blob: 9c9581105414fae8a2dc53f38a6dd5585446a838 [file] [log] [blame]
Marek Vasut0d4e8502011-11-08 23:18:16 +00001/*
2 * Freescale i.MX28 NAND flash driver
3 *
4 * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
5 * on behalf of DENX Software Engineering GmbH
6 *
7 * Based on code from LTIB:
8 * Freescale GPMI NFC NAND Flash Driver
9 *
10 * Copyright (C) 2010 Freescale Semiconductor, Inc.
11 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License along
24 * with this program; if not, write to the Free Software Foundation, Inc.,
25 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 */
27
28#include <linux/mtd/mtd.h>
29#include <linux/mtd/nand.h>
30#include <linux/types.h>
31#include <common.h>
32#include <malloc.h>
33#include <asm/errno.h>
34#include <asm/io.h>
35#include <asm/arch/clock.h>
36#include <asm/arch/imx-regs.h>
37#include <asm/arch/sys_proto.h>
38#include <asm/arch/dma.h>
39
40#define MXS_NAND_DMA_DESCRIPTOR_COUNT 4
41
42#define MXS_NAND_CHUNK_DATA_CHUNK_SIZE 512
43#define MXS_NAND_METADATA_SIZE 10
44
45#define MXS_NAND_COMMAND_BUFFER_SIZE 32
46
47#define MXS_NAND_BCH_TIMEOUT 10000
48
49struct mxs_nand_info {
50 int cur_chip;
51
52 uint32_t cmd_queue_len;
Marek Vasut6b9408e2012-03-15 18:33:19 +000053 uint32_t data_buf_size;
Marek Vasut0d4e8502011-11-08 23:18:16 +000054
55 uint8_t *cmd_buf;
56 uint8_t *data_buf;
57 uint8_t *oob_buf;
58
59 uint8_t marking_block_bad;
60 uint8_t raw_oob_mode;
61
62 /* Functions with altered behaviour */
63 int (*hooked_read_oob)(struct mtd_info *mtd,
64 loff_t from, struct mtd_oob_ops *ops);
65 int (*hooked_write_oob)(struct mtd_info *mtd,
66 loff_t to, struct mtd_oob_ops *ops);
67 int (*hooked_block_markbad)(struct mtd_info *mtd,
68 loff_t ofs);
69
70 /* DMA descriptors */
71 struct mxs_dma_desc **desc;
72 uint32_t desc_index;
73};
74
75struct nand_ecclayout fake_ecc_layout;
76
Marek Vasut6b9408e2012-03-15 18:33:19 +000077/*
78 * Cache management functions
79 */
80#ifndef CONFIG_SYS_DCACHE_OFF
81static void mxs_nand_flush_data_buf(struct mxs_nand_info *info)
82{
83 uint32_t addr = (uint32_t)info->data_buf;
84
85 flush_dcache_range(addr, addr + info->data_buf_size);
86}
87
88static void mxs_nand_inval_data_buf(struct mxs_nand_info *info)
89{
90 uint32_t addr = (uint32_t)info->data_buf;
91
92 invalidate_dcache_range(addr, addr + info->data_buf_size);
93}
94
95static void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info)
96{
97 uint32_t addr = (uint32_t)info->cmd_buf;
98
99 flush_dcache_range(addr, addr + MXS_NAND_COMMAND_BUFFER_SIZE);
100}
101#else
102static inline void mxs_nand_flush_data_buf(struct mxs_nand_info *info) {}
103static inline void mxs_nand_inval_data_buf(struct mxs_nand_info *info) {}
104static inline void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info) {}
105#endif
106
Marek Vasut0d4e8502011-11-08 23:18:16 +0000107static struct mxs_dma_desc *mxs_nand_get_dma_desc(struct mxs_nand_info *info)
108{
109 struct mxs_dma_desc *desc;
110
111 if (info->desc_index >= MXS_NAND_DMA_DESCRIPTOR_COUNT) {
112 printf("MXS NAND: Too many DMA descriptors requested\n");
113 return NULL;
114 }
115
116 desc = info->desc[info->desc_index];
117 info->desc_index++;
118
119 return desc;
120}
121
122static void mxs_nand_return_dma_descs(struct mxs_nand_info *info)
123{
124 int i;
125 struct mxs_dma_desc *desc;
126
127 for (i = 0; i < info->desc_index; i++) {
128 desc = info->desc[i];
129 memset(desc, 0, sizeof(struct mxs_dma_desc));
130 desc->address = (dma_addr_t)desc;
131 }
132
133 info->desc_index = 0;
134}
135
136static uint32_t mxs_nand_ecc_chunk_cnt(uint32_t page_data_size)
137{
138 return page_data_size / MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
139}
140
141static uint32_t mxs_nand_ecc_size_in_bits(uint32_t ecc_strength)
142{
143 return ecc_strength * 13;
144}
145
146static uint32_t mxs_nand_aux_status_offset(void)
147{
148 return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3;
149}
150
151static inline uint32_t mxs_nand_get_ecc_strength(uint32_t page_data_size,
152 uint32_t page_oob_size)
153{
154 if (page_data_size == 2048)
155 return 8;
156
157 if (page_data_size == 4096) {
158 if (page_oob_size == 128)
159 return 8;
160
161 if (page_oob_size == 218)
162 return 16;
163 }
164
165 return 0;
166}
167
168static inline uint32_t mxs_nand_get_mark_offset(uint32_t page_data_size,
169 uint32_t ecc_strength)
170{
171 uint32_t chunk_data_size_in_bits;
172 uint32_t chunk_ecc_size_in_bits;
173 uint32_t chunk_total_size_in_bits;
174 uint32_t block_mark_chunk_number;
175 uint32_t block_mark_chunk_bit_offset;
176 uint32_t block_mark_bit_offset;
177
178 chunk_data_size_in_bits = MXS_NAND_CHUNK_DATA_CHUNK_SIZE * 8;
179 chunk_ecc_size_in_bits = mxs_nand_ecc_size_in_bits(ecc_strength);
180
181 chunk_total_size_in_bits =
182 chunk_data_size_in_bits + chunk_ecc_size_in_bits;
183
184 /* Compute the bit offset of the block mark within the physical page. */
185 block_mark_bit_offset = page_data_size * 8;
186
187 /* Subtract the metadata bits. */
188 block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8;
189
190 /*
191 * Compute the chunk number (starting at zero) in which the block mark
192 * appears.
193 */
194 block_mark_chunk_number =
195 block_mark_bit_offset / chunk_total_size_in_bits;
196
197 /*
198 * Compute the bit offset of the block mark within its chunk, and
199 * validate it.
200 */
201 block_mark_chunk_bit_offset = block_mark_bit_offset -
202 (block_mark_chunk_number * chunk_total_size_in_bits);
203
204 if (block_mark_chunk_bit_offset > chunk_data_size_in_bits)
205 return 1;
206
207 /*
208 * Now that we know the chunk number in which the block mark appears,
209 * we can subtract all the ECC bits that appear before it.
210 */
211 block_mark_bit_offset -=
212 block_mark_chunk_number * chunk_ecc_size_in_bits;
213
214 return block_mark_bit_offset;
215}
216
217static uint32_t mxs_nand_mark_byte_offset(struct mtd_info *mtd)
218{
219 uint32_t ecc_strength;
220 ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
221 return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) >> 3;
222}
223
224static uint32_t mxs_nand_mark_bit_offset(struct mtd_info *mtd)
225{
226 uint32_t ecc_strength;
227 ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
228 return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) & 0x7;
229}
230
231/*
232 * Wait for BCH complete IRQ and clear the IRQ
233 */
234static int mxs_nand_wait_for_bch_complete(void)
235{
236 struct mx28_bch_regs *bch_regs = (struct mx28_bch_regs *)MXS_BCH_BASE;
237 int timeout = MXS_NAND_BCH_TIMEOUT;
238 int ret;
239
240 ret = mx28_wait_mask_set(&bch_regs->hw_bch_ctrl_reg,
241 BCH_CTRL_COMPLETE_IRQ, timeout);
242
243 writel(BCH_CTRL_COMPLETE_IRQ, &bch_regs->hw_bch_ctrl_clr);
244
245 return ret;
246}
247
248/*
249 * This is the function that we install in the cmd_ctrl function pointer of the
250 * owning struct nand_chip. The only functions in the reference implementation
251 * that use these functions pointers are cmdfunc and select_chip.
252 *
253 * In this driver, we implement our own select_chip, so this function will only
254 * be called by the reference implementation's cmdfunc. For this reason, we can
255 * ignore the chip enable bit and concentrate only on sending bytes to the NAND
256 * Flash.
257 */
258static void mxs_nand_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
259{
260 struct nand_chip *nand = mtd->priv;
261 struct mxs_nand_info *nand_info = nand->priv;
262 struct mxs_dma_desc *d;
263 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
264 int ret;
265
266 /*
267 * If this condition is true, something is _VERY_ wrong in MTD
268 * subsystem!
269 */
270 if (nand_info->cmd_queue_len == MXS_NAND_COMMAND_BUFFER_SIZE) {
271 printf("MXS NAND: Command queue too long\n");
272 return;
273 }
274
275 /*
276 * Every operation begins with a command byte and a series of zero or
277 * more address bytes. These are distinguished by either the Address
278 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
279 * asserted. When MTD is ready to execute the command, it will
280 * deasert both latch enables.
281 *
282 * Rather than run a separate DMA operation for every single byte, we
283 * queue them up and run a single DMA operation for the entire series
284 * of command and data bytes.
285 */
286 if (ctrl & (NAND_ALE | NAND_CLE)) {
287 if (data != NAND_CMD_NONE)
288 nand_info->cmd_buf[nand_info->cmd_queue_len++] = data;
289 return;
290 }
291
292 /*
293 * If control arrives here, MTD has deasserted both the ALE and CLE,
294 * which means it's ready to run an operation. Check if we have any
295 * bytes to send.
296 */
297 if (nand_info->cmd_queue_len == 0)
298 return;
299
300 /* Compile the DMA descriptor -- a descriptor that sends command. */
301 d = mxs_nand_get_dma_desc(nand_info);
302 d->cmd.data =
303 MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
304 MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_DEC_SEM |
305 MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
306 (nand_info->cmd_queue_len << MXS_DMA_DESC_BYTES_OFFSET);
307
308 d->cmd.address = (dma_addr_t)nand_info->cmd_buf;
309
310 d->cmd.pio_words[0] =
311 GPMI_CTRL0_COMMAND_MODE_WRITE |
312 GPMI_CTRL0_WORD_LENGTH |
313 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
314 GPMI_CTRL0_ADDRESS_NAND_CLE |
315 GPMI_CTRL0_ADDRESS_INCREMENT |
316 nand_info->cmd_queue_len;
317
318 mxs_dma_desc_append(channel, d);
319
Marek Vasut6b9408e2012-03-15 18:33:19 +0000320 /* Flush caches */
321 mxs_nand_flush_cmd_buf(nand_info);
322
Marek Vasut0d4e8502011-11-08 23:18:16 +0000323 /* Execute the DMA chain. */
324 ret = mxs_dma_go(channel);
325 if (ret)
326 printf("MXS NAND: Error sending command\n");
327
328 mxs_nand_return_dma_descs(nand_info);
329
330 /* Reset the command queue. */
331 nand_info->cmd_queue_len = 0;
332}
333
334/*
335 * Test if the NAND flash is ready.
336 */
337static int mxs_nand_device_ready(struct mtd_info *mtd)
338{
339 struct nand_chip *chip = mtd->priv;
340 struct mxs_nand_info *nand_info = chip->priv;
341 struct mx28_gpmi_regs *gpmi_regs =
342 (struct mx28_gpmi_regs *)MXS_GPMI_BASE;
343 uint32_t tmp;
344
345 tmp = readl(&gpmi_regs->hw_gpmi_stat);
346 tmp >>= (GPMI_STAT_READY_BUSY_OFFSET + nand_info->cur_chip);
347
348 return tmp & 1;
349}
350
351/*
352 * Select the NAND chip.
353 */
354static void mxs_nand_select_chip(struct mtd_info *mtd, int chip)
355{
356 struct nand_chip *nand = mtd->priv;
357 struct mxs_nand_info *nand_info = nand->priv;
358
359 nand_info->cur_chip = chip;
360}
361
362/*
363 * Handle block mark swapping.
364 *
365 * Note that, when this function is called, it doesn't know whether it's
366 * swapping the block mark, or swapping it *back* -- but it doesn't matter
367 * because the the operation is the same.
368 */
369static void mxs_nand_swap_block_mark(struct mtd_info *mtd,
370 uint8_t *data_buf, uint8_t *oob_buf)
371{
372 uint32_t bit_offset;
373 uint32_t buf_offset;
374
375 uint32_t src;
376 uint32_t dst;
377
378 bit_offset = mxs_nand_mark_bit_offset(mtd);
379 buf_offset = mxs_nand_mark_byte_offset(mtd);
380
381 /*
382 * Get the byte from the data area that overlays the block mark. Since
383 * the ECC engine applies its own view to the bits in the page, the
384 * physical block mark won't (in general) appear on a byte boundary in
385 * the data.
386 */
387 src = data_buf[buf_offset] >> bit_offset;
388 src |= data_buf[buf_offset + 1] << (8 - bit_offset);
389
390 dst = oob_buf[0];
391
392 oob_buf[0] = src;
393
394 data_buf[buf_offset] &= ~(0xff << bit_offset);
395 data_buf[buf_offset + 1] &= 0xff << bit_offset;
396
397 data_buf[buf_offset] |= dst << bit_offset;
398 data_buf[buf_offset + 1] |= dst >> (8 - bit_offset);
399}
400
401/*
402 * Read data from NAND.
403 */
404static void mxs_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int length)
405{
406 struct nand_chip *nand = mtd->priv;
407 struct mxs_nand_info *nand_info = nand->priv;
408 struct mxs_dma_desc *d;
409 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
410 int ret;
411
412 if (length > NAND_MAX_PAGESIZE) {
413 printf("MXS NAND: DMA buffer too big\n");
414 return;
415 }
416
417 if (!buf) {
418 printf("MXS NAND: DMA buffer is NULL\n");
419 return;
420 }
421
422 /* Compile the DMA descriptor - a descriptor that reads data. */
423 d = mxs_nand_get_dma_desc(nand_info);
424 d->cmd.data =
425 MXS_DMA_DESC_COMMAND_DMA_WRITE | MXS_DMA_DESC_IRQ |
426 MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
427 (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
428 (length << MXS_DMA_DESC_BYTES_OFFSET);
429
430 d->cmd.address = (dma_addr_t)nand_info->data_buf;
431
432 d->cmd.pio_words[0] =
433 GPMI_CTRL0_COMMAND_MODE_READ |
434 GPMI_CTRL0_WORD_LENGTH |
435 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
436 GPMI_CTRL0_ADDRESS_NAND_DATA |
437 length;
438
439 mxs_dma_desc_append(channel, d);
440
441 /*
442 * A DMA descriptor that waits for the command to end and the chip to
443 * become ready.
444 *
445 * I think we actually should *not* be waiting for the chip to become
446 * ready because, after all, we don't care. I think the original code
447 * did that and no one has re-thought it yet.
448 */
449 d = mxs_nand_get_dma_desc(nand_info);
450 d->cmd.data =
451 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
452 MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_DEC_SEM |
453 MXS_DMA_DESC_WAIT4END | (4 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
454
455 d->cmd.address = 0;
456
457 d->cmd.pio_words[0] =
458 GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
459 GPMI_CTRL0_WORD_LENGTH |
460 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
461 GPMI_CTRL0_ADDRESS_NAND_DATA;
462
463 mxs_dma_desc_append(channel, d);
464
465 /* Execute the DMA chain. */
466 ret = mxs_dma_go(channel);
467 if (ret) {
468 printf("MXS NAND: DMA read error\n");
469 goto rtn;
470 }
471
Marek Vasut6b9408e2012-03-15 18:33:19 +0000472 /* Invalidate caches */
473 mxs_nand_inval_data_buf(nand_info);
474
Marek Vasut0d4e8502011-11-08 23:18:16 +0000475 memcpy(buf, nand_info->data_buf, length);
476
477rtn:
478 mxs_nand_return_dma_descs(nand_info);
479}
480
481/*
482 * Write data to NAND.
483 */
484static void mxs_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
485 int length)
486{
487 struct nand_chip *nand = mtd->priv;
488 struct mxs_nand_info *nand_info = nand->priv;
489 struct mxs_dma_desc *d;
490 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
491 int ret;
492
493 if (length > NAND_MAX_PAGESIZE) {
494 printf("MXS NAND: DMA buffer too big\n");
495 return;
496 }
497
498 if (!buf) {
499 printf("MXS NAND: DMA buffer is NULL\n");
500 return;
501 }
502
503 memcpy(nand_info->data_buf, buf, length);
504
505 /* Compile the DMA descriptor - a descriptor that writes data. */
506 d = mxs_nand_get_dma_desc(nand_info);
507 d->cmd.data =
508 MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
509 MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
510 (4 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
511 (length << MXS_DMA_DESC_BYTES_OFFSET);
512
513 d->cmd.address = (dma_addr_t)nand_info->data_buf;
514
515 d->cmd.pio_words[0] =
516 GPMI_CTRL0_COMMAND_MODE_WRITE |
517 GPMI_CTRL0_WORD_LENGTH |
518 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
519 GPMI_CTRL0_ADDRESS_NAND_DATA |
520 length;
521
522 mxs_dma_desc_append(channel, d);
523
Marek Vasut6b9408e2012-03-15 18:33:19 +0000524 /* Flush caches */
525 mxs_nand_flush_data_buf(nand_info);
526
Marek Vasut0d4e8502011-11-08 23:18:16 +0000527 /* Execute the DMA chain. */
528 ret = mxs_dma_go(channel);
529 if (ret)
530 printf("MXS NAND: DMA write error\n");
531
532 mxs_nand_return_dma_descs(nand_info);
533}
534
535/*
536 * Read a single byte from NAND.
537 */
538static uint8_t mxs_nand_read_byte(struct mtd_info *mtd)
539{
540 uint8_t buf;
541 mxs_nand_read_buf(mtd, &buf, 1);
542 return buf;
543}
544
545/*
546 * Read a page from NAND.
547 */
548static int mxs_nand_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand,
549 uint8_t *buf, int page)
550{
551 struct mxs_nand_info *nand_info = nand->priv;
552 struct mxs_dma_desc *d;
553 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
554 uint32_t corrected = 0, failed = 0;
555 uint8_t *status;
556 int i, ret;
557
558 /* Compile the DMA descriptor - wait for ready. */
559 d = mxs_nand_get_dma_desc(nand_info);
560 d->cmd.data =
561 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
562 MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
563 (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
564
565 d->cmd.address = 0;
566
567 d->cmd.pio_words[0] =
568 GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
569 GPMI_CTRL0_WORD_LENGTH |
570 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
571 GPMI_CTRL0_ADDRESS_NAND_DATA;
572
573 mxs_dma_desc_append(channel, d);
574
575 /* Compile the DMA descriptor - enable the BCH block and read. */
576 d = mxs_nand_get_dma_desc(nand_info);
577 d->cmd.data =
578 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
579 MXS_DMA_DESC_WAIT4END | (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
580
581 d->cmd.address = 0;
582
583 d->cmd.pio_words[0] =
584 GPMI_CTRL0_COMMAND_MODE_READ |
585 GPMI_CTRL0_WORD_LENGTH |
586 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
587 GPMI_CTRL0_ADDRESS_NAND_DATA |
588 (mtd->writesize + mtd->oobsize);
589 d->cmd.pio_words[1] = 0;
590 d->cmd.pio_words[2] =
591 GPMI_ECCCTRL_ENABLE_ECC |
592 GPMI_ECCCTRL_ECC_CMD_DECODE |
593 GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
594 d->cmd.pio_words[3] = mtd->writesize + mtd->oobsize;
595 d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
596 d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
597
598 mxs_dma_desc_append(channel, d);
599
600 /* Compile the DMA descriptor - disable the BCH block. */
601 d = mxs_nand_get_dma_desc(nand_info);
602 d->cmd.data =
603 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
604 MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
605 (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
606
607 d->cmd.address = 0;
608
609 d->cmd.pio_words[0] =
610 GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
611 GPMI_CTRL0_WORD_LENGTH |
612 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
613 GPMI_CTRL0_ADDRESS_NAND_DATA |
614 (mtd->writesize + mtd->oobsize);
615 d->cmd.pio_words[1] = 0;
616 d->cmd.pio_words[2] = 0;
617
618 mxs_dma_desc_append(channel, d);
619
620 /* Compile the DMA descriptor - deassert the NAND lock and interrupt. */
621 d = mxs_nand_get_dma_desc(nand_info);
622 d->cmd.data =
623 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
624 MXS_DMA_DESC_DEC_SEM;
625
626 d->cmd.address = 0;
627
628 mxs_dma_desc_append(channel, d);
629
630 /* Execute the DMA chain. */
631 ret = mxs_dma_go(channel);
632 if (ret) {
633 printf("MXS NAND: DMA read error\n");
634 goto rtn;
635 }
636
637 ret = mxs_nand_wait_for_bch_complete();
638 if (ret) {
639 printf("MXS NAND: BCH read timeout\n");
640 goto rtn;
641 }
642
Marek Vasut6b9408e2012-03-15 18:33:19 +0000643 /* Invalidate caches */
644 mxs_nand_inval_data_buf(nand_info);
645
Marek Vasut0d4e8502011-11-08 23:18:16 +0000646 /* Read DMA completed, now do the mark swapping. */
647 mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
648
649 /* Loop over status bytes, accumulating ECC status. */
650 status = nand_info->oob_buf + mxs_nand_aux_status_offset();
651 for (i = 0; i < mxs_nand_ecc_chunk_cnt(mtd->writesize); i++) {
652 if (status[i] == 0x00)
653 continue;
654
655 if (status[i] == 0xff)
656 continue;
657
658 if (status[i] == 0xfe) {
659 failed++;
660 continue;
661 }
662
663 corrected += status[i];
664 }
665
666 /* Propagate ECC status to the owning MTD. */
667 mtd->ecc_stats.failed += failed;
668 mtd->ecc_stats.corrected += corrected;
669
670 /*
671 * It's time to deliver the OOB bytes. See mxs_nand_ecc_read_oob() for
672 * details about our policy for delivering the OOB.
673 *
674 * We fill the caller's buffer with set bits, and then copy the block
675 * mark to the caller's buffer. Note that, if block mark swapping was
676 * necessary, it has already been done, so we can rely on the first
677 * byte of the auxiliary buffer to contain the block mark.
678 */
679 memset(nand->oob_poi, 0xff, mtd->oobsize);
680
681 nand->oob_poi[0] = nand_info->oob_buf[0];
682
683 memcpy(buf, nand_info->data_buf, mtd->writesize);
684
685rtn:
686 mxs_nand_return_dma_descs(nand_info);
687
688 return ret;
689}
690
691/*
692 * Write a page to NAND.
693 */
694static void mxs_nand_ecc_write_page(struct mtd_info *mtd,
695 struct nand_chip *nand, const uint8_t *buf)
696{
697 struct mxs_nand_info *nand_info = nand->priv;
698 struct mxs_dma_desc *d;
699 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
700 int ret;
701
702 memcpy(nand_info->data_buf, buf, mtd->writesize);
703 memcpy(nand_info->oob_buf, nand->oob_poi, mtd->oobsize);
704
705 /* Handle block mark swapping. */
706 mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
707
708 /* Compile the DMA descriptor - write data. */
709 d = mxs_nand_get_dma_desc(nand_info);
710 d->cmd.data =
711 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
712 MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
713 (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
714
715 d->cmd.address = 0;
716
717 d->cmd.pio_words[0] =
718 GPMI_CTRL0_COMMAND_MODE_WRITE |
719 GPMI_CTRL0_WORD_LENGTH |
720 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
721 GPMI_CTRL0_ADDRESS_NAND_DATA;
722 d->cmd.pio_words[1] = 0;
723 d->cmd.pio_words[2] =
724 GPMI_ECCCTRL_ENABLE_ECC |
725 GPMI_ECCCTRL_ECC_CMD_ENCODE |
726 GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
727 d->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize);
728 d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
729 d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
730
731 mxs_dma_desc_append(channel, d);
732
Marek Vasut6b9408e2012-03-15 18:33:19 +0000733 /* Flush caches */
734 mxs_nand_flush_data_buf(nand_info);
735
Marek Vasut0d4e8502011-11-08 23:18:16 +0000736 /* Execute the DMA chain. */
737 ret = mxs_dma_go(channel);
738 if (ret) {
739 printf("MXS NAND: DMA write error\n");
740 goto rtn;
741 }
742
743 ret = mxs_nand_wait_for_bch_complete();
744 if (ret) {
745 printf("MXS NAND: BCH write timeout\n");
746 goto rtn;
747 }
748
749rtn:
750 mxs_nand_return_dma_descs(nand_info);
751}
752
753/*
754 * Read OOB from NAND.
755 *
756 * This function is a veneer that replaces the function originally installed by
757 * the NAND Flash MTD code.
758 */
759static int mxs_nand_hook_read_oob(struct mtd_info *mtd, loff_t from,
760 struct mtd_oob_ops *ops)
761{
762 struct nand_chip *chip = mtd->priv;
763 struct mxs_nand_info *nand_info = chip->priv;
764 int ret;
765
766 if (ops->mode == MTD_OOB_RAW)
767 nand_info->raw_oob_mode = 1;
768 else
769 nand_info->raw_oob_mode = 0;
770
771 ret = nand_info->hooked_read_oob(mtd, from, ops);
772
773 nand_info->raw_oob_mode = 0;
774
775 return ret;
776}
777
778/*
779 * Write OOB to NAND.
780 *
781 * This function is a veneer that replaces the function originally installed by
782 * the NAND Flash MTD code.
783 */
784static int mxs_nand_hook_write_oob(struct mtd_info *mtd, loff_t to,
785 struct mtd_oob_ops *ops)
786{
787 struct nand_chip *chip = mtd->priv;
788 struct mxs_nand_info *nand_info = chip->priv;
789 int ret;
790
791 if (ops->mode == MTD_OOB_RAW)
792 nand_info->raw_oob_mode = 1;
793 else
794 nand_info->raw_oob_mode = 0;
795
796 ret = nand_info->hooked_write_oob(mtd, to, ops);
797
798 nand_info->raw_oob_mode = 0;
799
800 return ret;
801}
802
803/*
804 * Mark a block bad in NAND.
805 *
806 * This function is a veneer that replaces the function originally installed by
807 * the NAND Flash MTD code.
808 */
809static int mxs_nand_hook_block_markbad(struct mtd_info *mtd, loff_t ofs)
810{
811 struct nand_chip *chip = mtd->priv;
812 struct mxs_nand_info *nand_info = chip->priv;
813 int ret;
814
815 nand_info->marking_block_bad = 1;
816
817 ret = nand_info->hooked_block_markbad(mtd, ofs);
818
819 nand_info->marking_block_bad = 0;
820
821 return ret;
822}
823
824/*
825 * There are several places in this driver where we have to handle the OOB and
826 * block marks. This is the function where things are the most complicated, so
827 * this is where we try to explain it all. All the other places refer back to
828 * here.
829 *
830 * These are the rules, in order of decreasing importance:
831 *
832 * 1) Nothing the caller does can be allowed to imperil the block mark, so all
833 * write operations take measures to protect it.
834 *
835 * 2) In read operations, the first byte of the OOB we return must reflect the
836 * true state of the block mark, no matter where that block mark appears in
837 * the physical page.
838 *
839 * 3) ECC-based read operations return an OOB full of set bits (since we never
840 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
841 * return).
842 *
843 * 4) "Raw" read operations return a direct view of the physical bytes in the
844 * page, using the conventional definition of which bytes are data and which
845 * are OOB. This gives the caller a way to see the actual, physical bytes
846 * in the page, without the distortions applied by our ECC engine.
847 *
848 * What we do for this specific read operation depends on whether we're doing
849 * "raw" read, or an ECC-based read.
850 *
851 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
852 * easy. When reading a page, for example, the NAND Flash MTD code calls our
853 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
854 * ECC-based or raw view of the page is implicit in which function it calls
855 * (there is a similar pair of ECC-based/raw functions for writing).
856 *
857 * Since MTD assumes the OOB is not covered by ECC, there is no pair of
858 * ECC-based/raw functions for reading or or writing the OOB. The fact that the
859 * caller wants an ECC-based or raw view of the page is not propagated down to
860 * this driver.
861 *
862 * Since our OOB *is* covered by ECC, we need this information. So, we hook the
863 * ecc.read_oob and ecc.write_oob function pointers in the owning
864 * struct mtd_info with our own functions. These hook functions set the
865 * raw_oob_mode field so that, when control finally arrives here, we'll know
866 * what to do.
867 */
868static int mxs_nand_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
869 int page, int cmd)
870{
871 struct mxs_nand_info *nand_info = nand->priv;
872
873 /*
874 * First, fill in the OOB buffer. If we're doing a raw read, we need to
875 * get the bytes from the physical page. If we're not doing a raw read,
876 * we need to fill the buffer with set bits.
877 */
878 if (nand_info->raw_oob_mode) {
879 /*
880 * If control arrives here, we're doing a "raw" read. Send the
881 * command to read the conventional OOB and read it.
882 */
883 nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
884 nand->read_buf(mtd, nand->oob_poi, mtd->oobsize);
885 } else {
886 /*
887 * If control arrives here, we're not doing a "raw" read. Fill
888 * the OOB buffer with set bits and correct the block mark.
889 */
890 memset(nand->oob_poi, 0xff, mtd->oobsize);
891
892 nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
893 mxs_nand_read_buf(mtd, nand->oob_poi, 1);
894 }
895
896 return 0;
897
898}
899
900/*
901 * Write OOB data to NAND.
902 */
903static int mxs_nand_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
904 int page)
905{
906 struct mxs_nand_info *nand_info = nand->priv;
907 uint8_t block_mark = 0;
908
909 /*
910 * There are fundamental incompatibilities between the i.MX GPMI NFC and
911 * the NAND Flash MTD model that make it essentially impossible to write
912 * the out-of-band bytes.
913 *
914 * We permit *ONE* exception. If the *intent* of writing the OOB is to
915 * mark a block bad, we can do that.
916 */
917
918 if (!nand_info->marking_block_bad) {
919 printf("NXS NAND: Writing OOB isn't supported\n");
920 return -EIO;
921 }
922
923 /* Write the block mark. */
924 nand->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
925 nand->write_buf(mtd, &block_mark, 1);
926 nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
927
928 /* Check if it worked. */
929 if (nand->waitfunc(mtd, nand) & NAND_STATUS_FAIL)
930 return -EIO;
931
932 return 0;
933}
934
935/*
936 * Claims all blocks are good.
937 *
938 * In principle, this function is *only* called when the NAND Flash MTD system
939 * isn't allowed to keep an in-memory bad block table, so it is forced to ask
940 * the driver for bad block information.
941 *
942 * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so
943 * this function is *only* called when we take it away.
944 *
945 * Thus, this function is only called when we want *all* blocks to look good,
946 * so it *always* return success.
947 */
948static int mxs_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
949{
950 return 0;
951}
952
953/*
954 * Nominally, the purpose of this function is to look for or create the bad
955 * block table. In fact, since the we call this function at the very end of
956 * the initialization process started by nand_scan(), and we doesn't have a
957 * more formal mechanism, we "hook" this function to continue init process.
958 *
959 * At this point, the physical NAND Flash chips have been identified and
960 * counted, so we know the physical geometry. This enables us to make some
961 * important configuration decisions.
962 *
963 * The return value of this function propogates directly back to this driver's
964 * call to nand_scan(). Anything other than zero will cause this driver to
965 * tear everything down and declare failure.
966 */
967static int mxs_nand_scan_bbt(struct mtd_info *mtd)
968{
969 struct nand_chip *nand = mtd->priv;
970 struct mxs_nand_info *nand_info = nand->priv;
971 struct mx28_bch_regs *bch_regs = (struct mx28_bch_regs *)MXS_BCH_BASE;
972 uint32_t tmp;
973
974 /* Configure BCH and set NFC geometry */
975 mx28_reset_block(&bch_regs->hw_bch_ctrl_reg);
976
977 /* Configure layout 0 */
978 tmp = (mxs_nand_ecc_chunk_cnt(mtd->writesize) - 1)
979 << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET;
980 tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET;
981 tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
982 << BCH_FLASHLAYOUT0_ECC0_OFFSET;
983 tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
984 writel(tmp, &bch_regs->hw_bch_flash0layout0);
985
986 tmp = (mtd->writesize + mtd->oobsize)
987 << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET;
988 tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
989 << BCH_FLASHLAYOUT1_ECCN_OFFSET;
990 tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
991 writel(tmp, &bch_regs->hw_bch_flash0layout1);
992
993 /* Set *all* chip selects to use layout 0 */
994 writel(0, &bch_regs->hw_bch_layoutselect);
995
996 /* Enable BCH complete interrupt */
997 writel(BCH_CTRL_COMPLETE_IRQ_EN, &bch_regs->hw_bch_ctrl_set);
998
999 /* Hook some operations at the MTD level. */
1000 if (mtd->read_oob != mxs_nand_hook_read_oob) {
1001 nand_info->hooked_read_oob = mtd->read_oob;
1002 mtd->read_oob = mxs_nand_hook_read_oob;
1003 }
1004
1005 if (mtd->write_oob != mxs_nand_hook_write_oob) {
1006 nand_info->hooked_write_oob = mtd->write_oob;
1007 mtd->write_oob = mxs_nand_hook_write_oob;
1008 }
1009
1010 if (mtd->block_markbad != mxs_nand_hook_block_markbad) {
1011 nand_info->hooked_block_markbad = mtd->block_markbad;
1012 mtd->block_markbad = mxs_nand_hook_block_markbad;
1013 }
1014
1015 /* We use the reference implementation for bad block management. */
1016 return nand_default_bbt(mtd);
1017}
1018
1019/*
1020 * Allocate DMA buffers
1021 */
1022int mxs_nand_alloc_buffers(struct mxs_nand_info *nand_info)
1023{
1024 uint8_t *buf;
1025 const int size = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE;
1026
Marek Vasut6b9408e2012-03-15 18:33:19 +00001027 nand_info->data_buf_size = roundup(size, MXS_DMA_ALIGNMENT);
1028
Marek Vasut0d4e8502011-11-08 23:18:16 +00001029 /* DMA buffers */
Marek Vasut6b9408e2012-03-15 18:33:19 +00001030 buf = memalign(MXS_DMA_ALIGNMENT, nand_info->data_buf_size);
Marek Vasut0d4e8502011-11-08 23:18:16 +00001031 if (!buf) {
1032 printf("MXS NAND: Error allocating DMA buffers\n");
1033 return -ENOMEM;
1034 }
1035
Marek Vasut6b9408e2012-03-15 18:33:19 +00001036 memset(buf, 0, nand_info->data_buf_size);
Marek Vasut0d4e8502011-11-08 23:18:16 +00001037
1038 nand_info->data_buf = buf;
1039 nand_info->oob_buf = buf + NAND_MAX_PAGESIZE;
Marek Vasut0d4e8502011-11-08 23:18:16 +00001040 /* Command buffers */
1041 nand_info->cmd_buf = memalign(MXS_DMA_ALIGNMENT,
1042 MXS_NAND_COMMAND_BUFFER_SIZE);
1043 if (!nand_info->cmd_buf) {
1044 free(buf);
1045 printf("MXS NAND: Error allocating command buffers\n");
1046 return -ENOMEM;
1047 }
1048 memset(nand_info->cmd_buf, 0, MXS_NAND_COMMAND_BUFFER_SIZE);
1049 nand_info->cmd_queue_len = 0;
1050
1051 return 0;
1052}
1053
1054/*
1055 * Initializes the NFC hardware.
1056 */
1057int mxs_nand_init(struct mxs_nand_info *info)
1058{
1059 struct mx28_gpmi_regs *gpmi_regs =
1060 (struct mx28_gpmi_regs *)MXS_GPMI_BASE;
Marek Vasut96666a32012-04-08 17:34:46 +00001061 int i = 0, j;
Marek Vasut0d4e8502011-11-08 23:18:16 +00001062
1063 info->desc = malloc(sizeof(struct mxs_dma_desc *) *
1064 MXS_NAND_DMA_DESCRIPTOR_COUNT);
1065 if (!info->desc)
1066 goto err1;
1067
1068 /* Allocate the DMA descriptors. */
1069 for (i = 0; i < MXS_NAND_DMA_DESCRIPTOR_COUNT; i++) {
1070 info->desc[i] = mxs_dma_desc_alloc();
1071 if (!info->desc[i])
1072 goto err2;
1073 }
1074
1075 /* Init the DMA controller. */
Marek Vasut96666a32012-04-08 17:34:46 +00001076 for (j = MXS_DMA_CHANNEL_AHB_APBH_GPMI0;
1077 j <= MXS_DMA_CHANNEL_AHB_APBH_GPMI7; j++) {
1078 if (mxs_dma_init_channel(j))
1079 goto err3;
1080 }
Marek Vasut0d4e8502011-11-08 23:18:16 +00001081
1082 /* Reset the GPMI block. */
1083 mx28_reset_block(&gpmi_regs->hw_gpmi_ctrl0_reg);
1084
1085 /*
1086 * Choose NAND mode, set IRQ polarity, disable write protection and
1087 * select BCH ECC.
1088 */
1089 clrsetbits_le32(&gpmi_regs->hw_gpmi_ctrl1,
1090 GPMI_CTRL1_GPMI_MODE,
1091 GPMI_CTRL1_ATA_IRQRDY_POLARITY | GPMI_CTRL1_DEV_RESET |
1092 GPMI_CTRL1_BCH_MODE);
1093
1094 return 0;
1095
Marek Vasut96666a32012-04-08 17:34:46 +00001096err3:
1097 for (--j; j >= 0; j--)
1098 mxs_dma_release(j);
Marek Vasut0d4e8502011-11-08 23:18:16 +00001099err2:
1100 free(info->desc);
1101err1:
1102 for (--i; i >= 0; i--)
1103 mxs_dma_desc_free(info->desc[i]);
1104 printf("MXS NAND: Unable to allocate DMA descriptors\n");
1105 return -ENOMEM;
1106}
1107
1108/*!
1109 * This function is called during the driver binding process.
1110 *
1111 * @param pdev the device structure used to store device specific
1112 * information that is used by the suspend, resume and
1113 * remove functions
1114 *
1115 * @return The function always returns 0.
1116 */
1117int board_nand_init(struct nand_chip *nand)
1118{
1119 struct mxs_nand_info *nand_info;
1120 int err;
1121
1122 nand_info = malloc(sizeof(struct mxs_nand_info));
1123 if (!nand_info) {
1124 printf("MXS NAND: Failed to allocate private data\n");
1125 return -ENOMEM;
1126 }
1127 memset(nand_info, 0, sizeof(struct mxs_nand_info));
1128
1129 err = mxs_nand_alloc_buffers(nand_info);
1130 if (err)
1131 goto err1;
1132
1133 err = mxs_nand_init(nand_info);
1134 if (err)
1135 goto err2;
1136
1137 memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout));
1138
1139 nand->priv = nand_info;
1140 nand->options |= NAND_NO_SUBPAGE_WRITE;
1141
1142 nand->cmd_ctrl = mxs_nand_cmd_ctrl;
1143
1144 nand->dev_ready = mxs_nand_device_ready;
1145 nand->select_chip = mxs_nand_select_chip;
1146 nand->block_bad = mxs_nand_block_bad;
1147 nand->scan_bbt = mxs_nand_scan_bbt;
1148
1149 nand->read_byte = mxs_nand_read_byte;
1150
1151 nand->read_buf = mxs_nand_read_buf;
1152 nand->write_buf = mxs_nand_write_buf;
1153
1154 nand->ecc.read_page = mxs_nand_ecc_read_page;
1155 nand->ecc.write_page = mxs_nand_ecc_write_page;
1156 nand->ecc.read_oob = mxs_nand_ecc_read_oob;
1157 nand->ecc.write_oob = mxs_nand_ecc_write_oob;
1158
1159 nand->ecc.layout = &fake_ecc_layout;
1160 nand->ecc.mode = NAND_ECC_HW;
1161 nand->ecc.bytes = 9;
1162 nand->ecc.size = 512;
1163
1164 return 0;
1165
1166err2:
1167 free(nand_info->data_buf);
1168 free(nand_info->cmd_buf);
1169err1:
1170 free(nand_info);
1171 return err;
1172}