmem, size_t bytes) |
| 2505 | #else |
| 2506 | Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes; |
| 2507 | #endif |
| 2508 | { |
| 2509 | INTERNAL_SIZE_T nb; /* padded request size */ |
| 2510 | |
| 2511 | mchunkptr oldp; /* chunk corresponding to oldmem */ |
| 2512 | INTERNAL_SIZE_T oldsize; /* its size */ |
| 2513 | |
| 2514 | mchunkptr newp; /* chunk to return */ |
| 2515 | INTERNAL_SIZE_T newsize; /* its size */ |
| 2516 | Void_t* newmem; /* corresponding user mem */ |
| 2517 | |
| 2518 | mchunkptr next; /* next contiguous chunk after oldp */ |
| 2519 | INTERNAL_SIZE_T nextsize; /* its size */ |
| 2520 | |
| 2521 | mchunkptr prev; /* previous contiguous chunk before oldp */ |
| 2522 | INTERNAL_SIZE_T prevsize; /* its size */ |
| 2523 | |
| 2524 | mchunkptr remainder; /* holds split off extra space from newp */ |
| 2525 | INTERNAL_SIZE_T remainder_size; /* its size */ |
| 2526 | |
| 2527 | mchunkptr bck; /* misc temp for linking */ |
| 2528 | mchunkptr fwd; /* misc temp for linking */ |
| 2529 | |
| 2530 | #ifdef REALLOC_ZERO_BYTES_FREES |
| 2531 | if (bytes == 0) { fREe(oldmem); return 0; } |
| 2532 | #endif |
| 2533 | |
| 2534 | if ((long)bytes < 0) return 0; |
| 2535 | |
| 2536 | /* realloc of null is supposed to be same as malloc */ |
| 2537 | if (oldmem == 0) return mALLOc(bytes); |
| 2538 | |
| 2539 | newp = oldp = mem2chunk(oldmem); |
| 2540 | newsize = oldsize = chunksize(oldp); |
| 2541 | |
| 2542 | |
| 2543 | nb = request2size(bytes); |
| 2544 | |
| 2545 | #if HAVE_MMAP |
| 2546 | if (chunk_is_mmapped(oldp)) |
| 2547 | { |
| 2548 | #if HAVE_MREMAP |
| 2549 | newp = mremap_chunk(oldp, nb); |
| 2550 | if(newp) return chunk2mem(newp); |
| 2551 | #endif |
| 2552 | /* Note the extra SIZE_SZ overhead. */ |
| 2553 | if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */ |
| 2554 | /* Must alloc, copy, free. */ |
| 2555 | newmem = mALLOc(bytes); |
| 2556 | if (newmem == 0) return 0; /* propagate failure */ |
| 2557 | MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ); |
| 2558 | munmap_chunk(oldp); |
| 2559 | return newmem; |
| 2560 | } |
| 2561 | #endif |
| 2562 | |
| 2563 | check_inuse_chunk(oldp); |
| 2564 | |
| 2565 | if ((long)(oldsize) < (long)(nb)) |
| 2566 | { |
| 2567 | |
| 2568 | /* Try expanding forward */ |
| 2569 | |
| 2570 | next = chunk_at_offset(oldp, oldsize); |
| 2571 | if (next == top || !inuse(next)) |
| 2572 | { |
| 2573 | nextsize = chunksize(next); |
| 2574 | |
| 2575 | /* Forward into top only if a remainder */ |
| 2576 | if (next == top) |
| 2577 | { |
| 2578 | if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE)) |
| 2579 | { |
| 2580 | newsize += nextsize; |
| 2581 | top = chunk_at_offset(oldp, nb); |
| 2582 | set_head(top, (newsize - nb) | PREV_INUSE); |
| 2583 | set_head_size(oldp, nb); |
| 2584 | return chunk2mem(oldp); |
| 2585 | } |
| 2586 | } |
| 2587 | |
| 2588 | /* Forward into next chunk */ |
| 2589 | else if (((long)(nextsize + newsize) >= (long)(nb))) |
| 2590 | { |
| 2591 | unlink(next, bck, fwd); |
| 2592 | newsize += nextsize; |
| 2593 | goto split; |
| 2594 | } |
| 2595 | } |
| 2596 | else |
| 2597 | { |
| 2598 | next = 0; |
| 2599 | nextsize = 0; |
| 2600 | } |
| 2601 | |
| 2602 | /* Try shifting backwards. */ |
| 2603 | |
| 2604 | if (!prev_inuse(oldp)) |
| 2605 | { |
| 2606 | prev = prev_chunk(oldp); |
| 2607 | prevsize = chunksize(prev); |
| 2608 | |
| 2609 | /* try forward + backward first to save a later consolidation */ |
| 2610 | |
| 2611 | if (next != 0) |
| 2612 | { |
| 2613 | /* into top */ |
| 2614 | if (next == top) |
| 2615 | { |
| 2616 | if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE)) |
| 2617 | { |
| 2618 | unlink(prev, bck, fwd); |
| 2619 | newp = prev; |
| 2620 | newsize += prevsize + nextsize; |
| 2621 | newmem = chunk2mem(newp); |
| 2622 | MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); |
| 2623 | top = chunk_at_offset(newp, nb); |
| 2624 | set_head(top, (newsize - nb) | PREV_INUSE); |
| 2625 | set_head_size(newp, nb); |
| 2626 | return newmem; |
| 2627 | } |
| 2628 | } |
| 2629 | |
| 2630 | /* into next chunk */ |
| 2631 | else if (((long)(nextsize + prevsize + newsize) >= (long)(nb))) |
| 2632 | { |
| 2633 | unlink(next, bck, fwd); |
| 2634 | unlink(prev, bck, fwd); |
| 2635 | newp = prev; |
| 2636 | newsize += nextsize + prevsize; |
| 2637 | newmem = chunk2mem(newp); |
| 2638 | MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); |
| 2639 | goto split; |
| 2640 | } |
| 2641 | } |
| 2642 | |
| 2643 | /* backward only */ |
| 2644 | if (prev != 0 && (long)(prevsize + newsize) >= (long)nb) |
| 2645 | { |
| 2646 | unlink(prev, bck, fwd); |
| 2647 | newp = prev; |
| 2648 | newsize += prevsize; |
| 2649 | newmem = chunk2mem(newp); |
| 2650 | MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); |
| 2651 | goto split; |
| 2652 | } |
| 2653 | } |
| 2654 | |
| 2655 | /* Must allocate */ |
| 2656 | |
| 2657 | newmem = mALLOc (bytes); |
| 2658 | |
| 2659 | if (newmem == 0) /* propagate failure */ |
| 2660 | return 0; |
| 2661 | |
| 2662 | /* Avoid copy if newp is next chunk after oldp. */ |
| 2663 | /* (This can only happen when new chunk is sbrk'ed.) */ |
| 2664 | |
| 2665 | if ( (newp = mem2chunk(newmem)) == next_chunk(oldp)) |
| 2666 | { |
| 2667 | newsize += chunksize(newp); |
| 2668 | newp = oldp; |
| 2669 | goto split; |
| 2670 | } |
| 2671 | |
| 2672 | /* Otherwise copy, free, and exit */ |
| 2673 | MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); |
| 2674 | fREe(oldmem); |
| 2675 | return newmem; |
| 2676 | } |
| 2677 | |
| 2678 | |
| 2679 | split: /* split off extra room in old or expanded chunk */ |
| 2680 | |
| 2681 | if (newsize - nb >= MINSIZE) /* split off remainder */ |
| 2682 | { |
| 2683 | remainder = chunk_at_offset(newp, nb); |
| 2684 | remainder_size = newsize - nb; |
| 2685 | set_head_size(newp, nb); |
| 2686 | set_head(remainder, remainder_size | PREV_INUSE); |
| 2687 | set_inuse_bit_at_offset(remainder, remainder_size); |
| 2688 | fREe(chunk2mem(remainder)); /* let free() deal with it */ |
| 2689 | } |
| 2690 | else |
| 2691 | { |
| 2692 | set_head_size(newp, newsize); |
| 2693 | set_inuse_bit_at_offset(newp, newsize); |
| 2694 | } |
| 2695 | |
| 2696 | check_inuse_chunk(newp); |
| 2697 | return chunk2mem(newp); |
| 2698 | } |
| 2699 | |
| 2700 | |
| 2701 | |
| 2702 | |
| 2703 | /* |
| 2704 | |
| 2705 | memalign algorithm: |
| 2706 | |
| 2707 | memalign requests more than enough space from malloc, finds a spot |
| 2708 | within that chunk that meets the alignment request, and then |
| 2709 | possibly frees the leading and trailing space. |
| 2710 | |
| 2711 | The alignment argument must be a power of two. This property is not |
| 2712 | checked by memalign, so misuse may result in random runtime errors. |
| 2713 | |
| 2714 | 8-byte alignment is guaranteed by normal malloc calls, so don't |
| 2715 | bother calling memalign with an argument of 8 or less. |
| 2716 | |
| 2717 | Overreliance on memalign is a sure way to fragment space. |
| 2718 | |
| 2719 | */ |
| 2720 | |
| 2721 | |
| 2722 | #if __STD_C |
| 2723 | Void_t* mEMALIGn(size_t alignment, size_t bytes) |
| 2724 | #else |
| 2725 | Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes; |
| 2726 | #endif |
| 2727 | { |
| 2728 | INTERNAL_SIZE_T nb; /* padded request size */ |
| 2729 | char* m; /* memory returned by malloc call */ |
| 2730 | mchunkptr p; /* corresponding chunk */ |
| 2731 | char* brk; /* alignment point within p */ |
| 2732 | mchunkptr newp; /* chunk to return */ |
| 2733 | INTERNAL_SIZE_T newsize; /* its size */ |
| 2734 | INTERNAL_SIZE_T leadsize; /* leading space befor alignment point */ |
| 2735 | mchunkptr remainder; /* spare room at end to split off */ |
| 2736 | long remainder_size; /* its size */ |
| 2737 | |
| 2738 | if ((long)bytes < 0) return 0; |
| 2739 | |
| 2740 | /* If need less alignment than we give anyway, just relay to malloc */ |
| 2741 | |
| 2742 | if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes); |
| 2743 | |
| 2744 | /* Otherwise, ensure that it is at least a minimum chunk size */ |
| 2745 | |
| 2746 | if (alignment < MINSIZE) alignment = MINSIZE; |
| 2747 | |
| 2748 | /* Call malloc with worst case padding to hit alignment. */ |
| 2749 | |
| 2750 | nb = request2size(bytes); |
| 2751 | m = (char*)(mALLOc(nb + alignment + MINSIZE)); |
| 2752 | |
| 2753 | if (m == 0) return 0; /* propagate failure */ |
| 2754 | |
| 2755 | p = mem2chunk(m); |
| 2756 | |
| 2757 | if ((((unsigned long)(m)) % alignment) == 0) /* aligned */ |
| 2758 | { |
| 2759 | #if HAVE_MMAP |
| 2760 | if(chunk_is_mmapped(p)) |
| 2761 | return chunk2mem(p); /* nothing more to do */ |
| 2762 | #endif |
| 2763 | } |
| 2764 | else /* misaligned */ |
| 2765 | { |
| 2766 | /* |
| 2767 | Find an aligned spot inside chunk. |
| 2768 | Since we need to give back leading space in a chunk of at |
| 2769 | least MINSIZE, if the first calculation places us at |
| 2770 | a spot with less than MINSIZE leader, we can move to the |
| 2771 | next aligned spot -- we've allocated enough total room so that |
| 2772 | this is always possible. |
| 2773 | */ |
| 2774 | |
| 2775 | brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment)); |
| 2776 | if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment; |
| 2777 | |
| 2778 | newp = (mchunkptr)brk; |
| 2779 | leadsize = brk - (char*)(p); |
| 2780 | newsize = chunksize(p) - leadsize; |
| 2781 | |
| 2782 | #if HAVE_MMAP |
| 2783 | if(chunk_is_mmapped(p)) |
| 2784 | { |
| 2785 | newp->prev_size = p->prev_size + leadsize; |
| 2786 | set_head(newp, newsize|IS_MMAPPED); |
| 2787 | return chunk2mem(newp); |
| 2788 | } |
| 2789 | #endif |
| 2790 | |
| 2791 | /* give back leader, use the rest */ |
| 2792 | |
| 2793 | set_head(newp, newsize | PREV_INUSE); |
| 2794 | set_inuse_bit_at_offset(newp, newsize); |
| 2795 | set_head_size(p, leadsize); |
| 2796 | fREe(chunk2mem(p)); |
| 2797 | p = newp; |
| 2798 | |
| 2799 | assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0); |
| 2800 | } |
| 2801 | |
| 2802 | /* Also give back spare room at the end */ |
| 2803 | |
| 2804 | remainder_size = chunksize(p) - nb; |
| 2805 | |
| 2806 | if (remainder_size >= (long)MINSIZE) |
| 2807 | { |
| 2808 | remainder = chunk_at_offset(p, nb); |
| 2809 | set_head(remainder, remainder_size | PREV_INUSE); |
| 2810 | set_head_size(p, nb); |
| 2811 | fREe(chunk2mem(remainder)); |
| 2812 | } |
| 2813 | |
| 2814 | check_inuse_chunk(p); |
| 2815 | return chunk2mem(p); |
| 2816 | |
| 2817 | } |
| 2818 | |
| 2819 | |
| 2820 | |
| 2821 | |
| 2822 | /* |
| 2823 | valloc just invokes memalign with alignment argument equal |
| 2824 | to the page size of the system (or as near to this as can |
| 2825 | be figured out from all the includes/defines above.) |
| 2826 | */ |
| 2827 | |
| 2828 | #if __STD_C |
| 2829 | Void_t* vALLOc(size_t bytes) |
| 2830 | #else |
| 2831 | Void_t* vALLOc(bytes) size_t bytes; |
| 2832 | #endif |
| 2833 | { |
| 2834 | return mEMALIGn (malloc_getpagesize, bytes); |
| 2835 | } |
| 2836 | |
| 2837 | /* |
| 2838 | pvalloc just invokes valloc for the nearest pagesize |
| 2839 | that will accommodate request |
| 2840 | */ |
| 2841 | |
| 2842 | |
| 2843 | #if __STD_C |
| 2844 | Void_t* pvALLOc(size_t bytes) |
| 2845 | #else |
| 2846 | Void_t* pvALLOc(bytes) size_t bytes; |
| 2847 | #endif |
| 2848 | { |
| 2849 | size_t pagesize = malloc_getpagesize; |
| 2850 | return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1)); |
| 2851 | } |
| 2852 | |
| 2853 | /* |
| 2854 | |
| 2855 | calloc calls malloc, then zeroes out the allocated chunk. |
| 2856 | |
| 2857 | */ |
| 2858 | |
| 2859 | #if __STD_C |
| 2860 | Void_t* cALLOc(size_t n, size_t elem_size) |
| 2861 | #else |
| 2862 | Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size; |
| 2863 | #endif |
| 2864 | { |
| 2865 | mchunkptr p; |
| 2866 | INTERNAL_SIZE_T csz; |
| 2867 | |
| 2868 | INTERNAL_SIZE_T sz = n * elem_size; |
| 2869 | |
| 2870 | |
| 2871 | /* check if expand_top called, in which case don't need to clear */ |
| 2872 | #if MORECORE_CLEARS |
| 2873 | mchunkptr oldtop = top; |
| 2874 | INTERNAL_SIZE_T oldtopsize = chunksize(top); |
| 2875 | #endif |
| 2876 | Void_t* mem = mALLOc (sz); |
| 2877 | |
| 2878 | if ((long)n < 0) return 0; |
| 2879 | |
| 2880 | if (mem == 0) |
| 2881 | return 0; |
| 2882 | else |
| 2883 | { |
| 2884 | p = mem2chunk(mem); |
| 2885 | |
| 2886 | /* Two optional cases in which clearing not necessary */ |
| 2887 | |
| 2888 | |
| 2889 | #if HAVE_MMAP |
| 2890 | if (chunk_is_mmapped(p)) return mem; |
| 2891 | #endif |
| 2892 | |
| 2893 | csz = chunksize(p); |
| 2894 | |
| 2895 | #if MORECORE_CLEARS |
| 2896 | if (p == oldtop && csz > oldtopsize) |
| 2897 | { |
| 2898 | /* clear only the bytes from non-freshly-sbrked memory */ |
| 2899 | csz = oldtopsize; |
| 2900 | } |
| 2901 | #endif |
| 2902 | |
| 2903 | MALLOC_ZERO(mem, csz - SIZE_SZ); |
| 2904 | return mem; |
| 2905 | } |
| 2906 | } |
| 2907 | |
| 2908 | /* |
| 2909 | |
| 2910 | cfree just calls free. It is needed/defined on some systems |
| 2911 | that pair it with calloc, presumably for odd historical reasons. |
| 2912 | |
| 2913 | */ |
| 2914 | |
| 2915 | #if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__) |
| 2916 | #if __STD_C |
| 2917 | void cfree(Void_t *mem) |
| 2918 | #else |
| 2919 | void cfree(mem) Void_t *mem; |
| 2920 | #endif |
| 2921 | { |
| 2922 | fREe(mem); |
| 2923 | } |
| 2924 | #endif |
| 2925 | |
| 2926 | |
| 2927 | |
| 2928 | /* |
| 2929 | |
| 2930 | Malloc_trim gives memory back to the system (via negative |
| 2931 | arguments to sbrk) if there is unused memory at the `high' end of |
| 2932 | the malloc pool. You can call this after freeing large blocks of |
| 2933 | memory to potentially reduce the system-level memory requirements |
| 2934 | of a program. However, it cannot guarantee to reduce memory. Under |
| 2935 | some allocation patterns, some large free blocks of memory will be |
| 2936 | locked between two used chunks, so they cannot be given back to |
| 2937 | the system. |
| 2938 | |
| 2939 | The `pad' argument to malloc_trim represents the amount of free |
| 2940 | trailing space to leave untrimmed. If this argument is zero, |
| 2941 | only the minimum amount of memory to maintain internal data |
| 2942 | structures will be left (one page or less). Non-zero arguments |
| 2943 | can be supplied to maintain enough trailing space to service |
| 2944 | future expected allocations without having to re-obtain memory |
| 2945 | from the system. |
| 2946 | |
| 2947 | Malloc_trim returns 1 if it actually released any memory, else 0. |
| 2948 | |
| 2949 | */ |
| 2950 | |
| 2951 | #if __STD_C |
| 2952 | int malloc_trim(size_t pad) |
| 2953 | #else |
| 2954 | int malloc_trim(pad) size_t pad; |
| 2955 | #endif |
| 2956 | { |
| 2957 | long top_size; /* Amount of top-most memory */ |
| 2958 | long extra; /* Amount to release */ |
| 2959 | char* current_brk; /* address returned by pre-check sbrk call */ |
| 2960 | char* new_brk; /* address returned by negative sbrk call */ |
| 2961 | |
| 2962 | unsigned long pagesz = malloc_getpagesize; |
| 2963 | |
| 2964 | top_size = chunksize(top); |
| 2965 | extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz; |
| 2966 | |
| 2967 | if (extra < (long)pagesz) /* Not enough memory to release */ |
| 2968 | return 0; |
| 2969 | |
| 2970 | else |
| 2971 | { |
| 2972 | /* Test to make sure no one else called sbrk */ |
| 2973 | current_brk = (char*)(MORECORE (0)); |
| 2974 | if (current_brk != (char*)(top) + top_size) |
| 2975 | return 0; /* Apparently we don't own memory; must fail */ |
| 2976 | |
| 2977 | else |
| 2978 | { |
| 2979 | new_brk = (char*)(MORECORE (-extra)); |
| 2980 | |
| 2981 | if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */ |
| 2982 | { |
| 2983 | /* Try to figure out what we have */ |
| 2984 | current_brk = (char*)(MORECORE (0)); |
| 2985 | top_size = current_brk - (char*)top; |
| 2986 | if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */ |
| 2987 | { |
| 2988 | sbrked_mem = current_brk - sbrk_base; |
| 2989 | set_head(top, top_size | PREV_INUSE); |
| 2990 | } |
| 2991 | check_chunk(top); |
| 2992 | return 0; |
| 2993 | } |
| 2994 | |
| 2995 | else |
| 2996 | { |
| 2997 | /* Success. Adjust top accordingly. */ |
| 2998 | set_head(top, (top_size - extra) | PREV_INUSE); |
| 2999 | sbrked_mem -= extra; |
| 3000 | check_chunk(top); |
| 3001 | return 1; |
| 3002 | } |
| 3003 | } |
| 3004 | } |
| 3005 | } |
| 3006 | |
| 3007 | |
| 3008 | |
| 3009 | /* |
| 3010 | malloc_usable_size: |
| 3011 | |
| 3012 | This routine tells you how many bytes you can actually use in an |
| 3013 | allocated chunk, which may be more than you requested (although |
| 3014 | often not). You can use this many bytes without worrying about |
| 3015 | overwriting other allocated objects. Not a particularly great |
| 3016 | programming practice, but still sometimes useful. |
| 3017 | |
| 3018 | */ |
| 3019 | |
| 3020 | #if __STD_C |
| 3021 | size_t malloc_usable_size(Void_t* mem) |
| 3022 | #else |
| 3023 | size_t malloc_usable_size(mem) Void_t* mem; |
| 3024 | #endif |
| 3025 | { |
| 3026 | mchunkptr p; |
| 3027 | if (mem == 0) |
| 3028 | return 0; |
| 3029 | else |
| 3030 | { |
| 3031 | p = mem2chunk(mem); |
| 3032 | if(!chunk_is_mmapped(p)) |
| 3033 | { |
| 3034 | if (!inuse(p)) return 0; |
| 3035 | check_inuse_chunk(p); |
| 3036 | return chunksize(p) - SIZE_SZ; |
| 3037 | } |
| 3038 | return chunksize(p) - 2*SIZE_SZ; |
| 3039 | } |
| 3040 | } |
| 3041 | |
| 3042 | |
| 3043 | |
| 3044 | |
| 3045 | /* Utility to update current_mallinfo for malloc_stats and mallinfo() */ |
| 3046 | |
| 3047 | static void malloc_update_mallinfo() |
| 3048 | { |
| 3049 | int i; |
| 3050 | mbinptr b; |
| 3051 | mchunkptr p; |
| 3052 | #if DEBUG |
| 3053 | mchunkptr q; |
| 3054 | #endif |
| 3055 | |
| 3056 | INTERNAL_SIZE_T avail = chunksize(top); |
| 3057 | int navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0; |
| 3058 | |
| 3059 | for (i = 1; i < NAV; ++i) |
| 3060 | { |
| 3061 | b = bin_at(i); |
| 3062 | for (p = last(b); p != b; p = p->bk) |
| 3063 | { |
| 3064 | #if DEBUG |
| 3065 | check_free_chunk(p); |
| 3066 | for (q = next_chunk(p); |
| 3067 | q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE; |
| 3068 | q = next_chunk(q)) |
| 3069 | check_inuse_chunk(q); |
| 3070 | #endif |
| 3071 | avail += chunksize(p); |
| 3072 | navail++; |
| 3073 | } |
| 3074 | } |
| 3075 | |
| 3076 | current_mallinfo.ordblks = navail; |
| 3077 | current_mallinfo.uordblks = sbrked_mem - avail; |
| 3078 | current_mallinfo.fordblks = avail; |
| 3079 | current_mallinfo.hblks = n_mmaps; |
| 3080 | current_mallinfo.hblkhd = mmapped_mem; |
| 3081 | current_mallinfo.keepcost = chunksize(top); |
| 3082 | |
| 3083 | } |
| 3084 | |
| 3085 | |
| 3086 | |
| 3087 | /* |
| 3088 | |
| 3089 | malloc_stats: |
| 3090 | |
| 3091 | Prints on stderr the amount of space obtain from the system (both |
| 3092 | via sbrk and mmap), the maximum amount (which may be more than |
| 3093 | current if malloc_trim and/or munmap got called), the maximum |
| 3094 | number of simultaneous mmap regions used, and the current number |
| 3095 | of bytes allocated via malloc (or realloc, etc) but not yet |
| 3096 | freed. (Note that this is the number of bytes allocated, not the |
| 3097 | number requested. It will be larger than the number requested |
| 3098 | because of alignment and bookkeeping overhead.) |
| 3099 | |
| 3100 | */ |
| 3101 | |
| 3102 | void malloc_stats() |
| 3103 | { |
| 3104 | malloc_update_mallinfo(); |
| 3105 | fprintf(stderr, "max system bytes = %10u\n", |
| 3106 | (unsigned int)(max_total_mem)); |
| 3107 | fprintf(stderr, "system bytes = %10u\n", |
| 3108 | (unsigned int)(sbrked_mem + mmapped_mem)); |
| 3109 | fprintf(stderr, "in use bytes = %10u\n", |
| 3110 | (unsigned int)(current_mallinfo.uordblks + mmapped_mem)); |
| 3111 | #if HAVE_MMAP |
| 3112 | fprintf(stderr, "max mmap regions = %10u\n", |
| 3113 | (unsigned int)max_n_mmaps); |
| 3114 | #endif |
| 3115 | } |
| 3116 | |
| 3117 | /* |
| 3118 | mallinfo returns a copy of updated current mallinfo. |
| 3119 | */ |
| 3120 | |
| 3121 | struct mallinfo mALLINFo() |
| 3122 | { |
| 3123 | malloc_update_mallinfo(); |
| 3124 | return current_mallinfo; |
| 3125 | } |
| 3126 | |
| 3127 | |
| 3128 | |
| 3129 | |
| 3130 | /* |
| 3131 | mallopt: |
| 3132 | |
| 3133 | mallopt is the general SVID/XPG interface to tunable parameters. |
| 3134 | The format is to provide a (parameter-number, parameter-value) pair. |
| 3135 | mallopt then sets the corresponding parameter to the argument |
| 3136 | value if it can (i.e., so long as the value is meaningful), |
| 3137 | and returns 1 if successful else 0. |
| 3138 | |
| 3139 | See descriptions of tunable parameters above. |
| 3140 | |
| 3141 | */ |
| 3142 | |
| 3143 | #if __STD_C |
| 3144 | int mALLOPt(int param_number, int value) |
| 3145 | #else |
| 3146 | int mALLOPt(param_number, value) int param_number; int value; |
| 3147 | #endif |
| 3148 | { |
| 3149 | switch(param_number) |
| 3150 | { |
| 3151 | case M_TRIM_THRESHOLD: |
| 3152 | trim_threshold = value; return 1; |
| 3153 | case M_TOP_PAD: |
| 3154 | top_pad = value; return 1; |
| 3155 | case M_MMAP_THRESHOLD: |
| 3156 | mmap_threshold = value; return 1; |
| 3157 | case M_MMAP_MAX: |
| 3158 | #if HAVE_MMAP |
| 3159 | n_mmaps_max = value; return 1; |
| 3160 | #else |
| 3161 | if (value != 0) return 0; else n_mmaps_max = value; return 1; |
| 3162 | #endif |
| 3163 | |
| 3164 | default: |
| 3165 | return 0; |
| 3166 | } |
| 3167 | } |
| 3168 | |
| 3169 | /* |
| 3170 | |
| 3171 | History: |
| 3172 | |
| 3173 | V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee) |
| 3174 | * return null for negative arguments |
| 3175 | * Added Several WIN32 cleanups from Martin C. Fong <mcfong@yahoo.com> |
| 3176 | * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h' |
| 3177 | (e.g. WIN32 platforms) |
| 3178 | * Cleanup up header file inclusion for WIN32 platforms |
| 3179 | * Cleanup code to avoid Microsoft Visual C++ compiler complaints |
| 3180 | * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing |
| 3181 | memory allocation routines |
| 3182 | * Set 'malloc_getpagesize' for WIN32 platforms (needs more work) |
| 3183 | * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to |
| 3184 | usage of 'assert' in non-WIN32 code |
| 3185 | * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to |
| 3186 | avoid infinite loop |
| 3187 | * Always call 'fREe()' rather than 'free()' |
| 3188 | |
| 3189 | V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee) |
| 3190 | * Fixed ordering problem with boundary-stamping |
| 3191 | |
| 3192 | V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee) |
| 3193 | * Added pvalloc, as recommended by H.J. Liu |
| 3194 | * Added 64bit pointer support mainly from Wolfram Gloger |
| 3195 | * Added anonymously donated WIN32 sbrk emulation |
| 3196 | * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen |
| 3197 | * malloc_extend_top: fix mask error that caused wastage after |
| 3198 | foreign sbrks |
| 3199 | * Add linux mremap support code from HJ Liu |
| 3200 | |
| 3201 | V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee) |
| 3202 | * Integrated most documentation with the code. |
| 3203 | * Add support for mmap, with help from |
| 3204 | Wolfram Gloger (Gloger@lrz.uni-muenchen.de). |
| 3205 | * Use last_remainder in more cases. |
| 3206 | * Pack bins using idea from colin@nyx10.cs.du.edu |
| 3207 | * Use ordered bins instead of best-fit threshhold |
| 3208 | * Eliminate block-local decls to simplify tracing and debugging. |
| 3209 | * Support another case of realloc via move into top |
| 3210 | * Fix error occuring when initial sbrk_base not word-aligned. |
| 3211 | * Rely on page size for units instead of SBRK_UNIT to |
| 3212 | avoid surprises about sbrk alignment conventions. |
| 3213 | * Add mallinfo, mallopt. Thanks to Raymond Nijssen |
| 3214 | (raymond@es.ele.tue.nl) for the suggestion. |
| 3215 | * Add `pad' argument to malloc_trim and top_pad mallopt parameter. |
| 3216 | * More precautions for cases where other routines call sbrk, |
| 3217 | courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de). |
| 3218 | * Added macros etc., allowing use in linux libc from |
| 3219 | H.J. Lu (hjl@gnu.ai.mit.edu) |
| 3220 | * Inverted this history list |
| 3221 | |
| 3222 | V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee) |
| 3223 | * Re-tuned and fixed to behave more nicely with V2.6.0 changes. |
| 3224 | * Removed all preallocation code since under current scheme |
| 3225 | the work required to undo bad preallocations exceeds |
| 3226 | the work saved in good cases for most test programs. |
| 3227 | * No longer use return list or unconsolidated bins since |
| 3228 | no scheme using them consistently outperforms those that don't |
| 3229 | given above changes. |
| 3230 | * Use best fit for very large chunks to prevent some worst-cases. |
| 3231 | * Added some support for debugging |
| 3232 | |
| 3233 | V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee) |
| 3234 | * Removed footers when chunks are in use. Thanks to |
| 3235 | Paul Wilson (wilson@cs.texas.edu) for the suggestion. |
| 3236 | |
| 3237 | V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee) |
| 3238 | * Added malloc_trim, with help from Wolfram Gloger |
| 3239 | (wmglo@Dent.MED.Uni-Muenchen.DE). |
| 3240 | |
| 3241 | V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g) |
| 3242 | |
| 3243 | V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g) |
| 3244 | * realloc: try to expand in both directions |
| 3245 | * malloc: swap order of clean-bin strategy; |
| 3246 | * realloc: only conditionally expand backwards |
| 3247 | * Try not to scavenge used bins |
| 3248 | * Use bin counts as a guide to preallocation |
| 3249 | * Occasionally bin return list chunks in first scan |
| 3250 | * Add a few optimizations from colin@nyx10.cs.du.edu |
| 3251 | |
| 3252 | V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g) |
| 3253 | * faster bin computation & slightly different binning |
| 3254 | * merged all consolidations to one part of malloc proper |
| 3255 | (eliminating old malloc_find_space & malloc_clean_bin) |
| 3256 | * Scan 2 returns chunks (not just 1) |
| 3257 | * Propagate failure in realloc if malloc returns 0 |
| 3258 | * Add stuff to allow compilation on non-ANSI compilers |
| 3259 | from kpv@research.att.com |
| 3260 | |
| 3261 | V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu) |
| 3262 | * removed potential for odd address access in prev_chunk |
| 3263 | * removed dependency on getpagesize.h |
| 3264 | * misc cosmetics and a bit more internal documentation |
| 3265 | * anticosmetics: mangled names in macros to evade debugger strangeness |
| 3266 | * tested on sparc, hp-700, dec-mips, rs6000 |
| 3267 | with gcc & native cc (hp, dec only) allowing |
| 3268 | Detlefs & Zorn comparison study (in SIGPLAN Notices.) |
| 3269 | |
| 3270 | Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu) |
| 3271 | * Based loosely on libg++-1.2X malloc. (It retains some of the overall |
| 3272 | structure of old version, but most details differ.) |
| 3273 | |
| 3274 | */ |
| 3275 | |
| 3276 | |