blob: 301e8ebbf57babe28ff1de3b218ceab7b11c0024 [file] [log] [blame]
Hung-ying Tyan88364382013-05-15 18:27:28 +08001/*
2 * Chromium OS cros_ec driver
3 *
4 * Copyright (c) 2012 The Chromium OS Authors.
Hung-ying Tyan88364382013-05-15 18:27:28 +08005 *
Wolfgang Denk1a459662013-07-08 09:37:19 +02006 * SPDX-License-Identifier: GPL-2.0+
Hung-ying Tyan88364382013-05-15 18:27:28 +08007 */
8
9/*
10 * The Matrix Keyboard Protocol driver handles talking to the keyboard
11 * controller chip. Mostly this is for keyboard functions, but some other
12 * things have slipped in, so we provide generic services to talk to the
13 * KBC.
14 */
15
16#include <common.h>
17#include <command.h>
18#include <i2c.h>
19#include <cros_ec.h>
20#include <fdtdec.h>
21#include <malloc.h>
22#include <spi.h>
23#include <asm/io.h>
24#include <asm-generic/gpio.h>
25
26#ifdef DEBUG_TRACE
27#define debug_trace(fmt, b...) debug(fmt, #b)
28#else
29#define debug_trace(fmt, b...)
30#endif
31
32enum {
33 /* Timeout waiting for a flash erase command to complete */
34 CROS_EC_CMD_TIMEOUT_MS = 5000,
35 /* Timeout waiting for a synchronous hash to be recomputed */
36 CROS_EC_CMD_HASH_TIMEOUT_MS = 2000,
37};
38
39static struct cros_ec_dev static_dev, *last_dev;
40
41DECLARE_GLOBAL_DATA_PTR;
42
43/* Note: depends on enum ec_current_image */
44static const char * const ec_current_image_name[] = {"unknown", "RO", "RW"};
45
46void cros_ec_dump_data(const char *name, int cmd, const uint8_t *data, int len)
47{
48#ifdef DEBUG
49 int i;
50
51 printf("%s: ", name);
52 if (cmd != -1)
53 printf("cmd=%#x: ", cmd);
54 for (i = 0; i < len; i++)
55 printf("%02x ", data[i]);
56 printf("\n");
57#endif
58}
59
60/*
61 * Calculate a simple 8-bit checksum of a data block
62 *
63 * @param data Data block to checksum
64 * @param size Size of data block in bytes
65 * @return checksum value (0 to 255)
66 */
67int cros_ec_calc_checksum(const uint8_t *data, int size)
68{
69 int csum, i;
70
71 for (i = csum = 0; i < size; i++)
72 csum += data[i];
73 return csum & 0xff;
74}
75
76static int send_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version,
77 const void *dout, int dout_len,
78 uint8_t **dinp, int din_len)
79{
80 int ret;
81
82 switch (dev->interface) {
83#ifdef CONFIG_CROS_EC_SPI
84 case CROS_EC_IF_SPI:
85 ret = cros_ec_spi_command(dev, cmd, cmd_version,
86 (const uint8_t *)dout, dout_len,
87 dinp, din_len);
88 break;
89#endif
90#ifdef CONFIG_CROS_EC_I2C
91 case CROS_EC_IF_I2C:
92 ret = cros_ec_i2c_command(dev, cmd, cmd_version,
93 (const uint8_t *)dout, dout_len,
94 dinp, din_len);
95 break;
96#endif
97#ifdef CONFIG_CROS_EC_LPC
98 case CROS_EC_IF_LPC:
99 ret = cros_ec_lpc_command(dev, cmd, cmd_version,
100 (const uint8_t *)dout, dout_len,
101 dinp, din_len);
102 break;
103#endif
104 case CROS_EC_IF_NONE:
105 default:
106 ret = -1;
107 }
108
109 return ret;
110}
111
112/**
113 * Send a command to the CROS-EC device and return the reply.
114 *
115 * The device's internal input/output buffers are used.
116 *
117 * @param dev CROS-EC device
118 * @param cmd Command to send (EC_CMD_...)
119 * @param cmd_version Version of command to send (EC_VER_...)
120 * @param dout Output data (may be NULL If dout_len=0)
121 * @param dout_len Size of output data in bytes
122 * @param dinp Response data (may be NULL If din_len=0).
123 * If not NULL, it will be updated to point to the data
124 * and will always be double word aligned (64-bits)
125 * @param din_len Maximum size of response in bytes
126 * @return number of bytes in response, or -1 on error
127 */
128static int ec_command_inptr(struct cros_ec_dev *dev, uint8_t cmd,
129 int cmd_version, const void *dout, int dout_len, uint8_t **dinp,
130 int din_len)
131{
132 uint8_t *din;
133 int len;
134
135 if (cmd_version != 0 && !dev->cmd_version_is_supported) {
136 debug("%s: Command version >0 unsupported\n", __func__);
137 return -1;
138 }
139 len = send_command(dev, cmd, cmd_version, dout, dout_len,
140 &din, din_len);
141
142 /* If the command doesn't complete, wait a while */
143 if (len == -EC_RES_IN_PROGRESS) {
144 struct ec_response_get_comms_status *resp;
145 ulong start;
146
147 /* Wait for command to complete */
148 start = get_timer(0);
149 do {
150 int ret;
151
152 mdelay(50); /* Insert some reasonable delay */
153 ret = send_command(dev, EC_CMD_GET_COMMS_STATUS, 0,
154 NULL, 0,
155 (uint8_t **)&resp, sizeof(*resp));
156 if (ret < 0)
157 return ret;
158
159 if (get_timer(start) > CROS_EC_CMD_TIMEOUT_MS) {
160 debug("%s: Command %#02x timeout\n",
161 __func__, cmd);
162 return -EC_RES_TIMEOUT;
163 }
164 } while (resp->flags & EC_COMMS_STATUS_PROCESSING);
165
166 /* OK it completed, so read the status response */
167 /* not sure why it was 0 for the last argument */
168 len = send_command(dev, EC_CMD_RESEND_RESPONSE, 0,
169 NULL, 0, &din, din_len);
170 }
171
172 debug("%s: len=%d, dinp=%p, *dinp=%p\n", __func__, len, dinp, *dinp);
173 if (dinp) {
174 /* If we have any data to return, it must be 64bit-aligned */
175 assert(len <= 0 || !((uintptr_t)din & 7));
176 *dinp = din;
177 }
178
179 return len;
180}
181
182/**
183 * Send a command to the CROS-EC device and return the reply.
184 *
185 * The device's internal input/output buffers are used.
186 *
187 * @param dev CROS-EC device
188 * @param cmd Command to send (EC_CMD_...)
189 * @param cmd_version Version of command to send (EC_VER_...)
190 * @param dout Output data (may be NULL If dout_len=0)
191 * @param dout_len Size of output data in bytes
192 * @param din Response data (may be NULL If din_len=0).
193 * It not NULL, it is a place for ec_command() to copy the
194 * data to.
195 * @param din_len Maximum size of response in bytes
196 * @return number of bytes in response, or -1 on error
197 */
198static int ec_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version,
199 const void *dout, int dout_len,
200 void *din, int din_len)
201{
202 uint8_t *in_buffer;
203 int len;
204
205 assert((din_len == 0) || din);
206 len = ec_command_inptr(dev, cmd, cmd_version, dout, dout_len,
207 &in_buffer, din_len);
208 if (len > 0) {
209 /*
210 * If we were asked to put it somewhere, do so, otherwise just
211 * disregard the result.
212 */
213 if (din && in_buffer) {
214 assert(len <= din_len);
215 memmove(din, in_buffer, len);
216 }
217 }
218 return len;
219}
220
221int cros_ec_scan_keyboard(struct cros_ec_dev *dev, struct mbkp_keyscan *scan)
222{
223 if (ec_command(dev, EC_CMD_CROS_EC_STATE, 0, NULL, 0, scan,
224 sizeof(scan->data)) < sizeof(scan->data))
225 return -1;
226
227 return 0;
228}
229
230int cros_ec_read_id(struct cros_ec_dev *dev, char *id, int maxlen)
231{
232 struct ec_response_get_version *r;
233
234 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
235 (uint8_t **)&r, sizeof(*r)) < sizeof(*r))
236 return -1;
237
238 if (maxlen > sizeof(r->version_string_ro))
239 maxlen = sizeof(r->version_string_ro);
240
241 switch (r->current_image) {
242 case EC_IMAGE_RO:
243 memcpy(id, r->version_string_ro, maxlen);
244 break;
245 case EC_IMAGE_RW:
246 memcpy(id, r->version_string_rw, maxlen);
247 break;
248 default:
249 return -1;
250 }
251
252 id[maxlen - 1] = '\0';
253 return 0;
254}
255
256int cros_ec_read_version(struct cros_ec_dev *dev,
257 struct ec_response_get_version **versionp)
258{
259 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
260 (uint8_t **)versionp, sizeof(**versionp))
261 < sizeof(**versionp))
262 return -1;
263
264 return 0;
265}
266
267int cros_ec_read_build_info(struct cros_ec_dev *dev, char **strp)
268{
269 if (ec_command_inptr(dev, EC_CMD_GET_BUILD_INFO, 0, NULL, 0,
270 (uint8_t **)strp, EC_HOST_PARAM_SIZE) < 0)
271 return -1;
272
273 return 0;
274}
275
276int cros_ec_read_current_image(struct cros_ec_dev *dev,
277 enum ec_current_image *image)
278{
279 struct ec_response_get_version *r;
280
281 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
282 (uint8_t **)&r, sizeof(*r)) < sizeof(*r))
283 return -1;
284
285 *image = r->current_image;
286 return 0;
287}
288
289static int cros_ec_wait_on_hash_done(struct cros_ec_dev *dev,
290 struct ec_response_vboot_hash *hash)
291{
292 struct ec_params_vboot_hash p;
293 ulong start;
294
295 start = get_timer(0);
296 while (hash->status == EC_VBOOT_HASH_STATUS_BUSY) {
297 mdelay(50); /* Insert some reasonable delay */
298
299 p.cmd = EC_VBOOT_HASH_GET;
300 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
301 hash, sizeof(*hash)) < 0)
302 return -1;
303
304 if (get_timer(start) > CROS_EC_CMD_HASH_TIMEOUT_MS) {
305 debug("%s: EC_VBOOT_HASH_GET timeout\n", __func__);
306 return -EC_RES_TIMEOUT;
307 }
308 }
309 return 0;
310}
311
312
313int cros_ec_read_hash(struct cros_ec_dev *dev,
314 struct ec_response_vboot_hash *hash)
315{
316 struct ec_params_vboot_hash p;
317 int rv;
318
319 p.cmd = EC_VBOOT_HASH_GET;
320 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
321 hash, sizeof(*hash)) < 0)
322 return -1;
323
324 /* If the EC is busy calculating the hash, fidget until it's done. */
325 rv = cros_ec_wait_on_hash_done(dev, hash);
326 if (rv)
327 return rv;
328
329 /* If the hash is valid, we're done. Otherwise, we have to kick it off
330 * again and wait for it to complete. Note that we explicitly assume
331 * that hashing zero bytes is always wrong, even though that would
332 * produce a valid hash value. */
333 if (hash->status == EC_VBOOT_HASH_STATUS_DONE && hash->size)
334 return 0;
335
336 debug("%s: No valid hash (status=%d size=%d). Compute one...\n",
337 __func__, hash->status, hash->size);
338
339 p.cmd = EC_VBOOT_HASH_RECALC;
340 p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
341 p.nonce_size = 0;
342 p.offset = EC_VBOOT_HASH_OFFSET_RW;
343
344 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
345 hash, sizeof(*hash)) < 0)
346 return -1;
347
348 rv = cros_ec_wait_on_hash_done(dev, hash);
349 if (rv)
350 return rv;
351
352 debug("%s: hash done\n", __func__);
353
354 return 0;
355}
356
357static int cros_ec_invalidate_hash(struct cros_ec_dev *dev)
358{
359 struct ec_params_vboot_hash p;
360 struct ec_response_vboot_hash *hash;
361
362 /* We don't have an explict command for the EC to discard its current
363 * hash value, so we'll just tell it to calculate one that we know is
364 * wrong (we claim that hashing zero bytes is always invalid).
365 */
366 p.cmd = EC_VBOOT_HASH_RECALC;
367 p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
368 p.nonce_size = 0;
369 p.offset = 0;
370 p.size = 0;
371
372 debug("%s:\n", __func__);
373
374 if (ec_command_inptr(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
375 (uint8_t **)&hash, sizeof(*hash)) < 0)
376 return -1;
377
378 /* No need to wait for it to finish */
379 return 0;
380}
381
382int cros_ec_reboot(struct cros_ec_dev *dev, enum ec_reboot_cmd cmd,
383 uint8_t flags)
384{
385 struct ec_params_reboot_ec p;
386
387 p.cmd = cmd;
388 p.flags = flags;
389
390 if (ec_command_inptr(dev, EC_CMD_REBOOT_EC, 0, &p, sizeof(p), NULL, 0)
391 < 0)
392 return -1;
393
394 if (!(flags & EC_REBOOT_FLAG_ON_AP_SHUTDOWN)) {
395 /*
396 * EC reboot will take place immediately so delay to allow it
397 * to complete. Note that some reboot types (EC_REBOOT_COLD)
398 * will reboot the AP as well, in which case we won't actually
399 * get to this point.
400 */
401 /*
402 * TODO(rspangler@chromium.org): Would be nice if we had a
403 * better way to determine when the reboot is complete. Could
404 * we poll a memory-mapped LPC value?
405 */
406 udelay(50000);
407 }
408
409 return 0;
410}
411
412int cros_ec_interrupt_pending(struct cros_ec_dev *dev)
413{
414 /* no interrupt support : always poll */
415 if (!fdt_gpio_isvalid(&dev->ec_int))
416 return 1;
417
418 return !gpio_get_value(dev->ec_int.gpio);
419}
420
421int cros_ec_info(struct cros_ec_dev *dev, struct ec_response_cros_ec_info *info)
422{
423 if (ec_command(dev, EC_CMD_CROS_EC_INFO, 0, NULL, 0, info,
424 sizeof(*info)) < sizeof(*info))
425 return -1;
426
427 return 0;
428}
429
430int cros_ec_get_host_events(struct cros_ec_dev *dev, uint32_t *events_ptr)
431{
432 struct ec_response_host_event_mask *resp;
433
434 /*
435 * Use the B copy of the event flags, because the main copy is already
436 * used by ACPI/SMI.
437 */
438 if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_GET_B, 0, NULL, 0,
439 (uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp))
440 return -1;
441
442 if (resp->mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID))
443 return -1;
444
445 *events_ptr = resp->mask;
446 return 0;
447}
448
449int cros_ec_clear_host_events(struct cros_ec_dev *dev, uint32_t events)
450{
451 struct ec_params_host_event_mask params;
452
453 params.mask = events;
454
455 /*
456 * Use the B copy of the event flags, so it affects the data returned
457 * by cros_ec_get_host_events().
458 */
459 if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_CLEAR_B, 0,
460 &params, sizeof(params), NULL, 0) < 0)
461 return -1;
462
463 return 0;
464}
465
466int cros_ec_flash_protect(struct cros_ec_dev *dev,
467 uint32_t set_mask, uint32_t set_flags,
468 struct ec_response_flash_protect *resp)
469{
470 struct ec_params_flash_protect params;
471
472 params.mask = set_mask;
473 params.flags = set_flags;
474
475 if (ec_command(dev, EC_CMD_FLASH_PROTECT, EC_VER_FLASH_PROTECT,
476 &params, sizeof(params),
477 resp, sizeof(*resp)) < sizeof(*resp))
478 return -1;
479
480 return 0;
481}
482
483static int cros_ec_check_version(struct cros_ec_dev *dev)
484{
485 struct ec_params_hello req;
486 struct ec_response_hello *resp;
487
488#ifdef CONFIG_CROS_EC_LPC
489 /* LPC has its own way of doing this */
490 if (dev->interface == CROS_EC_IF_LPC)
491 return cros_ec_lpc_check_version(dev);
492#endif
493
494 /*
495 * TODO(sjg@chromium.org).
496 * There is a strange oddity here with the EC. We could just ignore
497 * the response, i.e. pass the last two parameters as NULL and 0.
498 * In this case we won't read back very many bytes from the EC.
499 * On the I2C bus the EC gets upset about this and will try to send
500 * the bytes anyway. This means that we will have to wait for that
501 * to complete before continuing with a new EC command.
502 *
503 * This problem is probably unique to the I2C bus.
504 *
505 * So for now, just read all the data anyway.
506 */
507 dev->cmd_version_is_supported = 1;
508 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
509 (uint8_t **)&resp, sizeof(*resp)) > 0) {
510 /* It appears to understand new version commands */
511 dev->cmd_version_is_supported = 1;
512 } else {
513 dev->cmd_version_is_supported = 0;
514 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req,
515 sizeof(req), (uint8_t **)&resp,
516 sizeof(*resp)) < 0) {
517 debug("%s: Failed both old and new command style\n",
518 __func__);
519 return -1;
520 }
521 }
522
523 return 0;
524}
525
526int cros_ec_test(struct cros_ec_dev *dev)
527{
528 struct ec_params_hello req;
529 struct ec_response_hello *resp;
530
531 req.in_data = 0x12345678;
532 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
533 (uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp)) {
534 printf("ec_command_inptr() returned error\n");
535 return -1;
536 }
537 if (resp->out_data != req.in_data + 0x01020304) {
538 printf("Received invalid handshake %x\n", resp->out_data);
539 return -1;
540 }
541
542 return 0;
543}
544
545int cros_ec_flash_offset(struct cros_ec_dev *dev, enum ec_flash_region region,
546 uint32_t *offset, uint32_t *size)
547{
548 struct ec_params_flash_region_info p;
549 struct ec_response_flash_region_info *r;
550 int ret;
551
552 p.region = region;
553 ret = ec_command_inptr(dev, EC_CMD_FLASH_REGION_INFO,
554 EC_VER_FLASH_REGION_INFO,
555 &p, sizeof(p), (uint8_t **)&r, sizeof(*r));
556 if (ret != sizeof(*r))
557 return -1;
558
559 if (offset)
560 *offset = r->offset;
561 if (size)
562 *size = r->size;
563
564 return 0;
565}
566
567int cros_ec_flash_erase(struct cros_ec_dev *dev, uint32_t offset, uint32_t size)
568{
569 struct ec_params_flash_erase p;
570
571 p.offset = offset;
572 p.size = size;
573 return ec_command_inptr(dev, EC_CMD_FLASH_ERASE, 0, &p, sizeof(p),
574 NULL, 0);
575}
576
577/**
578 * Write a single block to the flash
579 *
580 * Write a block of data to the EC flash. The size must not exceed the flash
581 * write block size which you can obtain from cros_ec_flash_write_burst_size().
582 *
583 * The offset starts at 0. You can obtain the region information from
584 * cros_ec_flash_offset() to find out where to write for a particular region.
585 *
586 * Attempting to write to the region where the EC is currently running from
587 * will result in an error.
588 *
589 * @param dev CROS-EC device
590 * @param data Pointer to data buffer to write
591 * @param offset Offset within flash to write to.
592 * @param size Number of bytes to write
593 * @return 0 if ok, -1 on error
594 */
595static int cros_ec_flash_write_block(struct cros_ec_dev *dev,
596 const uint8_t *data, uint32_t offset, uint32_t size)
597{
598 struct ec_params_flash_write p;
599
600 p.offset = offset;
601 p.size = size;
602 assert(data && p.size <= sizeof(p.data));
603 memcpy(p.data, data, p.size);
604
605 return ec_command_inptr(dev, EC_CMD_FLASH_WRITE, 0,
606 &p, sizeof(p), NULL, 0) >= 0 ? 0 : -1;
607}
608
609/**
610 * Return optimal flash write burst size
611 */
612static int cros_ec_flash_write_burst_size(struct cros_ec_dev *dev)
613{
614 struct ec_params_flash_write p;
615 return sizeof(p.data);
616}
617
618/**
619 * Check if a block of data is erased (all 0xff)
620 *
621 * This function is useful when dealing with flash, for checking whether a
622 * data block is erased and thus does not need to be programmed.
623 *
624 * @param data Pointer to data to check (must be word-aligned)
625 * @param size Number of bytes to check (must be word-aligned)
626 * @return 0 if erased, non-zero if any word is not erased
627 */
628static int cros_ec_data_is_erased(const uint32_t *data, int size)
629{
630 assert(!(size & 3));
631 size /= sizeof(uint32_t);
632 for (; size > 0; size -= 4, data++)
633 if (*data != -1U)
634 return 0;
635
636 return 1;
637}
638
639int cros_ec_flash_write(struct cros_ec_dev *dev, const uint8_t *data,
640 uint32_t offset, uint32_t size)
641{
642 uint32_t burst = cros_ec_flash_write_burst_size(dev);
643 uint32_t end, off;
644 int ret;
645
646 /*
647 * TODO: round up to the nearest multiple of write size. Can get away
648 * without that on link right now because its write size is 4 bytes.
649 */
650 end = offset + size;
651 for (off = offset; off < end; off += burst, data += burst) {
652 uint32_t todo;
653
654 /* If the data is empty, there is no point in programming it */
655 todo = min(end - off, burst);
656 if (dev->optimise_flash_write &&
657 cros_ec_data_is_erased((uint32_t *)data, todo))
658 continue;
659
660 ret = cros_ec_flash_write_block(dev, data, off, todo);
661 if (ret)
662 return ret;
663 }
664
665 return 0;
666}
667
668/**
669 * Read a single block from the flash
670 *
671 * Read a block of data from the EC flash. The size must not exceed the flash
672 * write block size which you can obtain from cros_ec_flash_write_burst_size().
673 *
674 * The offset starts at 0. You can obtain the region information from
675 * cros_ec_flash_offset() to find out where to read for a particular region.
676 *
677 * @param dev CROS-EC device
678 * @param data Pointer to data buffer to read into
679 * @param offset Offset within flash to read from
680 * @param size Number of bytes to read
681 * @return 0 if ok, -1 on error
682 */
683static int cros_ec_flash_read_block(struct cros_ec_dev *dev, uint8_t *data,
684 uint32_t offset, uint32_t size)
685{
686 struct ec_params_flash_read p;
687
688 p.offset = offset;
689 p.size = size;
690
691 return ec_command(dev, EC_CMD_FLASH_READ, 0,
692 &p, sizeof(p), data, size) >= 0 ? 0 : -1;
693}
694
695int cros_ec_flash_read(struct cros_ec_dev *dev, uint8_t *data, uint32_t offset,
696 uint32_t size)
697{
698 uint32_t burst = cros_ec_flash_write_burst_size(dev);
699 uint32_t end, off;
700 int ret;
701
702 end = offset + size;
703 for (off = offset; off < end; off += burst, data += burst) {
704 ret = cros_ec_flash_read_block(dev, data, off,
705 min(end - off, burst));
706 if (ret)
707 return ret;
708 }
709
710 return 0;
711}
712
713int cros_ec_flash_update_rw(struct cros_ec_dev *dev,
714 const uint8_t *image, int image_size)
715{
716 uint32_t rw_offset, rw_size;
717 int ret;
718
719 if (cros_ec_flash_offset(dev, EC_FLASH_REGION_RW, &rw_offset, &rw_size))
720 return -1;
721 if (image_size > rw_size)
722 return -1;
723
724 /* Invalidate the existing hash, just in case the AP reboots
725 * unexpectedly during the update. If that happened, the EC RW firmware
726 * would be invalid, but the EC would still have the original hash.
727 */
728 ret = cros_ec_invalidate_hash(dev);
729 if (ret)
730 return ret;
731
732 /*
733 * Erase the entire RW section, so that the EC doesn't see any garbage
734 * past the new image if it's smaller than the current image.
735 *
736 * TODO: could optimize this to erase just the current image, since
737 * presumably everything past that is 0xff's. But would still need to
738 * round up to the nearest multiple of erase size.
739 */
740 ret = cros_ec_flash_erase(dev, rw_offset, rw_size);
741 if (ret)
742 return ret;
743
744 /* Write the image */
745 ret = cros_ec_flash_write(dev, image, rw_offset, image_size);
746 if (ret)
747 return ret;
748
749 return 0;
750}
751
752int cros_ec_read_vbnvcontext(struct cros_ec_dev *dev, uint8_t *block)
753{
754 struct ec_params_vbnvcontext p;
755 int len;
756
757 p.op = EC_VBNV_CONTEXT_OP_READ;
758
759 len = ec_command(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
760 &p, sizeof(p), block, EC_VBNV_BLOCK_SIZE);
761 if (len < EC_VBNV_BLOCK_SIZE)
762 return -1;
763
764 return 0;
765}
766
767int cros_ec_write_vbnvcontext(struct cros_ec_dev *dev, const uint8_t *block)
768{
769 struct ec_params_vbnvcontext p;
770 int len;
771
772 p.op = EC_VBNV_CONTEXT_OP_WRITE;
773 memcpy(p.block, block, sizeof(p.block));
774
775 len = ec_command_inptr(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
776 &p, sizeof(p), NULL, 0);
777 if (len < 0)
778 return -1;
779
780 return 0;
781}
782
783int cros_ec_set_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t state)
784{
785 struct ec_params_ldo_set params;
786
787 params.index = index;
788 params.state = state;
789
790 if (ec_command_inptr(dev, EC_CMD_LDO_SET, 0,
791 &params, sizeof(params),
792 NULL, 0))
793 return -1;
794
795 return 0;
796}
797
798int cros_ec_get_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t *state)
799{
800 struct ec_params_ldo_get params;
801 struct ec_response_ldo_get *resp;
802
803 params.index = index;
804
805 if (ec_command_inptr(dev, EC_CMD_LDO_GET, 0,
806 &params, sizeof(params),
807 (uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp))
808 return -1;
809
810 *state = resp->state;
811
812 return 0;
813}
814
815/**
816 * Decode MBKP details from the device tree and allocate a suitable device.
817 *
818 * @param blob Device tree blob
819 * @param node Node to decode from
820 * @param devp Returns a pointer to the new allocated device
821 * @return 0 if ok, -1 on error
822 */
823static int cros_ec_decode_fdt(const void *blob, int node,
824 struct cros_ec_dev **devp)
825{
826 enum fdt_compat_id compat;
827 struct cros_ec_dev *dev;
828 int parent;
829
830 /* See what type of parent we are inside (this is expensive) */
831 parent = fdt_parent_offset(blob, node);
832 if (parent < 0) {
833 debug("%s: Cannot find node parent\n", __func__);
834 return -1;
835 }
836
837 dev = &static_dev;
838 dev->node = node;
839 dev->parent_node = parent;
840
841 compat = fdtdec_lookup(blob, parent);
842 switch (compat) {
843#ifdef CONFIG_CROS_EC_SPI
844 case COMPAT_SAMSUNG_EXYNOS_SPI:
845 dev->interface = CROS_EC_IF_SPI;
846 if (cros_ec_spi_decode_fdt(dev, blob))
847 return -1;
848 break;
849#endif
850#ifdef CONFIG_CROS_EC_I2C
851 case COMPAT_SAMSUNG_S3C2440_I2C:
852 dev->interface = CROS_EC_IF_I2C;
853 if (cros_ec_i2c_decode_fdt(dev, blob))
854 return -1;
855 break;
856#endif
857#ifdef CONFIG_CROS_EC_LPC
858 case COMPAT_INTEL_LPC:
859 dev->interface = CROS_EC_IF_LPC;
860 break;
861#endif
862 default:
863 debug("%s: Unknown compat id %d\n", __func__, compat);
864 return -1;
865 }
866
867 fdtdec_decode_gpio(blob, node, "ec-interrupt", &dev->ec_int);
868 dev->optimise_flash_write = fdtdec_get_bool(blob, node,
869 "optimise-flash-write");
870 *devp = dev;
871
872 return 0;
873}
874
875int cros_ec_init(const void *blob, struct cros_ec_dev **cros_ecp)
876{
877 char id[MSG_BYTES];
878 struct cros_ec_dev *dev;
879 int node = 0;
880
881 *cros_ecp = NULL;
882 do {
883 node = fdtdec_next_compatible(blob, node,
884 COMPAT_GOOGLE_CROS_EC);
885 if (node < 0) {
886 debug("%s: Node not found\n", __func__);
887 return 0;
888 }
889 } while (!fdtdec_get_is_enabled(blob, node));
890
891 if (cros_ec_decode_fdt(blob, node, &dev)) {
892 debug("%s: Failed to decode device.\n", __func__);
893 return -CROS_EC_ERR_FDT_DECODE;
894 }
895
896 switch (dev->interface) {
897#ifdef CONFIG_CROS_EC_SPI
898 case CROS_EC_IF_SPI:
899 if (cros_ec_spi_init(dev, blob)) {
900 debug("%s: Could not setup SPI interface\n", __func__);
901 return -CROS_EC_ERR_DEV_INIT;
902 }
903 break;
904#endif
905#ifdef CONFIG_CROS_EC_I2C
906 case CROS_EC_IF_I2C:
907 if (cros_ec_i2c_init(dev, blob))
908 return -CROS_EC_ERR_DEV_INIT;
909 break;
910#endif
911#ifdef CONFIG_CROS_EC_LPC
912 case CROS_EC_IF_LPC:
913 if (cros_ec_lpc_init(dev, blob))
914 return -CROS_EC_ERR_DEV_INIT;
915 break;
916#endif
917 case CROS_EC_IF_NONE:
918 default:
919 return 0;
920 }
921
922 /* we will poll the EC interrupt line */
923 fdtdec_setup_gpio(&dev->ec_int);
924 if (fdt_gpio_isvalid(&dev->ec_int))
925 gpio_direction_input(dev->ec_int.gpio);
926
927 if (cros_ec_check_version(dev)) {
928 debug("%s: Could not detect CROS-EC version\n", __func__);
929 return -CROS_EC_ERR_CHECK_VERSION;
930 }
931
932 if (cros_ec_read_id(dev, id, sizeof(id))) {
933 debug("%s: Could not read KBC ID\n", __func__);
934 return -CROS_EC_ERR_READ_ID;
935 }
936
937 /* Remember this device for use by the cros_ec command */
938 last_dev = *cros_ecp = dev;
939 debug("Google Chrome EC CROS-EC driver ready, id '%s'\n", id);
940
941 return 0;
942}
943
944#ifdef CONFIG_CMD_CROS_EC
945int cros_ec_decode_region(int argc, char * const argv[])
946{
947 if (argc > 0) {
948 if (0 == strcmp(*argv, "rw"))
949 return EC_FLASH_REGION_RW;
950 else if (0 == strcmp(*argv, "ro"))
951 return EC_FLASH_REGION_RO;
952
953 debug("%s: Invalid region '%s'\n", __func__, *argv);
954 } else {
955 debug("%s: Missing region parameter\n", __func__);
956 }
957
958 return -1;
959}
960
961/**
962 * Perform a flash read or write command
963 *
964 * @param dev CROS-EC device to read/write
965 * @param is_write 1 do to a write, 0 to do a read
966 * @param argc Number of arguments
967 * @param argv Arguments (2 is region, 3 is address)
968 * @return 0 for ok, 1 for a usage error or -ve for ec command error
969 * (negative EC_RES_...)
970 */
971static int do_read_write(struct cros_ec_dev *dev, int is_write, int argc,
972 char * const argv[])
973{
974 uint32_t offset, size = -1U, region_size;
975 unsigned long addr;
976 char *endp;
977 int region;
978 int ret;
979
980 region = cros_ec_decode_region(argc - 2, argv + 2);
981 if (region == -1)
982 return 1;
983 if (argc < 4)
984 return 1;
985 addr = simple_strtoul(argv[3], &endp, 16);
986 if (*argv[3] == 0 || *endp != 0)
987 return 1;
988 if (argc > 4) {
989 size = simple_strtoul(argv[4], &endp, 16);
990 if (*argv[4] == 0 || *endp != 0)
991 return 1;
992 }
993
994 ret = cros_ec_flash_offset(dev, region, &offset, &region_size);
995 if (ret) {
996 debug("%s: Could not read region info\n", __func__);
997 return ret;
998 }
999 if (size == -1U)
1000 size = region_size;
1001
1002 ret = is_write ?
1003 cros_ec_flash_write(dev, (uint8_t *)addr, offset, size) :
1004 cros_ec_flash_read(dev, (uint8_t *)addr, offset, size);
1005 if (ret) {
1006 debug("%s: Could not %s region\n", __func__,
1007 is_write ? "write" : "read");
1008 return ret;
1009 }
1010
1011 return 0;
1012}
1013
1014static int do_cros_ec(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
1015{
1016 struct cros_ec_dev *dev = last_dev;
1017 const char *cmd;
1018 int ret = 0;
1019
1020 if (argc < 2)
1021 return CMD_RET_USAGE;
1022
1023 cmd = argv[1];
1024 if (0 == strcmp("init", cmd)) {
1025 ret = cros_ec_init(gd->fdt_blob, &dev);
1026 if (ret) {
1027 printf("Could not init cros_ec device (err %d)\n", ret);
1028 return 1;
1029 }
1030 return 0;
1031 }
1032
1033 /* Just use the last allocated device; there should be only one */
1034 if (!last_dev) {
1035 printf("No CROS-EC device available\n");
1036 return 1;
1037 }
1038 if (0 == strcmp("id", cmd)) {
1039 char id[MSG_BYTES];
1040
1041 if (cros_ec_read_id(dev, id, sizeof(id))) {
1042 debug("%s: Could not read KBC ID\n", __func__);
1043 return 1;
1044 }
1045 printf("%s\n", id);
1046 } else if (0 == strcmp("info", cmd)) {
1047 struct ec_response_cros_ec_info info;
1048
1049 if (cros_ec_info(dev, &info)) {
1050 debug("%s: Could not read KBC info\n", __func__);
1051 return 1;
1052 }
1053 printf("rows = %u\n", info.rows);
1054 printf("cols = %u\n", info.cols);
1055 printf("switches = %#x\n", info.switches);
1056 } else if (0 == strcmp("curimage", cmd)) {
1057 enum ec_current_image image;
1058
1059 if (cros_ec_read_current_image(dev, &image)) {
1060 debug("%s: Could not read KBC image\n", __func__);
1061 return 1;
1062 }
1063 printf("%d\n", image);
1064 } else if (0 == strcmp("hash", cmd)) {
1065 struct ec_response_vboot_hash hash;
1066 int i;
1067
1068 if (cros_ec_read_hash(dev, &hash)) {
1069 debug("%s: Could not read KBC hash\n", __func__);
1070 return 1;
1071 }
1072
1073 if (hash.hash_type == EC_VBOOT_HASH_TYPE_SHA256)
1074 printf("type: SHA-256\n");
1075 else
1076 printf("type: %d\n", hash.hash_type);
1077
1078 printf("offset: 0x%08x\n", hash.offset);
1079 printf("size: 0x%08x\n", hash.size);
1080
1081 printf("digest: ");
1082 for (i = 0; i < hash.digest_size; i++)
1083 printf("%02x", hash.hash_digest[i]);
1084 printf("\n");
1085 } else if (0 == strcmp("reboot", cmd)) {
1086 int region;
1087 enum ec_reboot_cmd cmd;
1088
1089 if (argc >= 3 && !strcmp(argv[2], "cold"))
1090 cmd = EC_REBOOT_COLD;
1091 else {
1092 region = cros_ec_decode_region(argc - 2, argv + 2);
1093 if (region == EC_FLASH_REGION_RO)
1094 cmd = EC_REBOOT_JUMP_RO;
1095 else if (region == EC_FLASH_REGION_RW)
1096 cmd = EC_REBOOT_JUMP_RW;
1097 else
1098 return CMD_RET_USAGE;
1099 }
1100
1101 if (cros_ec_reboot(dev, cmd, 0)) {
1102 debug("%s: Could not reboot KBC\n", __func__);
1103 return 1;
1104 }
1105 } else if (0 == strcmp("events", cmd)) {
1106 uint32_t events;
1107
1108 if (cros_ec_get_host_events(dev, &events)) {
1109 debug("%s: Could not read host events\n", __func__);
1110 return 1;
1111 }
1112 printf("0x%08x\n", events);
1113 } else if (0 == strcmp("clrevents", cmd)) {
1114 uint32_t events = 0x7fffffff;
1115
1116 if (argc >= 3)
1117 events = simple_strtol(argv[2], NULL, 0);
1118
1119 if (cros_ec_clear_host_events(dev, events)) {
1120 debug("%s: Could not clear host events\n", __func__);
1121 return 1;
1122 }
1123 } else if (0 == strcmp("read", cmd)) {
1124 ret = do_read_write(dev, 0, argc, argv);
1125 if (ret > 0)
1126 return CMD_RET_USAGE;
1127 } else if (0 == strcmp("write", cmd)) {
1128 ret = do_read_write(dev, 1, argc, argv);
1129 if (ret > 0)
1130 return CMD_RET_USAGE;
1131 } else if (0 == strcmp("erase", cmd)) {
1132 int region = cros_ec_decode_region(argc - 2, argv + 2);
1133 uint32_t offset, size;
1134
1135 if (region == -1)
1136 return CMD_RET_USAGE;
1137 if (cros_ec_flash_offset(dev, region, &offset, &size)) {
1138 debug("%s: Could not read region info\n", __func__);
1139 ret = -1;
1140 } else {
1141 ret = cros_ec_flash_erase(dev, offset, size);
1142 if (ret) {
1143 debug("%s: Could not erase region\n",
1144 __func__);
1145 }
1146 }
1147 } else if (0 == strcmp("regioninfo", cmd)) {
1148 int region = cros_ec_decode_region(argc - 2, argv + 2);
1149 uint32_t offset, size;
1150
1151 if (region == -1)
1152 return CMD_RET_USAGE;
1153 ret = cros_ec_flash_offset(dev, region, &offset, &size);
1154 if (ret) {
1155 debug("%s: Could not read region info\n", __func__);
1156 } else {
1157 printf("Region: %s\n", region == EC_FLASH_REGION_RO ?
1158 "RO" : "RW");
1159 printf("Offset: %x\n", offset);
1160 printf("Size: %x\n", size);
1161 }
1162 } else if (0 == strcmp("vbnvcontext", cmd)) {
1163 uint8_t block[EC_VBNV_BLOCK_SIZE];
1164 char buf[3];
1165 int i, len;
1166 unsigned long result;
1167
1168 if (argc <= 2) {
1169 ret = cros_ec_read_vbnvcontext(dev, block);
1170 if (!ret) {
1171 printf("vbnv_block: ");
1172 for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++)
1173 printf("%02x", block[i]);
1174 putc('\n');
1175 }
1176 } else {
1177 /*
1178 * TODO(clchiou): Move this to a utility function as
1179 * cmd_spi might want to call it.
1180 */
1181 memset(block, 0, EC_VBNV_BLOCK_SIZE);
1182 len = strlen(argv[2]);
1183 buf[2] = '\0';
1184 for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++) {
1185 if (i * 2 >= len)
1186 break;
1187 buf[0] = argv[2][i * 2];
1188 if (i * 2 + 1 >= len)
1189 buf[1] = '0';
1190 else
1191 buf[1] = argv[2][i * 2 + 1];
1192 strict_strtoul(buf, 16, &result);
1193 block[i] = result;
1194 }
1195 ret = cros_ec_write_vbnvcontext(dev, block);
1196 }
1197 if (ret) {
1198 debug("%s: Could not %s VbNvContext\n", __func__,
1199 argc <= 2 ? "read" : "write");
1200 }
1201 } else if (0 == strcmp("test", cmd)) {
1202 int result = cros_ec_test(dev);
1203
1204 if (result)
1205 printf("Test failed with error %d\n", result);
1206 else
1207 puts("Test passed\n");
1208 } else if (0 == strcmp("version", cmd)) {
1209 struct ec_response_get_version *p;
1210 char *build_string;
1211
1212 ret = cros_ec_read_version(dev, &p);
1213 if (!ret) {
1214 /* Print versions */
1215 printf("RO version: %1.*s\n",
1216 sizeof(p->version_string_ro),
1217 p->version_string_ro);
1218 printf("RW version: %1.*s\n",
1219 sizeof(p->version_string_rw),
1220 p->version_string_rw);
1221 printf("Firmware copy: %s\n",
1222 (p->current_image <
1223 ARRAY_SIZE(ec_current_image_name) ?
1224 ec_current_image_name[p->current_image] :
1225 "?"));
1226 ret = cros_ec_read_build_info(dev, &build_string);
1227 if (!ret)
1228 printf("Build info: %s\n", build_string);
1229 }
1230 } else if (0 == strcmp("ldo", cmd)) {
1231 uint8_t index, state;
1232 char *endp;
1233
1234 if (argc < 3)
1235 return CMD_RET_USAGE;
1236 index = simple_strtoul(argv[2], &endp, 10);
1237 if (*argv[2] == 0 || *endp != 0)
1238 return CMD_RET_USAGE;
1239 if (argc > 3) {
1240 state = simple_strtoul(argv[3], &endp, 10);
1241 if (*argv[3] == 0 || *endp != 0)
1242 return CMD_RET_USAGE;
1243 ret = cros_ec_set_ldo(dev, index, state);
1244 } else {
1245 ret = cros_ec_get_ldo(dev, index, &state);
1246 if (!ret) {
1247 printf("LDO%d: %s\n", index,
1248 state == EC_LDO_STATE_ON ?
1249 "on" : "off");
1250 }
1251 }
1252
1253 if (ret) {
1254 debug("%s: Could not access LDO%d\n", __func__, index);
1255 return ret;
1256 }
1257 } else {
1258 return CMD_RET_USAGE;
1259 }
1260
1261 if (ret < 0) {
1262 printf("Error: CROS-EC command failed (error %d)\n", ret);
1263 ret = 1;
1264 }
1265
1266 return ret;
1267}
1268
1269U_BOOT_CMD(
1270 crosec, 5, 1, do_cros_ec,
1271 "CROS-EC utility command",
1272 "init Re-init CROS-EC (done on startup automatically)\n"
1273 "crosec id Read CROS-EC ID\n"
1274 "crosec info Read CROS-EC info\n"
1275 "crosec curimage Read CROS-EC current image\n"
1276 "crosec hash Read CROS-EC hash\n"
1277 "crosec reboot [rw | ro | cold] Reboot CROS-EC\n"
1278 "crosec events Read CROS-EC host events\n"
1279 "crosec clrevents [mask] Clear CROS-EC host events\n"
1280 "crosec regioninfo <ro|rw> Read image info\n"
1281 "crosec erase <ro|rw> Erase EC image\n"
1282 "crosec read <ro|rw> <addr> [<size>] Read EC image\n"
1283 "crosec write <ro|rw> <addr> [<size>] Write EC image\n"
1284 "crosec vbnvcontext [hexstring] Read [write] VbNvContext from EC\n"
1285 "crosec ldo <idx> [<state>] Switch/Read LDO state\n"
1286 "crosec test run tests on cros_ec\n"
1287 "crosec version Read CROS-EC version"
1288);
1289#endif