blob: e1147c00974cbbf4aff5a5b9cc3f62410bd8ec2d [file] [log] [blame]
wdenkc6097192002-11-03 00:24:07 +00001/*
2 * See file CREDITS for list of people who contributed to this
3 * project.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation; either version 2 of
8 * the License, or (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
18 * MA 02111-1307 USA
19 */
20
21#include <common.h>
22
23#if (CONFIG_COMMANDS & CFG_CMD_NET) && defined(CONFIG_NET_MULTI) \
24 && defined(CONFIG_TULIP)
25
26#include <malloc.h>
27#include <net.h>
28#include <pci.h>
29
30#undef DEBUG
31#undef DEBUG_SROM
32#undef DEBUG_SROM2
33
34#undef UPDATE_SROM
35
36/* PCI Registers.
37 */
38#define PCI_CFDA_PSM 0x43
39
40#define CFRV_RN 0x000000f0 /* Revision Number */
41
42#define WAKEUP 0x00 /* Power Saving Wakeup */
43#define SLEEP 0x80 /* Power Saving Sleep Mode */
44
45#define DC2114x_BRK 0x0020 /* CFRV break between DC21142 & DC21143 */
46
47/* Ethernet chip registers.
48 */
49#define DE4X5_BMR 0x000 /* Bus Mode Register */
50#define DE4X5_TPD 0x008 /* Transmit Poll Demand Reg */
51#define DE4X5_RRBA 0x018 /* RX Ring Base Address Reg */
52#define DE4X5_TRBA 0x020 /* TX Ring Base Address Reg */
53#define DE4X5_STS 0x028 /* Status Register */
54#define DE4X5_OMR 0x030 /* Operation Mode Register */
55#define DE4X5_SICR 0x068 /* SIA Connectivity Register */
56#define DE4X5_APROM 0x048 /* Ethernet Address PROM */
57
58/* Register bits.
59 */
60#define BMR_SWR 0x00000001 /* Software Reset */
61#define STS_TS 0x00700000 /* Transmit Process State */
62#define STS_RS 0x000e0000 /* Receive Process State */
63#define OMR_ST 0x00002000 /* Start/Stop Transmission Command */
64#define OMR_SR 0x00000002 /* Start/Stop Receive */
65#define OMR_PS 0x00040000 /* Port Select */
66#define OMR_SDP 0x02000000 /* SD Polarity - MUST BE ASSERTED */
67#define OMR_PM 0x00000080 /* Pass All Multicast */
68
69/* Descriptor bits.
70 */
71#define R_OWN 0x80000000 /* Own Bit */
72#define RD_RER 0x02000000 /* Receive End Of Ring */
73#define RD_LS 0x00000100 /* Last Descriptor */
74#define RD_ES 0x00008000 /* Error Summary */
75#define TD_TER 0x02000000 /* Transmit End Of Ring */
76#define T_OWN 0x80000000 /* Own Bit */
77#define TD_LS 0x40000000 /* Last Segment */
78#define TD_FS 0x20000000 /* First Segment */
79#define TD_ES 0x00008000 /* Error Summary */
80#define TD_SET 0x08000000 /* Setup Packet */
81
82/* The EEPROM commands include the alway-set leading bit. */
83#define SROM_WRITE_CMD 5
84#define SROM_READ_CMD 6
85#define SROM_ERASE_CMD 7
86
87#define SROM_HWADD 0x0014 /* Hardware Address offset in SROM */
88#define SROM_RD 0x00004000 /* Read from Boot ROM */
89#define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
90#define EE_WRITE_0 0x4801
91#define EE_WRITE_1 0x4805
92#define EE_DATA_READ 0x08 /* EEPROM chip data out. */
93#define SROM_SR 0x00000800 /* Select Serial ROM when set */
94
95#define DT_IN 0x00000004 /* Serial Data In */
96#define DT_CLK 0x00000002 /* Serial ROM Clock */
97#define DT_CS 0x00000001 /* Serial ROM Chip Select */
98
99#define POLL_DEMAND 1
100
101#define RESET_DE4X5(dev) {\
102 int i;\
103 i=INL(dev, DE4X5_BMR);\
104 udelay(1000);\
105 OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
106 udelay(1000);\
107 OUTL(dev, i, DE4X5_BMR);\
108 udelay(1000);\
109 for (i=0;i<5;i++) {INL(dev, DE4X5_BMR); udelay(10000);}\
110 udelay(1000);\
111}
112
113#define START_DE4X5(dev) {\
114 s32 omr; \
115 omr = INL(dev, DE4X5_OMR);\
116 omr |= OMR_ST | OMR_SR;\
117 OUTL(dev, omr, DE4X5_OMR); /* Enable the TX and/or RX */\
118}
119
120#define STOP_DE4X5(dev) {\
121 s32 omr; \
122 omr = INL(dev, DE4X5_OMR);\
123 omr &= ~(OMR_ST|OMR_SR);\
124 OUTL(dev, omr, DE4X5_OMR); /* Disable the TX and/or RX */ \
125}
126
127#define NUM_RX_DESC PKTBUFSRX
128#define NUM_TX_DESC 1 /* Number of TX descriptors */
129#define RX_BUFF_SZ PKTSIZE_ALIGN
130
131#define TOUT_LOOP 1000000
132
133#define SETUP_FRAME_LEN 192
134#define ETH_ALEN 6
135
136
137struct de4x5_desc {
138 volatile s32 status;
139 u32 des1;
140 u32 buf;
141 u32 next;
142};
143
144static struct de4x5_desc rx_ring[NUM_RX_DESC]; /* RX descriptor ring */
145static struct de4x5_desc tx_ring[NUM_TX_DESC]; /* TX descriptor ring */
146static int rx_new; /* RX descriptor ring pointer */
147static int tx_new; /* TX descriptor ring pointer */
148
149static char rxRingSize;
150static char txRingSize;
151
152static void sendto_srom(struct eth_device* dev, u_int command, u_long addr);
153static int getfrom_srom(struct eth_device* dev, u_long addr);
154static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr, int cmd, int cmd_len);
155static int do_read_eeprom(struct eth_device *dev, u_long ioaddr, int location, int addr_len);
156static int read_srom(struct eth_device *dev, u_long ioaddr, int index);
157#ifdef UPDATE_SROM
158static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value);
159static void update_srom(struct eth_device *dev, bd_t *bis);
160#endif
161static void read_hw_addr(struct eth_device* dev, bd_t * bis);
162static void send_setup_frame(struct eth_device* dev, bd_t * bis);
163
164static int dc21x4x_init(struct eth_device* dev, bd_t* bis);
165static int dc21x4x_send(struct eth_device* dev, volatile void *packet, int length);
166static int dc21x4x_recv(struct eth_device* dev);
167static void dc21x4x_halt(struct eth_device* dev);
168#ifdef CONFIG_TULIP_SELECT_MEDIA
169extern void dc21x4x_select_media(struct eth_device* dev);
170#endif
171
172#define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a)
173
174static int INL(struct eth_device* dev, u_long addr)
175{
176 return le32_to_cpu(*(volatile u_long *)(addr + dev->iobase));
177}
178
179static void OUTL(struct eth_device* dev, int command, u_long addr)
180{
181 *(volatile u_long *)(addr + dev->iobase) = cpu_to_le32(command);
182}
183
184static struct pci_device_id supported[] = {
185 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST },
186 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142 },
187 { }
188};
189
190int dc21x4x_initialize(bd_t *bis)
191{
192 int idx=0;
193 int card_number = 0;
194 int cfrv;
195 unsigned char timer;
196 pci_dev_t devbusfn;
197 unsigned int iobase;
198 unsigned short status;
199 struct eth_device* dev;
200
201 while(1) {
202 devbusfn = pci_find_devices(supported, idx++);
203 if (devbusfn == -1) {
204 break;
205 }
206
207 /* Get the chip configuration revision register. */
208 pci_read_config_dword(devbusfn, PCI_REVISION_ID, &cfrv);
209
210 if ((cfrv & CFRV_RN) < DC2114x_BRK ) {
211 printf("Error: The chip is not DC21143.\n");
212 continue;
213 }
214
215 pci_read_config_word(devbusfn, PCI_COMMAND, &status);
216 status |=
217#ifdef CONFIG_TULIP_USE_IO
218 PCI_COMMAND_IO |
219#else
220 PCI_COMMAND_MEMORY |
221#endif
222 PCI_COMMAND_MASTER;
223 pci_write_config_word(devbusfn, PCI_COMMAND, status);
224
225 pci_read_config_word(devbusfn, PCI_COMMAND, &status);
226 if (!(status & PCI_COMMAND_IO)) {
227 printf("Error: Can not enable I/O access.\n");
228 continue;
229 }
230
231 if (!(status & PCI_COMMAND_IO)) {
232 printf("Error: Can not enable I/O access.\n");
233 continue;
234 }
235
236 if (!(status & PCI_COMMAND_MASTER)) {
237 printf("Error: Can not enable Bus Mastering.\n");
238 continue;
239 }
240
241 /* Check the latency timer for values >= 0x60. */
242 pci_read_config_byte(devbusfn, PCI_LATENCY_TIMER, &timer);
243
244 if (timer < 0x60) {
245 pci_write_config_byte(devbusfn, PCI_LATENCY_TIMER, 0x60);
246 }
247
248#ifdef CONFIG_TULIP_USE_IO
249 /* read BAR for memory space access */
250 pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_0, &iobase);
251 iobase &= PCI_BASE_ADDRESS_IO_MASK;
252#else
253 /* read BAR for memory space access */
254 pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_1, &iobase);
255 iobase &= PCI_BASE_ADDRESS_MEM_MASK;
256#endif
257
258#ifdef DEBUG
259 printf("dc21x4x: DEC 21142 PCI Device @0x%x\n", iobase);
260#endif
261
262 dev = (struct eth_device*) malloc(sizeof *dev);
263
264 sprintf(dev->name, "dc21x4x#%d", card_number);
265#ifdef CONFIG_TULIP_USE_IO
266 dev->iobase = pci_io_to_phys(devbusfn, iobase);
267#else
268 dev->iobase = pci_mem_to_phys(devbusfn, iobase);
269#endif
270 dev->priv = (void*) devbusfn;
271 dev->init = dc21x4x_init;
272 dev->halt = dc21x4x_halt;
273 dev->send = dc21x4x_send;
274 dev->recv = dc21x4x_recv;
275
276 /* Ensure we're not sleeping. */
277 pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
278
279 udelay(10 * 1000);
280
281 read_hw_addr(dev, bis);
282
283 eth_register(dev);
284
285 card_number++;
286 }
287
288 return card_number;
289}
290
291static int dc21x4x_init(struct eth_device* dev, bd_t* bis)
292{
293 int i;
294 int devbusfn = (int) dev->priv;
295
296 /* Ensure we're not sleeping. */
297 pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
298
299 RESET_DE4X5(dev);
300
301 if ((INL(dev, DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
302 printf("Error: Cannot reset ethernet controller.\n");
303 return 0;
304 }
305
306#ifdef CONFIG_TULIP_SELECT_MEDIA
307 dc21x4x_select_media(dev);
308#else
309 OUTL(dev, OMR_SDP | OMR_PS | OMR_PM, DE4X5_OMR);
310#endif
311
312 for (i = 0; i < NUM_RX_DESC; i++) {
313 rx_ring[i].status = cpu_to_le32(R_OWN);
314 rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
315 rx_ring[i].buf = cpu_to_le32(phys_to_bus((u32) NetRxPackets[i]));
316 rx_ring[i].next = 0;
317 }
318
319 for (i=0; i < NUM_TX_DESC; i++) {
320 tx_ring[i].status = 0;
321 tx_ring[i].des1 = 0;
322 tx_ring[i].buf = 0;
323 tx_ring[i].next = 0;
324 }
325
326 rxRingSize = NUM_RX_DESC;
327 txRingSize = NUM_TX_DESC;
328
329 /* Write the end of list marker to the descriptor lists. */
330 rx_ring[rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
331 tx_ring[txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
332
333 /* Tell the adapter where the TX/RX rings are located. */
334 OUTL(dev, phys_to_bus((u32) &rx_ring), DE4X5_RRBA);
335 OUTL(dev, phys_to_bus((u32) &tx_ring), DE4X5_TRBA);
336
337 START_DE4X5(dev);
338
339 tx_new = 0;
340 rx_new = 0;
341
342 send_setup_frame(dev, bis);
343
344 return 1;
345}
346
347static int dc21x4x_send(struct eth_device* dev, volatile void *packet, int length)
348{
349 int status = -1;
350 int i;
351
352 if (length <= 0) {
353 printf("%s: bad packet size: %d\n", dev->name, length);
354 goto Done;
355 }
356
357 for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
358 if (i >= TOUT_LOOP) {
359 printf("%s: tx error buffer not ready\n", dev->name);
360 goto Done;
361 }
362 }
363
364 tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) packet));
365 tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_LS | TD_FS | length);
366 tx_ring[tx_new].status = cpu_to_le32(T_OWN);
367
368 OUTL(dev, POLL_DEMAND, DE4X5_TPD);
369
370 for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
371 if (i >= TOUT_LOOP) {
372 printf(".%s: tx buffer not ready\n", dev->name);
373 goto Done;
374 }
375 }
376
377 if (le32_to_cpu(tx_ring[tx_new].status) & TD_ES) {
378#if 0 /* test-only */
379 printf("TX error status = 0x%08X\n",
380 le32_to_cpu(tx_ring[tx_new].status));
381#endif
382 goto Done;
383 }
384
385 status = length;
386
387 Done:
388 return status;
389}
390
391static int dc21x4x_recv(struct eth_device* dev)
392{
393 s32 status;
394 int length = 0;
395
396 for ( ; ; ) {
397 status = (s32)le32_to_cpu(rx_ring[rx_new].status);
398
399 if (status & R_OWN) {
400 break;
401 }
402
403 if (status & RD_LS) {
404 /* Valid frame status.
405 */
406 if (status & RD_ES) {
407
408 /* There was an error.
409 */
410 printf("RX error status = 0x%08X\n", status);
411 } else {
412 /* A valid frame received.
413 */
414 length = (le32_to_cpu(rx_ring[rx_new].status) >> 16);
415
416 /* Pass the packet up to the protocol
417 * layers.
418 */
419 NetReceive(NetRxPackets[rx_new], length - 4);
420 }
421
422 /* Change buffer ownership for this frame, back
423 * to the adapter.
424 */
425 rx_ring[rx_new].status = cpu_to_le32(R_OWN);
426 }
427
428 /* Update entry information.
429 */
430 rx_new = (rx_new + 1) % rxRingSize;
431 }
432
433 return length;
434}
435
436static void dc21x4x_halt(struct eth_device* dev)
437{
438 int devbusfn = (int) dev->priv;
439
440 STOP_DE4X5(dev);
441 OUTL(dev, 0, DE4X5_SICR);
442
443 pci_write_config_byte(devbusfn, PCI_CFDA_PSM, SLEEP);
444}
445
446static void send_setup_frame(struct eth_device* dev, bd_t *bis)
447{
448 int i;
449 char setup_frame[SETUP_FRAME_LEN];
450 char *pa = &setup_frame[0];
451
452 memset(pa, 0xff, SETUP_FRAME_LEN);
453
454 for (i = 0; i < ETH_ALEN; i++) {
455 *(pa + (i & 1)) = dev->enetaddr[i];
456 if (i & 0x01) {
457 pa += 4;
458 }
459 }
460
461 for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
462 if (i >= TOUT_LOOP) {
463 printf("%s: tx error buffer not ready\n", dev->name);
464 goto Done;
465 }
466 }
467
468 tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) &setup_frame[0]));
469 tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_SET| SETUP_FRAME_LEN);
470 tx_ring[tx_new].status = cpu_to_le32(T_OWN);
471
472 OUTL(dev, POLL_DEMAND, DE4X5_TPD);
473
474 for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
475 if (i >= TOUT_LOOP) {
476 printf("%s: tx buffer not ready\n", dev->name);
477 goto Done;
478 }
479 }
480
481 if (le32_to_cpu(tx_ring[tx_new].status) != 0x7FFFFFFF) {
482 printf("TX error status2 = 0x%08X\n", le32_to_cpu(tx_ring[tx_new].status));
483 }
484Done:
485 return;
486}
487
488/* SROM Read and write routines.
489 */
490
491static void
492sendto_srom(struct eth_device* dev, u_int command, u_long addr)
493{
494 OUTL(dev, command, addr);
495 udelay(1);
496}
497
498static int
499getfrom_srom(struct eth_device* dev, u_long addr)
500{
501 s32 tmp;
502
503 tmp = INL(dev, addr);
504 udelay(1);
505
506 return tmp;
507}
508
509/* Note: this routine returns extra data bits for size detection. */
510static int do_read_eeprom(struct eth_device *dev, u_long ioaddr, int location, int addr_len)
511{
512 int i;
513 unsigned retval = 0;
514 int read_cmd = location | (SROM_READ_CMD << addr_len);
515
516 sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
517 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
518
519#ifdef DEBUG_SROM
520 printf(" EEPROM read at %d ", location);
521#endif
522
523 /* Shift the read command bits out. */
524 for (i = 4 + addr_len; i >= 0; i--) {
525 short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
526 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval, ioaddr);
527 udelay(10);
528 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval | DT_CLK, ioaddr);
529 udelay(10);
530#ifdef DEBUG_SROM2
531 printf("%X", getfrom_srom(dev, ioaddr) & 15);
532#endif
533 retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
534 }
535
536 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
537
538#ifdef DEBUG_SROM2
539 printf(" :%X:", getfrom_srom(dev, ioaddr) & 15);
540#endif
541
542 for (i = 16; i > 0; i--) {
543 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
544 udelay(10);
545#ifdef DEBUG_SROM2
546 printf("%X", getfrom_srom(dev, ioaddr) & 15);
547#endif
548 retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
549 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
550 udelay(10);
551 }
552
553 /* Terminate the EEPROM access. */
554 sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
555
556#ifdef DEBUG_SROM2
557 printf(" EEPROM value at %d is %5.5x.\n", location, retval);
558#endif
559
560 return retval;
561}
562
563/* This executes a generic EEPROM command, typically a write or write enable.
564 It returns the data output from the EEPROM, and thus may also be used for
565 reads. */
566static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr, int cmd, int cmd_len)
567{
568 unsigned retval = 0;
569
570#ifdef DEBUG_SROM
571 printf(" EEPROM op 0x%x: ", cmd);
572#endif
573
574 sendto_srom(dev,SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
575
576 /* Shift the command bits out. */
577 do {
578 short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0;
579 sendto_srom(dev,dataval, ioaddr);
580 udelay(10);
581
582#ifdef DEBUG_SROM2
583 printf("%X", getfrom_srom(dev,ioaddr) & 15);
584#endif
585
586 sendto_srom(dev,dataval | DT_CLK, ioaddr);
587 udelay(10);
588 retval = (retval << 1) | ((getfrom_srom(dev,ioaddr) & EE_DATA_READ) ? 1 : 0);
589 } while (--cmd_len >= 0);
590 sendto_srom(dev,SROM_RD | SROM_SR | DT_CS, ioaddr);
591
592 /* Terminate the EEPROM access. */
593 sendto_srom(dev,SROM_RD | SROM_SR, ioaddr);
594
595#ifdef DEBUG_SROM
596 printf(" EEPROM result is 0x%5.5x.\n", retval);
597#endif
598
599 return retval;
600}
601
602static int read_srom(struct eth_device *dev, u_long ioaddr, int index)
603{
604 int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
605
606 return do_eeprom_cmd(dev, ioaddr,
607 (((SROM_READ_CMD << ee_addr_size) | index) << 16)
608 | 0xffff, 3 + ee_addr_size + 16);
609}
610
611#ifdef UPDATE_SROM
612static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value)
613{
614 int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
615 int i;
616 unsigned short newval;
617
618 udelay(10*1000); /* test-only */
619
620#ifdef DEBUG_SROM
621 printf("ee_addr_size=%d.\n", ee_addr_size);
622 printf("Writing new entry 0x%4.4x to offset %d.\n", new_value, index);
623#endif
624
625 /* Enable programming modes. */
626 do_eeprom_cmd(dev, ioaddr, (0x4f << (ee_addr_size-4)), 3+ee_addr_size);
627
628 /* Do the actual write. */
629 do_eeprom_cmd(dev, ioaddr,
630 (((SROM_WRITE_CMD<<ee_addr_size)|index) << 16) | new_value,
631 3 + ee_addr_size + 16);
632
633 /* Poll for write finished. */
634 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
635 for (i = 0; i < 10000; i++) /* Typical 2000 ticks */
636 if (getfrom_srom(dev, ioaddr) & EE_DATA_READ)
637 break;
638
639#ifdef DEBUG_SROM
640 printf(" Write finished after %d ticks.\n", i);
641#endif
642
643 /* Disable programming. */
644 do_eeprom_cmd(dev, ioaddr, (0x40 << (ee_addr_size-4)), 3 + ee_addr_size);
645
646 /* And read the result. */
647 newval = do_eeprom_cmd(dev, ioaddr,
648 (((SROM_READ_CMD<<ee_addr_size)|index) << 16)
649 | 0xffff, 3 + ee_addr_size + 16);
650#ifdef DEBUG_SROM
651 printf(" New value at offset %d is %4.4x.\n", index, newval);
652#endif
653 return 1;
654}
655#endif
656
657static void read_hw_addr(struct eth_device *dev, bd_t *bis)
658{
659 u_short tmp, *p = (short *)(&dev->enetaddr[0]);
660 int i, j = 0;
661
662 for (i = 0; i < (ETH_ALEN >> 1); i++) {
663 tmp = read_srom(dev, DE4X5_APROM, ((SROM_HWADD >> 1) + i));
664 *p = le16_to_cpu(tmp);
665 j += *p++;
666 }
667
668 if ((j == 0) || (j == 0x2fffd)) {
669 memset (dev->enetaddr, 0, ETH_ALEN);
670#ifdef DEBUG
671 printf("Warning: can't read HW address from SROM.\n");
672#endif
673 goto Done;
674 }
675
676 return;
677
678Done:
679#ifdef UPDATE_SROM
680 update_srom(dev, bis);
681#endif
682 return;
683}
684
685#ifdef UPDATE_SROM
686static void update_srom(struct eth_device *dev, bd_t *bis)
687{
688 int i;
689 static unsigned short eeprom[0x40] = {
690 0x140b, 0x6610, 0x0000, 0x0000, /* 00 */
691 0x0000, 0x0000, 0x0000, 0x0000, /* 04 */
692 0x00a3, 0x0103, 0x0000, 0x0000, /* 08 */
693 0x0000, 0x1f00, 0x0000, 0x0000, /* 0c */
694 0x0108, 0x038d, 0x0000, 0x0000, /* 10 */
695 0xe078, 0x0001, 0x0040, 0x0018, /* 14 */
696 0x0000, 0x0000, 0x0000, 0x0000, /* 18 */
697 0x0000, 0x0000, 0x0000, 0x0000, /* 1c */
698 0x0000, 0x0000, 0x0000, 0x0000, /* 20 */
699 0x0000, 0x0000, 0x0000, 0x0000, /* 24 */
700 0x0000, 0x0000, 0x0000, 0x0000, /* 28 */
701 0x0000, 0x0000, 0x0000, 0x0000, /* 2c */
702 0x0000, 0x0000, 0x0000, 0x0000, /* 30 */
703 0x0000, 0x0000, 0x0000, 0x0000, /* 34 */
704 0x0000, 0x0000, 0x0000, 0x0000, /* 38 */
705 0x0000, 0x0000, 0x0000, 0x4e07, /* 3c */
706 };
707
708 /* Ethernet Addr... */
709 eeprom[0x0a] = ((bis->bi_enetaddr[1] & 0xff) << 8) | (bis->bi_enetaddr[0] & 0xff);
710 eeprom[0x0b] = ((bis->bi_enetaddr[3] & 0xff) << 8) | (bis->bi_enetaddr[2] & 0xff);
711 eeprom[0x0c] = ((bis->bi_enetaddr[5] & 0xff) << 8) | (bis->bi_enetaddr[4] & 0xff);
712
713 for (i=0; i<0x40; i++)
714 {
715 write_srom(dev, DE4X5_APROM, i, eeprom[i]);
716 }
717}
718#endif
719
720#endif