TsiChungLiew | 8ae158c | 2007-08-16 15:05:11 -0500 | [diff] [blame] | 1 | /* |
| 2 | * (C) Copyright 2000-2003 |
| 3 | * Wolfgang Denk, DENX Software Engineering, wd@denx.de. |
| 4 | * |
| 5 | * Copyright (C) 2004-2007 Freescale Semiconductor, Inc. |
| 6 | * TsiChung Liew (Tsi-Chung.Liew@freescale.com) |
| 7 | * |
| 8 | * See file CREDITS for list of people who contributed to this |
| 9 | * project. |
| 10 | * |
| 11 | * This program is free software; you can redistribute it and/or |
| 12 | * modify it under the terms of the GNU General Public License as |
| 13 | * published by the Free Software Foundation; either version 2 of |
| 14 | * the License, or (at your option) any later version. |
| 15 | * |
| 16 | * This program is distributed in the hope that it will be useful, |
| 17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 19 | * GNU General Public License for more details. |
| 20 | * |
| 21 | * You should have received a copy of the GNU General Public License |
| 22 | * along with this program; if not, write to the Free Software |
| 23 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| 24 | * MA 02111-1307 USA |
| 25 | */ |
| 26 | |
| 27 | #include <common.h> |
| 28 | |
| 29 | #include <asm/immap.h> |
| 30 | |
| 31 | #ifndef CFG_FLASH_CFI |
| 32 | typedef unsigned char FLASH_PORT_WIDTH; |
| 33 | typedef volatile unsigned char FLASH_PORT_WIDTHV; |
| 34 | |
| 35 | #define FPW FLASH_PORT_WIDTH |
| 36 | #define FPWV FLASH_PORT_WIDTHV |
| 37 | |
| 38 | #define CFG_FLASH_CFI_WIDTH FLASH_CFI_8BIT |
| 39 | #define CFG_FLASH_NONCFI_WIDTH FLASH_CFI_8BIT |
| 40 | |
| 41 | /* Intel-compatible flash commands */ |
| 42 | #define INTEL_PROGRAM 0x00100010 |
| 43 | #define INTEL_ERASE 0x00200020 |
| 44 | #define INTEL_WRSETUP 0x00400040 |
| 45 | #define INTEL_CLEAR 0x00500050 |
| 46 | #define INTEL_LOCKBIT 0x00600060 |
| 47 | #define INTEL_PROTECT 0x00010001 |
| 48 | #define INTEL_STATUS 0x00700070 |
| 49 | #define INTEL_READID 0x00900090 |
| 50 | #define INTEL_CFIQRY 0x00980098 |
| 51 | #define INTEL_SUSERASE 0x00B000B0 |
| 52 | #define INTEL_PROTPROG 0x00C000C0 |
| 53 | #define INTEL_CONFIRM 0x00D000D0 |
| 54 | #define INTEL_WRBLK 0x00e800e8 |
| 55 | #define INTEL_RESET 0x00FF00FF |
| 56 | |
| 57 | /* Intel-compatible flash status bits */ |
| 58 | #define INTEL_FINISHED 0x00800080 |
| 59 | #define INTEL_OK 0x00800080 |
| 60 | #define INTEL_ERASESUS 0x00600060 |
| 61 | #define INTEL_WSM_SUS (INTEL_FINISHED | INTEL_ERASESUS) |
| 62 | |
| 63 | /* 28F160C3B CFI Data offset - This could vary */ |
| 64 | #define INTEL_CFI_MFG 0x00 /* Manufacturer ID */ |
| 65 | #define INTEL_CFI_PART 0x01 /* Product ID */ |
| 66 | #define INTEL_CFI_LOCK 0x02 /* */ |
| 67 | #define INTEL_CFI_TWPRG 0x1F /* Typical Single Word Program Timeout 2^n us */ |
| 68 | #define INTEL_CFI_MBUFW 0x20 /* Typical Max Buffer Write Timeout 2^n us */ |
| 69 | #define INTEL_CFI_TERB 0x21 /* Typical Block Erase Timeout 2^n ms */ |
| 70 | #define INTEL_CFI_MWPRG 0x23 /* Maximum Word program timeout 2^n us */ |
| 71 | #define INTEL_CFI_MERB 0x25 /* Maximum Block Erase Timeout 2^n s */ |
| 72 | #define INTEL_CFI_SIZE 0x27 /* Device size 2^n bytes */ |
| 73 | #define INTEL_CFI_CAP 0x28 |
| 74 | #define INTEL_CFI_WRBUF 0x2A |
| 75 | #define INTEL_CFI_BANK 0x2C /* Number of Bank */ |
| 76 | #define INTEL_CFI_BLK1A 0x2D /* Number of Blocks */ |
| 77 | #define INTEL_CFI_BLK1B 0x2E /* Number of Blocks */ |
| 78 | #define INTEL_CFI_SZ1A 0x2F /* Block Region Size */ |
| 79 | #define INTEL_CFI_SZ1B 0x30 |
| 80 | #define INTEL_CFI_BLK2A 0x31 |
| 81 | #define INTEL_CFI_BLK2B 0x32 |
| 82 | #define INTEL_CFI_SZ2A 0x33 |
| 83 | #define INTEL_CFI_SZ2B 0x34 |
| 84 | |
| 85 | #define FLASH_CYCLE1 0x0555 |
| 86 | #define FLASH_CYCLE2 0x0aaa |
| 87 | |
| 88 | #define WR_BLOCK 0x20 |
| 89 | |
| 90 | /* not in the flash.h yet */ |
| 91 | #define FLASH_28F64P30T 0x00B9 /* Intel 28F64P30T ( 64M) */ |
| 92 | #define FLASH_28F64P30B 0x00BA /* Intel 28F64P30B ( 64M) */ |
| 93 | #define FLASH_28F128P30T 0x00BB /* Intel 28F128P30T ( 128M = 8M x 16 ) */ |
| 94 | #define FLASH_28F128P30B 0x00BC /* Intel 28F128P30B ( 128M = 8M x 16 ) */ |
| 95 | #define FLASH_28F256P30T 0x00BD /* Intel 28F256P30T ( 256M = 16M x 16 ) */ |
| 96 | #define FLASH_28F256P30B 0x00BE /* Intel 28F256P30B ( 256M = 16M x 16 ) */ |
| 97 | |
| 98 | #define SYNC __asm__("nop") |
| 99 | |
| 100 | /*----------------------------------------------------------------------- |
| 101 | * Functions |
| 102 | */ |
| 103 | |
| 104 | ulong flash_get_size(FPWV * addr, flash_info_t * info); |
| 105 | int flash_get_offsets(ulong base, flash_info_t * info); |
| 106 | int flash_cmd_rd(volatile u16 * addr, int index); |
| 107 | int write_data(flash_info_t * info, ulong dest, FPW data); |
| 108 | int write_data_block(flash_info_t * info, ulong src, ulong dest); |
| 109 | int write_word_atm(flash_info_t * info, volatile u8 * dest, u16 data); |
| 110 | void inline spin_wheel(void); |
| 111 | void flash_sync_real_protect(flash_info_t * info); |
| 112 | uchar intel_sector_protected(flash_info_t * info, ushort sector); |
| 113 | |
| 114 | flash_info_t flash_info[CFG_MAX_FLASH_BANKS]; |
| 115 | |
| 116 | ulong flash_init(void) |
| 117 | { |
| 118 | int i; |
| 119 | ulong size = 0; |
| 120 | ulong fbase = 0; |
| 121 | |
| 122 | for (i = 0; i < CFG_MAX_FLASH_BANKS; i++) { |
| 123 | memset(&flash_info[i], 0, sizeof(flash_info_t)); |
| 124 | |
| 125 | switch (i) { |
| 126 | case 0: |
| 127 | fbase = (ulong) CFG_FLASH0_BASE; |
| 128 | break; |
| 129 | case 1: |
| 130 | fbase = (ulong) CFG_FLASH1_BASE; |
| 131 | break; |
| 132 | } |
| 133 | |
| 134 | flash_get_size((FPWV *) fbase, &flash_info[i]); |
| 135 | flash_get_offsets((ulong) fbase, &flash_info[i]); |
| 136 | fbase += flash_info[i].size; |
| 137 | size += flash_info[i].size; |
| 138 | |
| 139 | /* get the h/w and s/w protection status in sync */ |
| 140 | flash_sync_real_protect(&flash_info[i]); |
| 141 | } |
| 142 | |
| 143 | /* Protect monitor and environment sectors */ |
| 144 | flash_protect(FLAG_PROTECT_SET, |
| 145 | CFG_MONITOR_BASE, |
| 146 | CFG_MONITOR_BASE + monitor_flash_len - 1, &flash_info[0]); |
| 147 | |
| 148 | return size; |
| 149 | } |
| 150 | |
| 151 | int flash_get_offsets(ulong base, flash_info_t * info) |
| 152 | { |
| 153 | int i, j, k; |
| 154 | int sectors, bs, banks; |
| 155 | ulong start; |
| 156 | |
| 157 | if ((info->flash_id & FLASH_VENDMASK) == FLASH_MAN_ATM) { |
| 158 | int sect[] = CFG_ATMEL_SECT; |
| 159 | int sectsz[] = CFG_ATMEL_SECTSZ; |
| 160 | |
| 161 | info->start[0] = base; |
| 162 | for (k = 0, i = 0; i < CFG_ATMEL_REGION; i++) { |
| 163 | for (j = 0; j < sect[i]; j++, k++) { |
| 164 | info->start[k + 1] = info->start[k] + sectsz[i]; |
| 165 | info->protect[k] = 0; |
| 166 | } |
| 167 | } |
| 168 | } |
| 169 | |
| 170 | if ((info->flash_id & FLASH_VENDMASK) == FLASH_MAN_INTEL) { |
| 171 | volatile u16 *addr16 = (volatile u16 *)base; |
| 172 | |
| 173 | *addr16 = (FPW) INTEL_RESET; /* restore read mode */ |
| 174 | *addr16 = (FPW) INTEL_READID; |
| 175 | |
| 176 | banks = addr16[INTEL_CFI_BANK] & 0xff; |
| 177 | |
| 178 | sectors = 0; |
| 179 | info->start[0] = base; |
| 180 | |
| 181 | for (k = 0, i = 0; i < banks; i++) { |
| 182 | /* Geometry y1 = y1 + 1, y2 = y2 + 1, CFI spec. |
| 183 | * To be exact, Z = [0x2f 0x30] (LE) * 256 bytes * [0x2D 0x2E] block count |
| 184 | * Z = [0x33 0x34] (LE) * 256 bytes * [0x31 0x32] block count |
| 185 | */ |
| 186 | bs = ((((addr16[INTEL_CFI_SZ1B + (i * 4)] & 0xff) << 8) |
| 187 | | (addr16[INTEL_CFI_SZ1A + (i * 4)] & 0xff)) * |
| 188 | 0x100); |
| 189 | sectors = |
| 190 | (addr16[INTEL_CFI_BLK1A + (i * 4)] & 0xff) + 1; |
| 191 | |
| 192 | for (j = 0; j < sectors; j++, k++) { |
| 193 | info->start[k + 1] = info->start[k] + bs; |
| 194 | } |
| 195 | } |
| 196 | |
| 197 | *addr16 = (FPW) INTEL_RESET; /* restore read mode */ |
| 198 | } |
| 199 | |
| 200 | return ERR_OK; |
| 201 | } |
| 202 | |
| 203 | void flash_print_info(flash_info_t * info) |
| 204 | { |
| 205 | int i; |
| 206 | |
| 207 | switch (info->flash_id & FLASH_VENDMASK) { |
| 208 | case FLASH_MAN_INTEL: |
| 209 | printf("INTEL "); |
| 210 | break; |
| 211 | case FLASH_MAN_ATM: |
| 212 | printf("ATMEL "); |
| 213 | break; |
| 214 | default: |
| 215 | printf("Unknown Vendor "); |
| 216 | break; |
| 217 | } |
| 218 | |
| 219 | switch (info->flash_id & FLASH_TYPEMASK) { |
| 220 | case FLASH_AT040: |
| 221 | printf("AT49BV040A\n"); |
| 222 | break; |
| 223 | case FLASH_28F128J3A: |
| 224 | printf("Intel 28F128J3A\n"); |
| 225 | break; |
| 226 | default: |
| 227 | printf("Unknown Chip Type\n"); |
| 228 | return; |
| 229 | } |
| 230 | |
| 231 | if (info->size > 0x100000) { |
| 232 | int remainder; |
| 233 | |
| 234 | printf(" Size: %ld", info->size >> 20); |
| 235 | |
| 236 | remainder = (info->size % 0x100000); |
| 237 | if (remainder) { |
| 238 | remainder >>= 10; |
| 239 | remainder = (int)((float) |
| 240 | (((float)remainder / (float)1024) * |
| 241 | 10000)); |
| 242 | printf(".%d ", remainder); |
| 243 | } |
| 244 | |
| 245 | printf("MB in %d Sectors\n", info->sector_count); |
| 246 | } else |
| 247 | printf(" Size: %ld KB in %d Sectors\n", |
| 248 | info->size >> 10, info->sector_count); |
| 249 | |
| 250 | printf(" Sector Start Addresses:"); |
| 251 | for (i = 0; i < info->sector_count; ++i) { |
| 252 | if ((i % 5) == 0) |
| 253 | printf("\n "); |
| 254 | printf(" %08lX%s", |
| 255 | info->start[i], info->protect[i] ? " (RO)" : " "); |
| 256 | } |
| 257 | printf("\n"); |
| 258 | } |
| 259 | |
| 260 | /* |
| 261 | * The following code cannot be run from FLASH! |
| 262 | */ |
| 263 | ulong flash_get_size(FPWV * addr, flash_info_t * info) |
| 264 | { |
| 265 | volatile u16 *addr16 = (volatile u16 *)addr; |
| 266 | int intel = 0, banks = 0; |
| 267 | u16 value; |
| 268 | int i; |
| 269 | |
| 270 | addr[FLASH_CYCLE1] = (FPWV) 0x00AA00AA; /* for Atmel, Intel ignores this */ |
| 271 | addr[FLASH_CYCLE2] = (FPWV) 0x00550055; /* for Atmel, Intel ignores this */ |
| 272 | addr[FLASH_CYCLE1] = (FPWV) 0x00900090; /* selects Intel or Atmel */ |
| 273 | |
| 274 | switch (addr[0] & 0xff) { |
| 275 | case (u8) ATM_MANUFACT: |
| 276 | info->flash_id = FLASH_MAN_ATM; |
| 277 | value = addr[1]; |
| 278 | break; |
| 279 | case (u8) INTEL_MANUFACT: |
| 280 | /* Terminate Atmel ID read */ |
| 281 | addr[0] = (FPWV) 0x00F000F0; |
| 282 | /* Write auto select command: read Manufacturer ID */ |
| 283 | /* Write auto select command sequence and test FLASH answer */ |
| 284 | *addr16 = (FPW) INTEL_RESET; /* restore read mode */ |
| 285 | *addr16 = (FPW) INTEL_READID; |
| 286 | |
| 287 | info->flash_id = FLASH_MAN_INTEL; |
| 288 | value = (addr16[INTEL_CFI_MFG] << 8); |
| 289 | value |= addr16[INTEL_CFI_PART] & 0xff; |
| 290 | intel = 1; |
| 291 | break; |
| 292 | default: |
| 293 | printf("Unknown Flash\n"); |
| 294 | info->flash_id = FLASH_UNKNOWN; |
| 295 | info->sector_count = 0; |
| 296 | info->size = 0; |
| 297 | |
| 298 | *addr = (FPW) 0x00F000F0; |
| 299 | *addr = (FPW) INTEL_RESET; /* restore read mode */ |
| 300 | return (0); /* no or unknown flash */ |
| 301 | } |
| 302 | |
| 303 | switch (value) { |
| 304 | case (u8) ATM_ID_LV040: |
| 305 | info->flash_id += FLASH_AT040; |
| 306 | break; |
| 307 | case (u16) INTEL_ID_28F128J3: |
| 308 | info->flash_id += FLASH_28F128J3A; |
| 309 | break; |
| 310 | case (u16) INTEL_ID_28F64P30T: |
| 311 | info->flash_id += FLASH_28F64P30T; |
| 312 | break; |
| 313 | case (u16) INTEL_ID_28F64P30B: |
| 314 | info->flash_id += FLASH_28F64P30B; |
| 315 | break; |
| 316 | case (u16) INTEL_ID_28F128P30T: |
| 317 | info->flash_id += FLASH_28F128P30T; |
| 318 | break; |
| 319 | case (u16) INTEL_ID_28F128P30B: |
| 320 | info->flash_id += FLASH_28F128P30B; |
| 321 | break; |
| 322 | case (u16) INTEL_ID_28F256P30T: |
| 323 | info->flash_id += FLASH_28F256P30T; |
| 324 | break; |
| 325 | case (u16) INTEL_ID_28F256P30B: |
| 326 | info->flash_id += FLASH_28F256P30B; |
| 327 | break; |
| 328 | default: |
| 329 | info->flash_id = FLASH_UNKNOWN; |
| 330 | break; |
| 331 | } |
| 332 | |
| 333 | if (intel) { |
| 334 | /* Intel spec. under CFI section */ |
| 335 | u32 sz; |
| 336 | int sectors, bs; |
| 337 | |
| 338 | banks = addr16[INTEL_CFI_BANK] & 0xff; |
| 339 | |
| 340 | sectors = sz = 0; |
| 341 | for (i = 0; i < banks; i++) { |
| 342 | /* Geometry y1 = y1 + 1, y2 = y2 + 1, CFI spec. |
| 343 | * To be exact, Z = [0x2f 0x30] (LE) * 256 bytes * [0x2D 0x2E] block count |
| 344 | * Z = [0x33 0x34] (LE) * 256 bytes * [0x31 0x32] block count |
| 345 | */ |
| 346 | bs = ((((addr16[INTEL_CFI_SZ1B + (i * 4)] & 0xff) << 8) |
| 347 | | (addr16[INTEL_CFI_SZ1A + (i * 4)] & 0xff)) * |
| 348 | 0x100); |
| 349 | sectors += |
| 350 | (addr16[INTEL_CFI_BLK1A + (i * 4)] & 0xff) + 1; |
| 351 | sz += (bs * sectors); |
| 352 | } |
| 353 | |
| 354 | info->sector_count = sectors; |
| 355 | info->size = sz; |
| 356 | *addr = (FPW) INTEL_RESET; /* restore read mode */ |
| 357 | } else { |
| 358 | int sect[] = CFG_ATMEL_SECT; |
| 359 | int sectsz[] = CFG_ATMEL_SECTSZ; |
| 360 | |
| 361 | info->sector_count = 0; |
| 362 | info->size = 0; |
| 363 | for (i = 0; i < CFG_ATMEL_REGION; i++) { |
| 364 | info->sector_count += sect[i]; |
| 365 | info->size += sect[i] * sectsz[i]; |
| 366 | } |
| 367 | |
| 368 | /* reset ID mode */ |
| 369 | addr[0] = (FPWV) 0x00F000F0; |
| 370 | } |
| 371 | |
| 372 | if (info->sector_count > CFG_MAX_FLASH_SECT) { |
| 373 | printf("** ERROR: sector count %d > max (%d) **\n", |
| 374 | info->sector_count, CFG_MAX_FLASH_SECT); |
| 375 | info->sector_count = CFG_MAX_FLASH_SECT; |
| 376 | } |
| 377 | |
| 378 | return (info->size); |
| 379 | } |
| 380 | |
| 381 | int flash_cmd_rd(volatile u16 * addr, int index) |
| 382 | { |
| 383 | return (int)addr[index]; |
| 384 | } |
| 385 | |
| 386 | /* |
| 387 | * This function gets the u-boot flash sector protection status |
| 388 | * (flash_info_t.protect[]) in sync with the sector protection |
| 389 | * status stored in hardware. |
| 390 | */ |
| 391 | void flash_sync_real_protect(flash_info_t * info) |
| 392 | { |
| 393 | int i; |
| 394 | |
| 395 | switch (info->flash_id & FLASH_TYPEMASK) { |
| 396 | case FLASH_28F160C3B: |
| 397 | case FLASH_28F160C3T: |
| 398 | case FLASH_28F320C3B: |
| 399 | case FLASH_28F320C3T: |
| 400 | case FLASH_28F640C3B: |
| 401 | case FLASH_28F640C3T: |
| 402 | for (i = 0; i < info->sector_count; ++i) { |
| 403 | info->protect[i] = intel_sector_protected(info, i); |
| 404 | } |
| 405 | break; |
| 406 | default: |
| 407 | /* no h/w protect support */ |
| 408 | break; |
| 409 | } |
| 410 | } |
| 411 | |
| 412 | /* |
| 413 | * checks if "sector" in bank "info" is protected. Should work on intel |
| 414 | * strata flash chips 28FxxxJ3x in 8-bit mode. |
| 415 | * Returns 1 if sector is protected (or timed-out while trying to read |
| 416 | * protection status), 0 if it is not. |
| 417 | */ |
| 418 | uchar intel_sector_protected(flash_info_t * info, ushort sector) |
| 419 | { |
| 420 | FPWV *addr; |
| 421 | FPWV *lock_conf_addr; |
| 422 | ulong start; |
| 423 | unsigned char ret; |
| 424 | |
| 425 | /* |
| 426 | * first, wait for the WSM to be finished. The rationale for |
| 427 | * waiting for the WSM to become idle for at most |
| 428 | * CFG_FLASH_ERASE_TOUT is as follows. The WSM can be busy |
| 429 | * because of: (1) erase, (2) program or (3) lock bit |
| 430 | * configuration. So we just wait for the longest timeout of |
| 431 | * the (1)-(3), i.e. the erase timeout. |
| 432 | */ |
| 433 | |
| 434 | /* wait at least 35ns (W12) before issuing Read Status Register */ |
| 435 | /*udelay(1); */ |
| 436 | addr = (FPWV *) info->start[sector]; |
| 437 | *addr = (FPW) INTEL_STATUS; |
| 438 | |
| 439 | start = get_timer(0); |
| 440 | while ((*addr & (FPW) INTEL_FINISHED) != (FPW) INTEL_FINISHED) { |
| 441 | if (get_timer(start) > CFG_FLASH_UNLOCK_TOUT) { |
| 442 | *addr = (FPW) INTEL_RESET; /* restore read mode */ |
| 443 | printf("WSM busy too long, can't get prot status\n"); |
| 444 | return 1; |
| 445 | } |
| 446 | } |
| 447 | |
| 448 | /* issue the Read Identifier Codes command */ |
| 449 | *addr = (FPW) INTEL_READID; |
| 450 | |
| 451 | /* Intel example code uses offset of 4 for 8-bit flash */ |
| 452 | lock_conf_addr = (FPWV *) info->start[sector]; |
| 453 | ret = (lock_conf_addr[INTEL_CFI_LOCK] & (FPW) INTEL_PROTECT) ? 1 : 0; |
| 454 | |
| 455 | /* put flash back in read mode */ |
| 456 | *addr = (FPW) INTEL_RESET; |
| 457 | |
| 458 | return ret; |
| 459 | } |
| 460 | |
| 461 | int flash_erase(flash_info_t * info, int s_first, int s_last) |
| 462 | { |
| 463 | int flag, prot, sect; |
| 464 | ulong type, start, last; |
| 465 | int rcode = 0, intel = 0; |
| 466 | |
| 467 | if ((s_first < 0) || (s_first > s_last)) { |
| 468 | if (info->flash_id == FLASH_UNKNOWN) |
| 469 | printf("- missing\n"); |
| 470 | else |
| 471 | printf("- no sectors to erase\n"); |
| 472 | return 1; |
| 473 | } |
| 474 | |
| 475 | type = (info->flash_id & FLASH_VENDMASK); |
| 476 | |
| 477 | if (type != (FLASH_MAN_INTEL & FLASH_VENDMASK)) { |
| 478 | if (type != (FLASH_MAN_ATM & FLASH_VENDMASK)) { |
| 479 | type = (info->flash_id & FLASH_VENDMASK); |
| 480 | printf |
| 481 | ("Can't erase unknown flash type %08lx - aborted\n", |
| 482 | info->flash_id); |
| 483 | return 1; |
| 484 | } |
| 485 | } |
| 486 | |
| 487 | if (type == FLASH_MAN_INTEL) |
| 488 | intel = 1; |
| 489 | |
| 490 | prot = 0; |
| 491 | for (sect = s_first; sect <= s_last; ++sect) { |
| 492 | if (info->protect[sect]) { |
| 493 | prot++; |
| 494 | } |
| 495 | } |
| 496 | |
| 497 | if (prot) |
| 498 | printf("- Warning: %d protected sectors will not be erased!\n", |
| 499 | prot); |
| 500 | else |
| 501 | printf("\n"); |
| 502 | |
| 503 | start = get_timer(0); |
| 504 | last = start; |
| 505 | |
| 506 | /* Start erase on unprotected sectors */ |
| 507 | for (sect = s_first; sect <= s_last; sect++) { |
| 508 | if (info->protect[sect] == 0) { /* not protected */ |
| 509 | |
| 510 | FPWV *addr = (FPWV *) (info->start[sect]); |
| 511 | int min = 0; |
| 512 | |
| 513 | printf("."); |
| 514 | |
| 515 | /* arm simple, non interrupt dependent timer */ |
| 516 | start = get_timer(0); |
| 517 | |
| 518 | if (intel) { |
| 519 | *addr = (FPW) INTEL_READID; |
| 520 | min = addr[INTEL_CFI_TERB] & 0xff; |
| 521 | min = 1 << min; /* ms */ |
| 522 | min = (min / info->sector_count) * 1000; |
| 523 | |
| 524 | /* start erase block */ |
| 525 | *addr = (FPW) INTEL_CLEAR; /* clear status register */ |
| 526 | *addr = (FPW) INTEL_ERASE; /* erase setup */ |
| 527 | *addr = (FPW) INTEL_CONFIRM; /* erase confirm */ |
| 528 | |
| 529 | while ((*addr & (FPW) INTEL_FINISHED) != |
| 530 | (FPW) INTEL_FINISHED) { |
| 531 | |
| 532 | if (get_timer(start) > |
| 533 | CFG_FLASH_ERASE_TOUT) { |
| 534 | printf("Timeout\n"); |
| 535 | *addr = (FPW) INTEL_SUSERASE; /* suspend erase */ |
| 536 | *addr = (FPW) INTEL_RESET; /* reset to read mode */ |
| 537 | |
| 538 | rcode = 1; |
| 539 | break; |
| 540 | } |
| 541 | } |
| 542 | |
| 543 | *addr = (FPW) INTEL_RESET; /* resest to read mode */ |
| 544 | } else { |
| 545 | FPWV *base; /* first address in bank */ |
| 546 | FPWV *atmeladdr; |
| 547 | |
| 548 | flag = disable_interrupts(); |
| 549 | |
| 550 | atmeladdr = (FPWV *) addr; /* concatenate to 8 bit */ |
| 551 | base = (FPWV *) (CFG_ATMEL_BASE); /* First sector */ |
| 552 | |
| 553 | base[FLASH_CYCLE1] = (u8) 0x00AA00AA; /* unlock */ |
| 554 | base[FLASH_CYCLE2] = (u8) 0x00550055; /* unlock */ |
| 555 | base[FLASH_CYCLE1] = (u8) 0x00800080; /* erase mode */ |
| 556 | base[FLASH_CYCLE1] = (u8) 0x00AA00AA; /* unlock */ |
| 557 | base[FLASH_CYCLE2] = (u8) 0x00550055; /* unlock */ |
| 558 | *atmeladdr = (u8) 0x00300030; /* erase sector */ |
| 559 | |
| 560 | if (flag) |
| 561 | enable_interrupts(); |
| 562 | |
| 563 | while ((*atmeladdr & (u8) 0x00800080) != |
| 564 | (u8) 0x00800080) { |
| 565 | if (get_timer(start) > |
| 566 | CFG_FLASH_ERASE_TOUT) { |
| 567 | printf("Timeout\n"); |
| 568 | *atmeladdr = (u8) 0x00F000F0; /* reset to read mode */ |
| 569 | |
| 570 | rcode = 1; |
| 571 | break; |
| 572 | } |
| 573 | } |
| 574 | |
| 575 | *atmeladdr = (u8) 0x00F000F0; /* reset to read mode */ |
| 576 | } /* Atmel or Intel */ |
| 577 | } |
| 578 | } |
| 579 | printf(" done\n"); |
| 580 | |
| 581 | return rcode; |
| 582 | } |
| 583 | |
| 584 | int write_buff(flash_info_t * info, uchar * src, ulong addr, ulong cnt) |
| 585 | { |
| 586 | if (info->flash_id == FLASH_UNKNOWN) |
| 587 | return 4; |
| 588 | |
| 589 | switch (info->flash_id & FLASH_VENDMASK) { |
| 590 | case FLASH_MAN_ATM: |
| 591 | { |
| 592 | u16 data = 0; |
| 593 | int bytes; /* number of bytes to program in current word */ |
| 594 | int left; /* number of bytes left to program */ |
| 595 | int i, res; |
| 596 | |
| 597 | for (left = cnt, res = 0; |
| 598 | left > 0 && res == 0; |
| 599 | addr += sizeof(data), left -= |
| 600 | sizeof(data) - bytes) { |
| 601 | |
| 602 | bytes = addr & (sizeof(data) - 1); |
| 603 | addr &= ~(sizeof(data) - 1); |
| 604 | |
| 605 | /* combine source and destination data so can program |
| 606 | * an entire word of 16 or 32 bits |
| 607 | */ |
| 608 | for (i = 0; i < sizeof(data); i++) { |
| 609 | data <<= 8; |
| 610 | if (i < bytes || i - bytes >= left) |
| 611 | data += *((uchar *) addr + i); |
| 612 | else |
| 613 | data += *src++; |
| 614 | } |
| 615 | |
| 616 | data = (data >> 8) | (data << 8); |
| 617 | res = write_word_atm(info, (FPWV *) addr, data); |
| 618 | } |
| 619 | return res; |
| 620 | } /* case FLASH_MAN_ATM */ |
| 621 | |
| 622 | case FLASH_MAN_INTEL: |
| 623 | { |
| 624 | ulong cp, wp; |
| 625 | u16 data; |
| 626 | int count, i, l, rc, port_width; |
| 627 | |
| 628 | /* get lower word aligned address */ |
| 629 | wp = addr; |
| 630 | port_width = sizeof(FPW); |
| 631 | |
| 632 | /* |
| 633 | * handle unaligned start bytes |
| 634 | */ |
| 635 | if ((l = addr - wp) != 0) { |
| 636 | data = 0; |
| 637 | for (i = 0, cp = wp; i < l; ++i, ++cp) { |
| 638 | data = (data << 8) | (*(uchar *) cp); |
| 639 | } |
| 640 | |
| 641 | for (; i < port_width && cnt > 0; ++i) { |
| 642 | data = (data << 8) | *src++; |
| 643 | --cnt; |
| 644 | ++cp; |
| 645 | } |
| 646 | |
| 647 | for (; cnt == 0 && i < port_width; ++i, ++cp) |
| 648 | data = (data << 8) | (*(uchar *) cp); |
| 649 | |
| 650 | if ((rc = write_data(info, wp, data)) != 0) |
| 651 | return (rc); |
| 652 | |
| 653 | wp += port_width; |
| 654 | } |
| 655 | |
| 656 | if (cnt > WR_BLOCK) { |
| 657 | /* |
| 658 | * handle word aligned part |
| 659 | */ |
| 660 | count = 0; |
| 661 | while (cnt >= WR_BLOCK) { |
| 662 | |
| 663 | if ((rc = |
| 664 | write_data_block(info, |
| 665 | (ulong) src, |
| 666 | wp)) != 0) |
| 667 | return (rc); |
| 668 | |
| 669 | wp += WR_BLOCK; |
| 670 | src += WR_BLOCK; |
| 671 | cnt -= WR_BLOCK; |
| 672 | |
| 673 | if (count++ > 0x800) { |
| 674 | spin_wheel(); |
| 675 | count = 0; |
| 676 | } |
| 677 | } |
| 678 | } |
| 679 | |
| 680 | /* handle word aligned part */ |
| 681 | if (cnt < WR_BLOCK) { |
| 682 | /* |
| 683 | * handle word aligned part |
| 684 | */ |
| 685 | count = 0; |
| 686 | while (cnt >= port_width) { |
| 687 | data = 0; |
| 688 | for (i = 0; i < port_width; ++i) |
| 689 | data = (data << 8) | *src++; |
| 690 | |
| 691 | if ((rc = |
| 692 | write_data(info, |
| 693 | (ulong) ((FPWV *) wp), |
| 694 | (FPW) (data))) != 0) |
| 695 | return (rc); |
| 696 | |
| 697 | wp += port_width; |
| 698 | cnt -= port_width; |
| 699 | if (count++ > 0x800) { |
| 700 | spin_wheel(); |
| 701 | count = 0; |
| 702 | } |
| 703 | } |
| 704 | } |
| 705 | |
| 706 | if (cnt == 0) |
| 707 | return ERR_OK; |
| 708 | |
| 709 | /* |
| 710 | * handle unaligned tail bytes |
| 711 | */ |
| 712 | data = 0; |
| 713 | for (i = 0, cp = wp; i < port_width && cnt > 0; |
| 714 | ++i, ++cp) { |
| 715 | data = (data << 8) | (*src++); |
| 716 | --cnt; |
| 717 | } |
| 718 | for (; i < port_width; ++i, ++cp) { |
| 719 | data = (data << 8) | (*(uchar *) cp); |
| 720 | } |
| 721 | |
| 722 | return write_data(info, (ulong) ((FPWV *) wp), |
| 723 | (FPW) data); |
| 724 | |
| 725 | } /* case FLASH_MAN_INTEL */ |
| 726 | |
| 727 | } /* switch */ |
| 728 | |
| 729 | return ERR_OK; |
| 730 | } |
| 731 | |
| 732 | /*----------------------------------------------------------------------- |
| 733 | * Write a word or halfword to Flash, returns: |
| 734 | * 0 - OK |
| 735 | * 1 - write timeout |
| 736 | * 2 - Flash not erased |
| 737 | */ |
| 738 | int write_data_block(flash_info_t * info, ulong src, ulong dest) |
| 739 | { |
| 740 | FPWV *srcaddr = (FPWV *) src; |
| 741 | FPWV *dstaddr = (FPWV *) dest; |
| 742 | ulong start; |
| 743 | int flag, i; |
| 744 | |
| 745 | /* Check if Flash is (sufficiently) erased */ |
| 746 | for (i = 0; i < WR_BLOCK; i++) |
| 747 | if ((*dstaddr++ & 0xff) != 0xff) { |
| 748 | printf("not erased at %08lx (%lx)\n", |
| 749 | (ulong) dstaddr, *dstaddr); |
| 750 | return (2); |
| 751 | } |
| 752 | |
| 753 | dstaddr = (FPWV *) dest; |
| 754 | |
| 755 | /* Disable interrupts which might cause a timeout here */ |
| 756 | flag = disable_interrupts(); |
| 757 | |
| 758 | *dstaddr = (FPW) INTEL_WRBLK; /* write block setup */ |
| 759 | |
| 760 | if (flag) |
| 761 | enable_interrupts(); |
| 762 | |
| 763 | /* arm simple, non interrupt dependent timer */ |
| 764 | start = get_timer(0); |
| 765 | |
| 766 | /* wait while polling the status register */ |
| 767 | while ((*dstaddr & (FPW) INTEL_FINISHED) != (FPW) INTEL_OK) { |
| 768 | if (get_timer(start) > CFG_FLASH_WRITE_TOUT) { |
| 769 | *dstaddr = (FPW) INTEL_RESET; /* restore read mode */ |
| 770 | return (1); |
| 771 | } |
| 772 | } |
| 773 | |
| 774 | *dstaddr = (FPW) WR_BLOCK - 1; /* write 32 to buffer */ |
| 775 | for (i = 0; i < WR_BLOCK; i++) |
| 776 | *dstaddr++ = *srcaddr++; |
| 777 | |
| 778 | dstaddr -= 1; |
| 779 | *dstaddr = (FPW) INTEL_CONFIRM; /* write 32 to buffer */ |
| 780 | |
| 781 | /* arm simple, non interrupt dependent timer */ |
| 782 | start = get_timer(0); |
| 783 | |
| 784 | /* wait while polling the status register */ |
| 785 | while ((*dstaddr & (FPW) INTEL_FINISHED) != (FPW) INTEL_OK) { |
| 786 | if (get_timer(start) > CFG_FLASH_WRITE_TOUT) { |
| 787 | *dstaddr = (FPW) INTEL_RESET; /* restore read mode */ |
| 788 | return (1); |
| 789 | } |
| 790 | } |
| 791 | |
| 792 | *dstaddr = (FPW) INTEL_RESET; /* restore read mode */ |
| 793 | |
| 794 | return (0); |
| 795 | } |
| 796 | |
| 797 | /*----------------------------------------------------------------------- |
| 798 | * Write a word or halfword to Flash, returns: |
| 799 | * 0 - OK |
| 800 | * 1 - write timeout |
| 801 | * 2 - Flash not erased |
| 802 | */ |
| 803 | int write_data(flash_info_t * info, ulong dest, FPW data) |
| 804 | { |
| 805 | FPWV *addr = (FPWV *) dest; |
| 806 | ulong start; |
| 807 | int flag; |
| 808 | |
| 809 | /* Check if Flash is (sufficiently) erased */ |
| 810 | if ((*addr & data) != data) { |
| 811 | printf("not erased at %08lx (%lx)\n", (ulong) addr, |
| 812 | (ulong) * addr); |
| 813 | return (2); |
| 814 | } |
| 815 | |
| 816 | /* Disable interrupts which might cause a timeout here */ |
| 817 | flag = (int)disable_interrupts(); |
| 818 | |
| 819 | *addr = (FPW) INTEL_CLEAR; |
| 820 | *addr = (FPW) INTEL_RESET; |
| 821 | |
| 822 | *addr = (FPW) INTEL_WRSETUP; /* write setup */ |
| 823 | *addr = data; |
| 824 | |
| 825 | if (flag) |
| 826 | enable_interrupts(); |
| 827 | |
| 828 | /* arm simple, non interrupt dependent timer */ |
| 829 | start = get_timer(0); |
| 830 | |
| 831 | /* wait while polling the status register */ |
| 832 | while ((*addr & (FPW) INTEL_OK) != (FPW) INTEL_OK) { |
| 833 | if (get_timer(start) > CFG_FLASH_WRITE_TOUT) { |
| 834 | *addr = (FPW) INTEL_SUSERASE; /* suspend mode */ |
| 835 | *addr = (FPW) INTEL_CLEAR; /* clear status */ |
| 836 | *addr = (FPW) INTEL_RESET; /* reset */ |
| 837 | return (1); |
| 838 | } |
| 839 | } |
| 840 | |
| 841 | *addr = (FPW) INTEL_CLEAR; /* clear status */ |
| 842 | *addr = (FPW) INTEL_RESET; /* restore read mode */ |
| 843 | |
| 844 | return (0); |
| 845 | } |
| 846 | |
| 847 | /*----------------------------------------------------------------------- |
| 848 | * Write a word to Flash for ATMEL FLASH |
| 849 | * A word is 16 bits, whichever the bus width of the flash bank |
| 850 | * (not an individual chip) is. |
| 851 | * |
| 852 | * returns: |
| 853 | * 0 - OK |
| 854 | * 1 - write timeout |
| 855 | * 2 - Flash not erased |
| 856 | */ |
| 857 | int write_word_atm(flash_info_t * info, volatile u8 * dest, u16 data) |
| 858 | { |
| 859 | ulong start; |
| 860 | int flag, i; |
| 861 | int res = 0; /* result, assume success */ |
| 862 | FPWV *base; /* first address in flash bank */ |
| 863 | |
| 864 | /* Check if Flash is (sufficiently) erased */ |
| 865 | if ((*((volatile u16 *)dest) & data) != data) { |
| 866 | return (2); |
| 867 | } |
| 868 | |
| 869 | base = (FPWV *) (CFG_ATMEL_BASE); |
| 870 | |
| 871 | for (i = 0; i < sizeof(u16); i++) { |
| 872 | /* Disable interrupts which might cause a timeout here */ |
| 873 | flag = disable_interrupts(); |
| 874 | |
| 875 | base[FLASH_CYCLE1] = (u8) 0x00AA00AA; /* unlock */ |
| 876 | base[FLASH_CYCLE2] = (u8) 0x00550055; /* unlock */ |
| 877 | base[FLASH_CYCLE1] = (u8) 0x00A000A0; /* selects program mode */ |
| 878 | |
| 879 | *dest = data; /* start programming the data */ |
| 880 | |
| 881 | /* re-enable interrupts if necessary */ |
| 882 | if (flag) |
| 883 | enable_interrupts(); |
| 884 | |
| 885 | start = get_timer(0); |
| 886 | |
| 887 | /* data polling for D7 */ |
| 888 | while (res == 0 |
| 889 | && (*dest & (u8) 0x00800080) != |
| 890 | (data & (u8) 0x00800080)) { |
| 891 | if (get_timer(start) > CFG_FLASH_WRITE_TOUT) { |
| 892 | *dest = (u8) 0x00F000F0; /* reset bank */ |
| 893 | res = 1; |
| 894 | } |
| 895 | } |
| 896 | |
| 897 | *dest++ = (u8) 0x00F000F0; /* reset bank */ |
| 898 | data >>= 8; |
| 899 | } |
| 900 | |
| 901 | return (res); |
| 902 | } |
| 903 | |
| 904 | void inline spin_wheel(void) |
| 905 | { |
| 906 | static int p = 0; |
| 907 | static char w[] = "\\/-"; |
| 908 | |
| 909 | printf("\010%c", w[p]); |
| 910 | (++p == 3) ? (p = 0) : 0; |
| 911 | } |
| 912 | |
| 913 | #ifdef CFG_FLASH_PROTECTION |
| 914 | /*----------------------------------------------------------------------- |
| 915 | */ |
| 916 | int flash_real_protect(flash_info_t * info, long sector, int prot) |
| 917 | { |
| 918 | int rcode = 0; /* assume success */ |
| 919 | FPWV *addr; /* address of sector */ |
| 920 | FPW value; |
| 921 | |
| 922 | addr = (FPWV *) (info->start[sector]); |
| 923 | |
| 924 | switch (info->flash_id & FLASH_TYPEMASK) { |
| 925 | case FLASH_28F160C3B: |
| 926 | case FLASH_28F160C3T: |
| 927 | case FLASH_28F320C3B: |
| 928 | case FLASH_28F320C3T: |
| 929 | case FLASH_28F640C3B: |
| 930 | case FLASH_28F640C3T: |
| 931 | *addr = (FPW) INTEL_RESET; /* make sure in read mode */ |
| 932 | *addr = (FPW) INTEL_LOCKBIT; /* lock command setup */ |
| 933 | |
| 934 | if (prot) |
| 935 | *addr = (FPW) INTEL_PROTECT; /* lock sector */ |
| 936 | else |
| 937 | *addr = (FPW) INTEL_CONFIRM; /* unlock sector */ |
| 938 | |
| 939 | /* now see if it really is locked/unlocked as requested */ |
| 940 | *addr = (FPW) INTEL_READID; |
| 941 | |
| 942 | /* read sector protection at sector address, (A7 .. A0) = 0x02. |
| 943 | * D0 = 1 for each device if protected. |
| 944 | * If at least one device is protected the sector is marked |
| 945 | * protected, but return failure. Mixed protected and |
| 946 | * unprotected devices within a sector should never happen. |
| 947 | */ |
| 948 | value = addr[2] & (FPW) INTEL_PROTECT; |
| 949 | if (value == 0) |
| 950 | info->protect[sector] = 0; |
| 951 | else if (value == (FPW) INTEL_PROTECT) |
| 952 | info->protect[sector] = 1; |
| 953 | else { |
| 954 | /* error, mixed protected and unprotected */ |
| 955 | rcode = 1; |
| 956 | info->protect[sector] = 1; |
| 957 | } |
| 958 | if (info->protect[sector] != prot) |
| 959 | rcode = 1; /* failed to protect/unprotect as requested */ |
| 960 | |
| 961 | /* reload all protection bits from hardware for now */ |
| 962 | flash_sync_real_protect(info); |
| 963 | break; |
| 964 | |
| 965 | default: |
| 966 | /* no hardware protect that we support */ |
| 967 | info->protect[sector] = prot; |
| 968 | break; |
| 969 | } |
| 970 | |
| 971 | return rcode; |
| 972 | } |
| 973 | #endif |
| 974 | #endif |