blob: 427f7c13c56a9913ffd2fc18c61a144fe5ba5298 [file] [log] [blame]
Boris Brezillond13f5b22018-08-16 17:30:11 +02001// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (C) 2018 Exceet Electronics GmbH
4 * Copyright (C) 2018 Bootlin
5 *
6 * Author: Boris Brezillon <boris.brezillon@bootlin.com>
7 */
8
9#ifndef __UBOOT__
Simon Glassf7ae49f2020-05-10 11:40:05 -060010#include <log.h>
Simon Glass61b29b82020-02-03 07:36:15 -070011#include <dm/devres.h>
Boris Brezillond13f5b22018-08-16 17:30:11 +020012#include <linux/dmaengine.h>
13#include <linux/pm_runtime.h>
14#include "internals.h"
15#else
Simon Glass340fd102020-07-19 10:15:34 -060016#include <common.h>
17#include <dm.h>
18#include <errno.h>
19#include <malloc.h>
20#include <spi.h>
Boris Brezillond13f5b22018-08-16 17:30:11 +020021#include <spi.h>
22#include <spi-mem.h>
Simon Glass340fd102020-07-19 10:15:34 -060023#include <dm/device_compat.h>
Boris Brezillond13f5b22018-08-16 17:30:11 +020024#endif
25
26#ifndef __UBOOT__
27/**
28 * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
29 * memory operation
30 * @ctlr: the SPI controller requesting this dma_map()
31 * @op: the memory operation containing the buffer to map
32 * @sgt: a pointer to a non-initialized sg_table that will be filled by this
33 * function
34 *
35 * Some controllers might want to do DMA on the data buffer embedded in @op.
36 * This helper prepares everything for you and provides a ready-to-use
37 * sg_table. This function is not intended to be called from spi drivers.
38 * Only SPI controller drivers should use it.
39 * Note that the caller must ensure the memory region pointed by
40 * op->data.buf.{in,out} is DMA-able before calling this function.
41 *
42 * Return: 0 in case of success, a negative error code otherwise.
43 */
44int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
45 const struct spi_mem_op *op,
46 struct sg_table *sgt)
47{
48 struct device *dmadev;
49
50 if (!op->data.nbytes)
51 return -EINVAL;
52
53 if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
54 dmadev = ctlr->dma_tx->device->dev;
55 else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
56 dmadev = ctlr->dma_rx->device->dev;
57 else
58 dmadev = ctlr->dev.parent;
59
60 if (!dmadev)
61 return -EINVAL;
62
63 return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
64 op->data.dir == SPI_MEM_DATA_IN ?
65 DMA_FROM_DEVICE : DMA_TO_DEVICE);
66}
67EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
68
69/**
70 * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
71 * memory operation
72 * @ctlr: the SPI controller requesting this dma_unmap()
73 * @op: the memory operation containing the buffer to unmap
74 * @sgt: a pointer to an sg_table previously initialized by
75 * spi_controller_dma_map_mem_op_data()
76 *
77 * Some controllers might want to do DMA on the data buffer embedded in @op.
78 * This helper prepares things so that the CPU can access the
79 * op->data.buf.{in,out} buffer again.
80 *
81 * This function is not intended to be called from SPI drivers. Only SPI
82 * controller drivers should use it.
83 *
84 * This function should be called after the DMA operation has finished and is
85 * only valid if the previous spi_controller_dma_map_mem_op_data() call
86 * returned 0.
87 *
88 * Return: 0 in case of success, a negative error code otherwise.
89 */
90void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
91 const struct spi_mem_op *op,
92 struct sg_table *sgt)
93{
94 struct device *dmadev;
95
96 if (!op->data.nbytes)
97 return;
98
99 if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
100 dmadev = ctlr->dma_tx->device->dev;
101 else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
102 dmadev = ctlr->dma_rx->device->dev;
103 else
104 dmadev = ctlr->dev.parent;
105
106 spi_unmap_buf(ctlr, dmadev, sgt,
107 op->data.dir == SPI_MEM_DATA_IN ?
108 DMA_FROM_DEVICE : DMA_TO_DEVICE);
109}
110EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
111#endif /* __UBOOT__ */
112
113static int spi_check_buswidth_req(struct spi_slave *slave, u8 buswidth, bool tx)
114{
115 u32 mode = slave->mode;
116
117 switch (buswidth) {
118 case 1:
119 return 0;
120
121 case 2:
122 if ((tx && (mode & (SPI_TX_DUAL | SPI_TX_QUAD))) ||
123 (!tx && (mode & (SPI_RX_DUAL | SPI_RX_QUAD))))
124 return 0;
125
126 break;
127
128 case 4:
129 if ((tx && (mode & SPI_TX_QUAD)) ||
130 (!tx && (mode & SPI_RX_QUAD)))
131 return 0;
132
133 break;
Vignesh Raghavendra658df8b2019-12-05 15:46:05 +0530134 case 8:
135 if ((tx && (mode & SPI_TX_OCTAL)) ||
136 (!tx && (mode & SPI_RX_OCTAL)))
137 return 0;
138
139 break;
Boris Brezillond13f5b22018-08-16 17:30:11 +0200140
141 default:
142 break;
143 }
144
145 return -ENOTSUPP;
146}
147
148bool spi_mem_default_supports_op(struct spi_slave *slave,
149 const struct spi_mem_op *op)
150{
151 if (spi_check_buswidth_req(slave, op->cmd.buswidth, true))
152 return false;
153
154 if (op->addr.nbytes &&
155 spi_check_buswidth_req(slave, op->addr.buswidth, true))
156 return false;
157
158 if (op->dummy.nbytes &&
159 spi_check_buswidth_req(slave, op->dummy.buswidth, true))
160 return false;
161
Tudor Ambarus790c1692020-03-20 09:35:31 +0000162 if (op->data.dir != SPI_MEM_NO_DATA &&
Boris Brezillond13f5b22018-08-16 17:30:11 +0200163 spi_check_buswidth_req(slave, op->data.buswidth,
164 op->data.dir == SPI_MEM_DATA_OUT))
165 return false;
166
Pratyush Yadava1eb40b2021-06-26 00:47:03 +0530167 if (op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr)
168 return false;
169
Boris Brezillond13f5b22018-08-16 17:30:11 +0200170 return true;
171}
172EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
173
174/**
175 * spi_mem_supports_op() - Check if a memory device and the controller it is
176 * connected to support a specific memory operation
177 * @slave: the SPI device
178 * @op: the memory operation to check
179 *
180 * Some controllers are only supporting Single or Dual IOs, others might only
181 * support specific opcodes, or it can even be that the controller and device
182 * both support Quad IOs but the hardware prevents you from using it because
183 * only 2 IO lines are connected.
184 *
185 * This function checks whether a specific operation is supported.
186 *
187 * Return: true if @op is supported, false otherwise.
188 */
189bool spi_mem_supports_op(struct spi_slave *slave,
190 const struct spi_mem_op *op)
191{
192 struct udevice *bus = slave->dev->parent;
193 struct dm_spi_ops *ops = spi_get_ops(bus);
194
195 if (ops->mem_ops && ops->mem_ops->supports_op)
196 return ops->mem_ops->supports_op(slave, op);
197
198 return spi_mem_default_supports_op(slave, op);
199}
200EXPORT_SYMBOL_GPL(spi_mem_supports_op);
201
202/**
203 * spi_mem_exec_op() - Execute a memory operation
204 * @slave: the SPI device
205 * @op: the memory operation to execute
206 *
207 * Executes a memory operation.
208 *
209 * This function first checks that @op is supported and then tries to execute
210 * it.
211 *
212 * Return: 0 in case of success, a negative error code otherwise.
213 */
214int spi_mem_exec_op(struct spi_slave *slave, const struct spi_mem_op *op)
215{
216 struct udevice *bus = slave->dev->parent;
217 struct dm_spi_ops *ops = spi_get_ops(bus);
218 unsigned int pos = 0;
219 const u8 *tx_buf = NULL;
220 u8 *rx_buf = NULL;
Boris Brezillond13f5b22018-08-16 17:30:11 +0200221 int op_len;
222 u32 flag;
223 int ret;
224 int i;
225
226 if (!spi_mem_supports_op(slave, op))
227 return -ENOTSUPP;
228
Vignesh R76094482019-02-05 11:29:14 +0530229 ret = spi_claim_bus(slave);
230 if (ret < 0)
231 return ret;
232
Bernhard Messerklinger567a3eb2019-03-26 10:01:24 +0100233 if (ops->mem_ops && ops->mem_ops->exec_op) {
Boris Brezillond13f5b22018-08-16 17:30:11 +0200234#ifndef __UBOOT__
235 /*
236 * Flush the message queue before executing our SPI memory
237 * operation to prevent preemption of regular SPI transfers.
238 */
239 spi_flush_queue(ctlr);
240
241 if (ctlr->auto_runtime_pm) {
242 ret = pm_runtime_get_sync(ctlr->dev.parent);
243 if (ret < 0) {
244 dev_err(&ctlr->dev,
245 "Failed to power device: %d\n",
246 ret);
247 return ret;
248 }
249 }
250
251 mutex_lock(&ctlr->bus_lock_mutex);
252 mutex_lock(&ctlr->io_mutex);
253#endif
254 ret = ops->mem_ops->exec_op(slave, op);
Vignesh R76094482019-02-05 11:29:14 +0530255
Boris Brezillond13f5b22018-08-16 17:30:11 +0200256#ifndef __UBOOT__
257 mutex_unlock(&ctlr->io_mutex);
258 mutex_unlock(&ctlr->bus_lock_mutex);
259
260 if (ctlr->auto_runtime_pm)
261 pm_runtime_put(ctlr->dev.parent);
262#endif
263
264 /*
265 * Some controllers only optimize specific paths (typically the
266 * read path) and expect the core to use the regular SPI
267 * interface in other cases.
268 */
Vignesh R76094482019-02-05 11:29:14 +0530269 if (!ret || ret != -ENOTSUPP) {
270 spi_release_bus(slave);
Boris Brezillond13f5b22018-08-16 17:30:11 +0200271 return ret;
Vignesh R76094482019-02-05 11:29:14 +0530272 }
Boris Brezillond13f5b22018-08-16 17:30:11 +0200273 }
274
275#ifndef __UBOOT__
276 tmpbufsize = sizeof(op->cmd.opcode) + op->addr.nbytes +
277 op->dummy.nbytes;
278
279 /*
280 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
281 * we're guaranteed that this buffer is DMA-able, as required by the
282 * SPI layer.
283 */
284 tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
285 if (!tmpbuf)
286 return -ENOMEM;
287
288 spi_message_init(&msg);
289
290 tmpbuf[0] = op->cmd.opcode;
291 xfers[xferpos].tx_buf = tmpbuf;
292 xfers[xferpos].len = sizeof(op->cmd.opcode);
293 xfers[xferpos].tx_nbits = op->cmd.buswidth;
294 spi_message_add_tail(&xfers[xferpos], &msg);
295 xferpos++;
296 totalxferlen++;
297
298 if (op->addr.nbytes) {
299 int i;
300
301 for (i = 0; i < op->addr.nbytes; i++)
302 tmpbuf[i + 1] = op->addr.val >>
303 (8 * (op->addr.nbytes - i - 1));
304
305 xfers[xferpos].tx_buf = tmpbuf + 1;
306 xfers[xferpos].len = op->addr.nbytes;
307 xfers[xferpos].tx_nbits = op->addr.buswidth;
308 spi_message_add_tail(&xfers[xferpos], &msg);
309 xferpos++;
310 totalxferlen += op->addr.nbytes;
311 }
312
313 if (op->dummy.nbytes) {
314 memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
315 xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
316 xfers[xferpos].len = op->dummy.nbytes;
317 xfers[xferpos].tx_nbits = op->dummy.buswidth;
318 spi_message_add_tail(&xfers[xferpos], &msg);
319 xferpos++;
320 totalxferlen += op->dummy.nbytes;
321 }
322
323 if (op->data.nbytes) {
324 if (op->data.dir == SPI_MEM_DATA_IN) {
325 xfers[xferpos].rx_buf = op->data.buf.in;
326 xfers[xferpos].rx_nbits = op->data.buswidth;
327 } else {
328 xfers[xferpos].tx_buf = op->data.buf.out;
329 xfers[xferpos].tx_nbits = op->data.buswidth;
330 }
331
332 xfers[xferpos].len = op->data.nbytes;
333 spi_message_add_tail(&xfers[xferpos], &msg);
334 xferpos++;
335 totalxferlen += op->data.nbytes;
336 }
337
338 ret = spi_sync(slave, &msg);
339
340 kfree(tmpbuf);
341
342 if (ret)
343 return ret;
344
345 if (msg.actual_length != totalxferlen)
346 return -EIO;
347#else
348
Boris Brezillond13f5b22018-08-16 17:30:11 +0200349 if (op->data.nbytes) {
350 if (op->data.dir == SPI_MEM_DATA_IN)
351 rx_buf = op->data.buf.in;
352 else
353 tx_buf = op->data.buf.out;
354 }
355
356 op_len = sizeof(op->cmd.opcode) + op->addr.nbytes + op->dummy.nbytes;
Simon Glassca2abb72019-05-18 11:59:54 -0600357
358 /*
359 * Avoid using malloc() here so that we can use this code in SPL where
360 * simple malloc may be used. That implementation does not allow free()
361 * so repeated calls to this code can exhaust the space.
362 *
363 * The value of op_len is small, since it does not include the actual
364 * data being sent, only the op-code and address. In fact, it should be
365 * possible to just use a small fixed value here instead of op_len.
366 */
367 u8 op_buf[op_len];
Boris Brezillond13f5b22018-08-16 17:30:11 +0200368
Boris Brezillond13f5b22018-08-16 17:30:11 +0200369 op_buf[pos++] = op->cmd.opcode;
370
371 if (op->addr.nbytes) {
372 for (i = 0; i < op->addr.nbytes; i++)
373 op_buf[pos + i] = op->addr.val >>
374 (8 * (op->addr.nbytes - i - 1));
375
376 pos += op->addr.nbytes;
377 }
378
379 if (op->dummy.nbytes)
380 memset(op_buf + pos, 0xff, op->dummy.nbytes);
381
382 /* 1st transfer: opcode + address + dummy cycles */
383 flag = SPI_XFER_BEGIN;
384 /* Make sure to set END bit if no tx or rx data messages follow */
385 if (!tx_buf && !rx_buf)
386 flag |= SPI_XFER_END;
387
388 ret = spi_xfer(slave, op_len * 8, op_buf, NULL, flag);
389 if (ret)
390 return ret;
391
392 /* 2nd transfer: rx or tx data path */
393 if (tx_buf || rx_buf) {
394 ret = spi_xfer(slave, op->data.nbytes * 8, tx_buf,
395 rx_buf, SPI_XFER_END);
396 if (ret)
397 return ret;
398 }
399
400 spi_release_bus(slave);
401
402 for (i = 0; i < pos; i++)
403 debug("%02x ", op_buf[i]);
404 debug("| [%dB %s] ",
405 tx_buf || rx_buf ? op->data.nbytes : 0,
406 tx_buf || rx_buf ? (tx_buf ? "out" : "in") : "-");
407 for (i = 0; i < op->data.nbytes; i++)
408 debug("%02x ", tx_buf ? tx_buf[i] : rx_buf[i]);
409 debug("[ret %d]\n", ret);
410
Boris Brezillond13f5b22018-08-16 17:30:11 +0200411 if (ret < 0)
412 return ret;
413#endif /* __UBOOT__ */
414
415 return 0;
416}
417EXPORT_SYMBOL_GPL(spi_mem_exec_op);
418
419/**
420 * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
421 * match controller limitations
422 * @slave: the SPI device
423 * @op: the operation to adjust
424 *
425 * Some controllers have FIFO limitations and must split a data transfer
426 * operation into multiple ones, others require a specific alignment for
427 * optimized accesses. This function allows SPI mem drivers to split a single
428 * operation into multiple sub-operations when required.
429 *
430 * Return: a negative error code if the controller can't properly adjust @op,
431 * 0 otherwise. Note that @op->data.nbytes will be updated if @op
432 * can't be handled in a single step.
433 */
434int spi_mem_adjust_op_size(struct spi_slave *slave, struct spi_mem_op *op)
435{
436 struct udevice *bus = slave->dev->parent;
437 struct dm_spi_ops *ops = spi_get_ops(bus);
438
439 if (ops->mem_ops && ops->mem_ops->adjust_op_size)
440 return ops->mem_ops->adjust_op_size(slave, op);
441
Vignesh R12563f72019-02-05 11:29:13 +0530442 if (!ops->mem_ops || !ops->mem_ops->exec_op) {
443 unsigned int len;
444
445 len = sizeof(op->cmd.opcode) + op->addr.nbytes +
446 op->dummy.nbytes;
447 if (slave->max_write_size && len > slave->max_write_size)
448 return -EINVAL;
449
Ye Li535b1fd2019-07-10 09:23:51 +0000450 if (op->data.dir == SPI_MEM_DATA_IN) {
451 if (slave->max_read_size)
452 op->data.nbytes = min(op->data.nbytes,
Vignesh R12563f72019-02-05 11:29:13 +0530453 slave->max_read_size);
Ye Li535b1fd2019-07-10 09:23:51 +0000454 } else if (slave->max_write_size) {
Vignesh R12563f72019-02-05 11:29:13 +0530455 op->data.nbytes = min(op->data.nbytes,
456 slave->max_write_size - len);
Ye Li535b1fd2019-07-10 09:23:51 +0000457 }
Vignesh R12563f72019-02-05 11:29:13 +0530458
459 if (!op->data.nbytes)
460 return -EINVAL;
461 }
462
Boris Brezillond13f5b22018-08-16 17:30:11 +0200463 return 0;
464}
465EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
466
467#ifndef __UBOOT__
468static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
469{
470 return container_of(drv, struct spi_mem_driver, spidrv.driver);
471}
472
473static int spi_mem_probe(struct spi_device *spi)
474{
475 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
476 struct spi_mem *mem;
477
478 mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
479 if (!mem)
480 return -ENOMEM;
481
482 mem->spi = spi;
483 spi_set_drvdata(spi, mem);
484
485 return memdrv->probe(mem);
486}
487
488static int spi_mem_remove(struct spi_device *spi)
489{
490 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
491 struct spi_mem *mem = spi_get_drvdata(spi);
492
493 if (memdrv->remove)
494 return memdrv->remove(mem);
495
496 return 0;
497}
498
499static void spi_mem_shutdown(struct spi_device *spi)
500{
501 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
502 struct spi_mem *mem = spi_get_drvdata(spi);
503
504 if (memdrv->shutdown)
505 memdrv->shutdown(mem);
506}
507
508/**
509 * spi_mem_driver_register_with_owner() - Register a SPI memory driver
510 * @memdrv: the SPI memory driver to register
511 * @owner: the owner of this driver
512 *
513 * Registers a SPI memory driver.
514 *
515 * Return: 0 in case of success, a negative error core otherwise.
516 */
517
518int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
519 struct module *owner)
520{
521 memdrv->spidrv.probe = spi_mem_probe;
522 memdrv->spidrv.remove = spi_mem_remove;
523 memdrv->spidrv.shutdown = spi_mem_shutdown;
524
525 return __spi_register_driver(owner, &memdrv->spidrv);
526}
527EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
528
529/**
530 * spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver
531 * @memdrv: the SPI memory driver to unregister
532 *
533 * Unregisters a SPI memory driver.
534 */
535void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
536{
537 spi_unregister_driver(&memdrv->spidrv);
538}
539EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
540#endif /* __UBOOT__ */