wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 1 | /* |
| 2 | * This file is subject to the terms and conditions of the GNU General Public |
| 3 | * License. See the file "COPYING" in the main directory of this archive |
| 4 | * for more details. |
| 5 | * |
| 6 | * Copyright (c) 1994 - 1997, 1999, 2000 Ralf Baechle (ralf@gnu.org) |
| 7 | * Copyright (c) 2000 Silicon Graphics, Inc. |
| 8 | */ |
| 9 | #ifndef _ASM_BITOPS_H |
| 10 | #define _ASM_BITOPS_H |
| 11 | |
| 12 | #include <linux/types.h> |
| 13 | #include <asm/byteorder.h> /* sigh ... */ |
| 14 | |
| 15 | #ifdef __KERNEL__ |
| 16 | |
| 17 | #include <asm/sgidefs.h> |
| 18 | #include <asm/system.h> |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 19 | |
Fabio Estevam | b810aa1 | 2015-11-05 12:43:35 -0200 | [diff] [blame] | 20 | #include <asm-generic/bitops/fls.h> |
| 21 | #include <asm-generic/bitops/__fls.h> |
| 22 | #include <asm-generic/bitops/fls64.h> |
| 23 | #include <asm-generic/bitops/__ffs.h> |
| 24 | |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 25 | /* |
| 26 | * clear_bit() doesn't provide any barrier for the compiler. |
| 27 | */ |
| 28 | #define smp_mb__before_clear_bit() barrier() |
| 29 | #define smp_mb__after_clear_bit() barrier() |
| 30 | |
| 31 | /* |
| 32 | * Only disable interrupt for kernel mode stuff to keep usermode stuff |
| 33 | * that dares to use kernel include files alive. |
| 34 | */ |
| 35 | #define __bi_flags unsigned long flags |
| 36 | #define __bi_cli() __cli() |
| 37 | #define __bi_save_flags(x) __save_flags(x) |
| 38 | #define __bi_save_and_cli(x) __save_and_cli(x) |
| 39 | #define __bi_restore_flags(x) __restore_flags(x) |
| 40 | #else |
| 41 | #define __bi_flags |
| 42 | #define __bi_cli() |
| 43 | #define __bi_save_flags(x) |
| 44 | #define __bi_save_and_cli(x) |
| 45 | #define __bi_restore_flags(x) |
| 46 | #endif /* __KERNEL__ */ |
| 47 | |
| 48 | #ifdef CONFIG_CPU_HAS_LLSC |
| 49 | |
| 50 | #include <asm/mipsregs.h> |
| 51 | |
| 52 | /* |
| 53 | * These functions for MIPS ISA > 1 are interrupt and SMP proof and |
| 54 | * interrupt friendly |
| 55 | */ |
| 56 | |
| 57 | /* |
| 58 | * set_bit - Atomically set a bit in memory |
| 59 | * @nr: the bit to set |
| 60 | * @addr: the address to start counting from |
| 61 | * |
| 62 | * This function is atomic and may not be reordered. See __set_bit() |
| 63 | * if you do not require the atomic guarantees. |
| 64 | * Note that @nr may be almost arbitrarily large; this function is not |
| 65 | * restricted to acting on a single-word quantity. |
| 66 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 67 | static __inline__ void |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 68 | set_bit(int nr, volatile void *addr) |
| 69 | { |
| 70 | unsigned long *m = ((unsigned long *) addr) + (nr >> 5); |
| 71 | unsigned long temp; |
| 72 | |
| 73 | __asm__ __volatile__( |
| 74 | "1:\tll\t%0, %1\t\t# set_bit\n\t" |
| 75 | "or\t%0, %2\n\t" |
| 76 | "sc\t%0, %1\n\t" |
| 77 | "beqz\t%0, 1b" |
| 78 | : "=&r" (temp), "=m" (*m) |
| 79 | : "ir" (1UL << (nr & 0x1f)), "m" (*m)); |
| 80 | } |
| 81 | |
| 82 | /* |
| 83 | * __set_bit - Set a bit in memory |
| 84 | * @nr: the bit to set |
| 85 | * @addr: the address to start counting from |
| 86 | * |
| 87 | * Unlike set_bit(), this function is non-atomic and may be reordered. |
| 88 | * If it's called on the same region of memory simultaneously, the effect |
| 89 | * may be that only one operation succeeds. |
| 90 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 91 | static __inline__ void __set_bit(int nr, volatile void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 92 | { |
| 93 | unsigned long * m = ((unsigned long *) addr) + (nr >> 5); |
| 94 | |
| 95 | *m |= 1UL << (nr & 31); |
| 96 | } |
Simon Kagstrom | 0413cfe | 2009-09-17 15:15:52 +0200 | [diff] [blame] | 97 | #define PLATFORM__SET_BIT |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 98 | |
| 99 | /* |
| 100 | * clear_bit - Clears a bit in memory |
| 101 | * @nr: Bit to clear |
| 102 | * @addr: Address to start counting from |
| 103 | * |
| 104 | * clear_bit() is atomic and may not be reordered. However, it does |
| 105 | * not contain a memory barrier, so if it is used for locking purposes, |
| 106 | * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() |
| 107 | * in order to ensure changes are visible on other processors. |
| 108 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 109 | static __inline__ void |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 110 | clear_bit(int nr, volatile void *addr) |
| 111 | { |
| 112 | unsigned long *m = ((unsigned long *) addr) + (nr >> 5); |
| 113 | unsigned long temp; |
| 114 | |
| 115 | __asm__ __volatile__( |
| 116 | "1:\tll\t%0, %1\t\t# clear_bit\n\t" |
| 117 | "and\t%0, %2\n\t" |
| 118 | "sc\t%0, %1\n\t" |
| 119 | "beqz\t%0, 1b\n\t" |
| 120 | : "=&r" (temp), "=m" (*m) |
| 121 | : "ir" (~(1UL << (nr & 0x1f))), "m" (*m)); |
| 122 | } |
| 123 | |
| 124 | /* |
| 125 | * change_bit - Toggle a bit in memory |
| 126 | * @nr: Bit to clear |
| 127 | * @addr: Address to start counting from |
| 128 | * |
| 129 | * change_bit() is atomic and may not be reordered. |
| 130 | * Note that @nr may be almost arbitrarily large; this function is not |
| 131 | * restricted to acting on a single-word quantity. |
| 132 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 133 | static __inline__ void |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 134 | change_bit(int nr, volatile void *addr) |
| 135 | { |
| 136 | unsigned long *m = ((unsigned long *) addr) + (nr >> 5); |
| 137 | unsigned long temp; |
| 138 | |
| 139 | __asm__ __volatile__( |
| 140 | "1:\tll\t%0, %1\t\t# change_bit\n\t" |
| 141 | "xor\t%0, %2\n\t" |
| 142 | "sc\t%0, %1\n\t" |
| 143 | "beqz\t%0, 1b" |
| 144 | : "=&r" (temp), "=m" (*m) |
| 145 | : "ir" (1UL << (nr & 0x1f)), "m" (*m)); |
| 146 | } |
| 147 | |
| 148 | /* |
| 149 | * __change_bit - Toggle a bit in memory |
| 150 | * @nr: the bit to set |
| 151 | * @addr: the address to start counting from |
| 152 | * |
| 153 | * Unlike change_bit(), this function is non-atomic and may be reordered. |
| 154 | * If it's called on the same region of memory simultaneously, the effect |
| 155 | * may be that only one operation succeeds. |
| 156 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 157 | static __inline__ void __change_bit(int nr, volatile void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 158 | { |
| 159 | unsigned long * m = ((unsigned long *) addr) + (nr >> 5); |
| 160 | |
| 161 | *m ^= 1UL << (nr & 31); |
| 162 | } |
| 163 | |
| 164 | /* |
| 165 | * test_and_set_bit - Set a bit and return its old value |
| 166 | * @nr: Bit to set |
| 167 | * @addr: Address to count from |
| 168 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 169 | * This operation is atomic and cannot be reordered. |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 170 | * It also implies a memory barrier. |
| 171 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 172 | static __inline__ int |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 173 | test_and_set_bit(int nr, volatile void *addr) |
| 174 | { |
| 175 | unsigned long *m = ((unsigned long *) addr) + (nr >> 5); |
| 176 | unsigned long temp, res; |
| 177 | |
| 178 | __asm__ __volatile__( |
| 179 | ".set\tnoreorder\t\t# test_and_set_bit\n" |
| 180 | "1:\tll\t%0, %1\n\t" |
| 181 | "or\t%2, %0, %3\n\t" |
| 182 | "sc\t%2, %1\n\t" |
| 183 | "beqz\t%2, 1b\n\t" |
| 184 | " and\t%2, %0, %3\n\t" |
| 185 | ".set\treorder" |
| 186 | : "=&r" (temp), "=m" (*m), "=&r" (res) |
| 187 | : "r" (1UL << (nr & 0x1f)), "m" (*m) |
| 188 | : "memory"); |
| 189 | |
| 190 | return res != 0; |
| 191 | } |
| 192 | |
| 193 | /* |
| 194 | * __test_and_set_bit - Set a bit and return its old value |
| 195 | * @nr: Bit to set |
| 196 | * @addr: Address to count from |
| 197 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 198 | * This operation is non-atomic and can be reordered. |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 199 | * If two examples of this operation race, one can appear to succeed |
| 200 | * but actually fail. You must protect multiple accesses with a lock. |
| 201 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 202 | static __inline__ int __test_and_set_bit(int nr, volatile void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 203 | { |
| 204 | int mask, retval; |
| 205 | volatile int *a = addr; |
| 206 | |
| 207 | a += nr >> 5; |
| 208 | mask = 1 << (nr & 0x1f); |
| 209 | retval = (mask & *a) != 0; |
| 210 | *a |= mask; |
| 211 | |
| 212 | return retval; |
| 213 | } |
| 214 | |
| 215 | /* |
| 216 | * test_and_clear_bit - Clear a bit and return its old value |
| 217 | * @nr: Bit to set |
| 218 | * @addr: Address to count from |
| 219 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 220 | * This operation is atomic and cannot be reordered. |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 221 | * It also implies a memory barrier. |
| 222 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 223 | static __inline__ int |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 224 | test_and_clear_bit(int nr, volatile void *addr) |
| 225 | { |
| 226 | unsigned long *m = ((unsigned long *) addr) + (nr >> 5); |
| 227 | unsigned long temp, res; |
| 228 | |
| 229 | __asm__ __volatile__( |
| 230 | ".set\tnoreorder\t\t# test_and_clear_bit\n" |
| 231 | "1:\tll\t%0, %1\n\t" |
| 232 | "or\t%2, %0, %3\n\t" |
| 233 | "xor\t%2, %3\n\t" |
| 234 | "sc\t%2, %1\n\t" |
| 235 | "beqz\t%2, 1b\n\t" |
| 236 | " and\t%2, %0, %3\n\t" |
| 237 | ".set\treorder" |
| 238 | : "=&r" (temp), "=m" (*m), "=&r" (res) |
| 239 | : "r" (1UL << (nr & 0x1f)), "m" (*m) |
| 240 | : "memory"); |
| 241 | |
| 242 | return res != 0; |
| 243 | } |
| 244 | |
| 245 | /* |
| 246 | * __test_and_clear_bit - Clear a bit and return its old value |
| 247 | * @nr: Bit to set |
| 248 | * @addr: Address to count from |
| 249 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 250 | * This operation is non-atomic and can be reordered. |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 251 | * If two examples of this operation race, one can appear to succeed |
| 252 | * but actually fail. You must protect multiple accesses with a lock. |
| 253 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 254 | static __inline__ int __test_and_clear_bit(int nr, volatile void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 255 | { |
| 256 | int mask, retval; |
| 257 | volatile int *a = addr; |
| 258 | |
| 259 | a += nr >> 5; |
| 260 | mask = 1 << (nr & 0x1f); |
| 261 | retval = (mask & *a) != 0; |
| 262 | *a &= ~mask; |
| 263 | |
| 264 | return retval; |
| 265 | } |
| 266 | |
| 267 | /* |
| 268 | * test_and_change_bit - Change a bit and return its new value |
| 269 | * @nr: Bit to set |
| 270 | * @addr: Address to count from |
| 271 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 272 | * This operation is atomic and cannot be reordered. |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 273 | * It also implies a memory barrier. |
| 274 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 275 | static __inline__ int |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 276 | test_and_change_bit(int nr, volatile void *addr) |
| 277 | { |
| 278 | unsigned long *m = ((unsigned long *) addr) + (nr >> 5); |
| 279 | unsigned long temp, res; |
| 280 | |
| 281 | __asm__ __volatile__( |
| 282 | ".set\tnoreorder\t\t# test_and_change_bit\n" |
| 283 | "1:\tll\t%0, %1\n\t" |
| 284 | "xor\t%2, %0, %3\n\t" |
| 285 | "sc\t%2, %1\n\t" |
| 286 | "beqz\t%2, 1b\n\t" |
| 287 | " and\t%2, %0, %3\n\t" |
| 288 | ".set\treorder" |
| 289 | : "=&r" (temp), "=m" (*m), "=&r" (res) |
| 290 | : "r" (1UL << (nr & 0x1f)), "m" (*m) |
| 291 | : "memory"); |
| 292 | |
| 293 | return res != 0; |
| 294 | } |
| 295 | |
| 296 | /* |
| 297 | * __test_and_change_bit - Change a bit and return its old value |
| 298 | * @nr: Bit to set |
| 299 | * @addr: Address to count from |
| 300 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 301 | * This operation is non-atomic and can be reordered. |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 302 | * If two examples of this operation race, one can appear to succeed |
| 303 | * but actually fail. You must protect multiple accesses with a lock. |
| 304 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 305 | static __inline__ int __test_and_change_bit(int nr, volatile void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 306 | { |
| 307 | int mask, retval; |
| 308 | volatile int *a = addr; |
| 309 | |
| 310 | a += nr >> 5; |
| 311 | mask = 1 << (nr & 0x1f); |
| 312 | retval = (mask & *a) != 0; |
| 313 | *a ^= mask; |
| 314 | |
| 315 | return retval; |
| 316 | } |
| 317 | |
| 318 | #else /* MIPS I */ |
| 319 | |
| 320 | /* |
| 321 | * set_bit - Atomically set a bit in memory |
| 322 | * @nr: the bit to set |
| 323 | * @addr: the address to start counting from |
| 324 | * |
| 325 | * This function is atomic and may not be reordered. See __set_bit() |
| 326 | * if you do not require the atomic guarantees. |
| 327 | * Note that @nr may be almost arbitrarily large; this function is not |
| 328 | * restricted to acting on a single-word quantity. |
| 329 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 330 | static __inline__ void set_bit(int nr, volatile void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 331 | { |
| 332 | int mask; |
| 333 | volatile int *a = addr; |
| 334 | __bi_flags; |
| 335 | |
| 336 | a += nr >> 5; |
| 337 | mask = 1 << (nr & 0x1f); |
| 338 | __bi_save_and_cli(flags); |
| 339 | *a |= mask; |
| 340 | __bi_restore_flags(flags); |
| 341 | } |
| 342 | |
| 343 | /* |
| 344 | * __set_bit - Set a bit in memory |
| 345 | * @nr: the bit to set |
| 346 | * @addr: the address to start counting from |
| 347 | * |
| 348 | * Unlike set_bit(), this function is non-atomic and may be reordered. |
| 349 | * If it's called on the same region of memory simultaneously, the effect |
| 350 | * may be that only one operation succeeds. |
| 351 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 352 | static __inline__ void __set_bit(int nr, volatile void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 353 | { |
| 354 | int mask; |
| 355 | volatile int *a = addr; |
| 356 | |
| 357 | a += nr >> 5; |
| 358 | mask = 1 << (nr & 0x1f); |
| 359 | *a |= mask; |
| 360 | } |
| 361 | |
| 362 | /* |
| 363 | * clear_bit - Clears a bit in memory |
| 364 | * @nr: Bit to clear |
| 365 | * @addr: Address to start counting from |
| 366 | * |
| 367 | * clear_bit() is atomic and may not be reordered. However, it does |
| 368 | * not contain a memory barrier, so if it is used for locking purposes, |
| 369 | * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() |
| 370 | * in order to ensure changes are visible on other processors. |
| 371 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 372 | static __inline__ void clear_bit(int nr, volatile void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 373 | { |
| 374 | int mask; |
| 375 | volatile int *a = addr; |
| 376 | __bi_flags; |
| 377 | |
| 378 | a += nr >> 5; |
| 379 | mask = 1 << (nr & 0x1f); |
| 380 | __bi_save_and_cli(flags); |
| 381 | *a &= ~mask; |
| 382 | __bi_restore_flags(flags); |
| 383 | } |
| 384 | |
| 385 | /* |
| 386 | * change_bit - Toggle a bit in memory |
| 387 | * @nr: Bit to clear |
| 388 | * @addr: Address to start counting from |
| 389 | * |
| 390 | * change_bit() is atomic and may not be reordered. |
| 391 | * Note that @nr may be almost arbitrarily large; this function is not |
| 392 | * restricted to acting on a single-word quantity. |
| 393 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 394 | static __inline__ void change_bit(int nr, volatile void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 395 | { |
| 396 | int mask; |
| 397 | volatile int *a = addr; |
| 398 | __bi_flags; |
| 399 | |
| 400 | a += nr >> 5; |
| 401 | mask = 1 << (nr & 0x1f); |
| 402 | __bi_save_and_cli(flags); |
| 403 | *a ^= mask; |
| 404 | __bi_restore_flags(flags); |
| 405 | } |
| 406 | |
| 407 | /* |
| 408 | * __change_bit - Toggle a bit in memory |
| 409 | * @nr: the bit to set |
| 410 | * @addr: the address to start counting from |
| 411 | * |
| 412 | * Unlike change_bit(), this function is non-atomic and may be reordered. |
| 413 | * If it's called on the same region of memory simultaneously, the effect |
| 414 | * may be that only one operation succeeds. |
| 415 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 416 | static __inline__ void __change_bit(int nr, volatile void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 417 | { |
| 418 | unsigned long * m = ((unsigned long *) addr) + (nr >> 5); |
| 419 | |
| 420 | *m ^= 1UL << (nr & 31); |
| 421 | } |
| 422 | |
| 423 | /* |
| 424 | * test_and_set_bit - Set a bit and return its old value |
| 425 | * @nr: Bit to set |
| 426 | * @addr: Address to count from |
| 427 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 428 | * This operation is atomic and cannot be reordered. |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 429 | * It also implies a memory barrier. |
| 430 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 431 | static __inline__ int test_and_set_bit(int nr, volatile void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 432 | { |
| 433 | int mask, retval; |
| 434 | volatile int *a = addr; |
| 435 | __bi_flags; |
| 436 | |
| 437 | a += nr >> 5; |
| 438 | mask = 1 << (nr & 0x1f); |
| 439 | __bi_save_and_cli(flags); |
| 440 | retval = (mask & *a) != 0; |
| 441 | *a |= mask; |
| 442 | __bi_restore_flags(flags); |
| 443 | |
| 444 | return retval; |
| 445 | } |
| 446 | |
| 447 | /* |
| 448 | * __test_and_set_bit - Set a bit and return its old value |
| 449 | * @nr: Bit to set |
| 450 | * @addr: Address to count from |
| 451 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 452 | * This operation is non-atomic and can be reordered. |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 453 | * If two examples of this operation race, one can appear to succeed |
| 454 | * but actually fail. You must protect multiple accesses with a lock. |
| 455 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 456 | static __inline__ int __test_and_set_bit(int nr, volatile void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 457 | { |
| 458 | int mask, retval; |
| 459 | volatile int *a = addr; |
| 460 | |
| 461 | a += nr >> 5; |
| 462 | mask = 1 << (nr & 0x1f); |
| 463 | retval = (mask & *a) != 0; |
| 464 | *a |= mask; |
| 465 | |
| 466 | return retval; |
| 467 | } |
| 468 | |
| 469 | /* |
| 470 | * test_and_clear_bit - Clear a bit and return its old value |
| 471 | * @nr: Bit to set |
| 472 | * @addr: Address to count from |
| 473 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 474 | * This operation is atomic and cannot be reordered. |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 475 | * It also implies a memory barrier. |
| 476 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 477 | static __inline__ int test_and_clear_bit(int nr, volatile void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 478 | { |
| 479 | int mask, retval; |
| 480 | volatile int *a = addr; |
| 481 | __bi_flags; |
| 482 | |
| 483 | a += nr >> 5; |
| 484 | mask = 1 << (nr & 0x1f); |
| 485 | __bi_save_and_cli(flags); |
| 486 | retval = (mask & *a) != 0; |
| 487 | *a &= ~mask; |
| 488 | __bi_restore_flags(flags); |
| 489 | |
| 490 | return retval; |
| 491 | } |
| 492 | |
| 493 | /* |
| 494 | * __test_and_clear_bit - Clear a bit and return its old value |
| 495 | * @nr: Bit to set |
| 496 | * @addr: Address to count from |
| 497 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 498 | * This operation is non-atomic and can be reordered. |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 499 | * If two examples of this operation race, one can appear to succeed |
| 500 | * but actually fail. You must protect multiple accesses with a lock. |
| 501 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 502 | static __inline__ int __test_and_clear_bit(int nr, volatile void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 503 | { |
| 504 | int mask, retval; |
| 505 | volatile int *a = addr; |
| 506 | |
| 507 | a += nr >> 5; |
| 508 | mask = 1 << (nr & 0x1f); |
| 509 | retval = (mask & *a) != 0; |
| 510 | *a &= ~mask; |
| 511 | |
| 512 | return retval; |
| 513 | } |
| 514 | |
| 515 | /* |
| 516 | * test_and_change_bit - Change a bit and return its new value |
| 517 | * @nr: Bit to set |
| 518 | * @addr: Address to count from |
| 519 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 520 | * This operation is atomic and cannot be reordered. |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 521 | * It also implies a memory barrier. |
| 522 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 523 | static __inline__ int test_and_change_bit(int nr, volatile void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 524 | { |
| 525 | int mask, retval; |
| 526 | volatile int *a = addr; |
| 527 | __bi_flags; |
| 528 | |
| 529 | a += nr >> 5; |
| 530 | mask = 1 << (nr & 0x1f); |
| 531 | __bi_save_and_cli(flags); |
| 532 | retval = (mask & *a) != 0; |
| 533 | *a ^= mask; |
| 534 | __bi_restore_flags(flags); |
| 535 | |
| 536 | return retval; |
| 537 | } |
| 538 | |
| 539 | /* |
| 540 | * __test_and_change_bit - Change a bit and return its old value |
| 541 | * @nr: Bit to set |
| 542 | * @addr: Address to count from |
| 543 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 544 | * This operation is non-atomic and can be reordered. |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 545 | * If two examples of this operation race, one can appear to succeed |
| 546 | * but actually fail. You must protect multiple accesses with a lock. |
| 547 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 548 | static __inline__ int __test_and_change_bit(int nr, volatile void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 549 | { |
| 550 | int mask, retval; |
| 551 | volatile int *a = addr; |
| 552 | |
| 553 | a += nr >> 5; |
| 554 | mask = 1 << (nr & 0x1f); |
| 555 | retval = (mask & *a) != 0; |
| 556 | *a ^= mask; |
| 557 | |
| 558 | return retval; |
| 559 | } |
| 560 | |
| 561 | #undef __bi_flags |
| 562 | #undef __bi_cli |
| 563 | #undef __bi_save_flags |
| 564 | #undef __bi_restore_flags |
| 565 | |
| 566 | #endif /* MIPS I */ |
| 567 | |
| 568 | /* |
| 569 | * test_bit - Determine whether a bit is set |
| 570 | * @nr: bit number to test |
| 571 | * @addr: Address to start counting from |
| 572 | */ |
Daniel Schwierzeck | ea40a05 | 2012-12-08 21:33:44 +0100 | [diff] [blame] | 573 | static __inline__ int test_bit(int nr, const volatile void *addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 574 | { |
| 575 | return ((1UL << (nr & 31)) & (((const unsigned int *) addr)[nr >> 5])) != 0; |
| 576 | } |
| 577 | |
| 578 | #ifndef __MIPSEB__ |
| 579 | |
| 580 | /* Little endian versions. */ |
| 581 | |
| 582 | /* |
| 583 | * find_first_zero_bit - find the first zero bit in a memory region |
| 584 | * @addr: The address to start the search at |
| 585 | * @size: The maximum size to search |
| 586 | * |
| 587 | * Returns the bit-number of the first zero bit, not the number of the byte |
| 588 | * containing a bit. |
| 589 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 590 | static __inline__ int find_first_zero_bit (void *addr, unsigned size) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 591 | { |
| 592 | unsigned long dummy; |
| 593 | int res; |
| 594 | |
| 595 | if (!size) |
| 596 | return 0; |
| 597 | |
| 598 | __asm__ (".set\tnoreorder\n\t" |
| 599 | ".set\tnoat\n" |
| 600 | "1:\tsubu\t$1,%6,%0\n\t" |
| 601 | "blez\t$1,2f\n\t" |
| 602 | "lw\t$1,(%5)\n\t" |
| 603 | "addiu\t%5,4\n\t" |
| 604 | #if (_MIPS_ISA == _MIPS_ISA_MIPS2 ) || (_MIPS_ISA == _MIPS_ISA_MIPS3 ) || \ |
| 605 | (_MIPS_ISA == _MIPS_ISA_MIPS4 ) || (_MIPS_ISA == _MIPS_ISA_MIPS5 ) || \ |
| 606 | (_MIPS_ISA == _MIPS_ISA_MIPS32) || (_MIPS_ISA == _MIPS_ISA_MIPS64) |
| 607 | "beql\t%1,$1,1b\n\t" |
| 608 | "addiu\t%0,32\n\t" |
| 609 | #else |
| 610 | "addiu\t%0,32\n\t" |
| 611 | "beq\t%1,$1,1b\n\t" |
| 612 | "nop\n\t" |
| 613 | "subu\t%0,32\n\t" |
| 614 | #endif |
| 615 | #ifdef __MIPSEB__ |
| 616 | #error "Fix this for big endian" |
| 617 | #endif /* __MIPSEB__ */ |
| 618 | "li\t%1,1\n" |
| 619 | "1:\tand\t%2,$1,%1\n\t" |
| 620 | "beqz\t%2,2f\n\t" |
| 621 | "sll\t%1,%1,1\n\t" |
| 622 | "bnez\t%1,1b\n\t" |
| 623 | "add\t%0,%0,1\n\t" |
| 624 | ".set\tat\n\t" |
| 625 | ".set\treorder\n" |
| 626 | "2:" |
| 627 | : "=r" (res), "=r" (dummy), "=r" (addr) |
| 628 | : "0" ((signed int) 0), "1" ((unsigned int) 0xffffffff), |
| 629 | "2" (addr), "r" (size) |
| 630 | : "$1"); |
| 631 | |
| 632 | return res; |
| 633 | } |
| 634 | |
| 635 | /* |
| 636 | * find_next_zero_bit - find the first zero bit in a memory region |
| 637 | * @addr: The address to base the search on |
| 638 | * @offset: The bitnumber to start searching at |
| 639 | * @size: The maximum size to search |
| 640 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 641 | static __inline__ int find_next_zero_bit (void * addr, int size, int offset) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 642 | { |
| 643 | unsigned int *p = ((unsigned int *) addr) + (offset >> 5); |
| 644 | int set = 0, bit = offset & 31, res; |
| 645 | unsigned long dummy; |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 646 | |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 647 | if (bit) { |
| 648 | /* |
| 649 | * Look for zero in first byte |
| 650 | */ |
| 651 | #ifdef __MIPSEB__ |
| 652 | #error "Fix this for big endian byte order" |
| 653 | #endif |
| 654 | __asm__(".set\tnoreorder\n\t" |
| 655 | ".set\tnoat\n" |
| 656 | "1:\tand\t$1,%4,%1\n\t" |
| 657 | "beqz\t$1,1f\n\t" |
| 658 | "sll\t%1,%1,1\n\t" |
| 659 | "bnez\t%1,1b\n\t" |
| 660 | "addiu\t%0,1\n\t" |
| 661 | ".set\tat\n\t" |
| 662 | ".set\treorder\n" |
| 663 | "1:" |
| 664 | : "=r" (set), "=r" (dummy) |
| 665 | : "0" (0), "1" (1 << bit), "r" (*p) |
| 666 | : "$1"); |
| 667 | if (set < (32 - bit)) |
| 668 | return set + offset; |
| 669 | set = 32 - bit; |
| 670 | p++; |
| 671 | } |
| 672 | /* |
| 673 | * No zero yet, search remaining full bytes for a zero |
| 674 | */ |
| 675 | res = find_first_zero_bit(p, size - 32 * (p - (unsigned int *) addr)); |
| 676 | return offset + set + res; |
| 677 | } |
| 678 | |
| 679 | #endif /* !(__MIPSEB__) */ |
| 680 | |
| 681 | /* |
| 682 | * ffz - find first zero in word. |
| 683 | * @word: The word to search |
| 684 | * |
| 685 | * Undefined if no zero exists, so code should check against ~0UL first. |
| 686 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 687 | static __inline__ unsigned long ffz(unsigned long word) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 688 | { |
| 689 | unsigned int __res; |
| 690 | unsigned int mask = 1; |
| 691 | |
| 692 | __asm__ ( |
| 693 | ".set\tnoreorder\n\t" |
| 694 | ".set\tnoat\n\t" |
| 695 | "move\t%0,$0\n" |
| 696 | "1:\tand\t$1,%2,%1\n\t" |
| 697 | "beqz\t$1,2f\n\t" |
| 698 | "sll\t%1,1\n\t" |
| 699 | "bnez\t%1,1b\n\t" |
| 700 | "addiu\t%0,1\n\t" |
| 701 | ".set\tat\n\t" |
| 702 | ".set\treorder\n" |
| 703 | "2:\n\t" |
| 704 | : "=&r" (__res), "=r" (mask) |
| 705 | : "r" (word), "1" (mask) |
| 706 | : "$1"); |
| 707 | |
| 708 | return __res; |
| 709 | } |
| 710 | |
| 711 | #ifdef __KERNEL__ |
| 712 | |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 713 | /* |
| 714 | * hweightN - returns the hamming weight of a N-bit word |
| 715 | * @x: the word to weigh |
| 716 | * |
| 717 | * The Hamming Weight of a number is the total number of bits set in it. |
| 718 | */ |
| 719 | |
| 720 | #define hweight32(x) generic_hweight32(x) |
| 721 | #define hweight16(x) generic_hweight16(x) |
| 722 | #define hweight8(x) generic_hweight8(x) |
| 723 | |
| 724 | #endif /* __KERNEL__ */ |
| 725 | |
| 726 | #ifdef __MIPSEB__ |
| 727 | /* |
| 728 | * find_next_zero_bit - find the first zero bit in a memory region |
| 729 | * @addr: The address to base the search on |
| 730 | * @offset: The bitnumber to start searching at |
| 731 | * @size: The maximum size to search |
| 732 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 733 | static __inline__ int find_next_zero_bit(void *addr, int size, int offset) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 734 | { |
| 735 | unsigned long *p = ((unsigned long *) addr) + (offset >> 5); |
| 736 | unsigned long result = offset & ~31UL; |
| 737 | unsigned long tmp; |
| 738 | |
| 739 | if (offset >= size) |
| 740 | return size; |
| 741 | size -= result; |
| 742 | offset &= 31UL; |
| 743 | if (offset) { |
| 744 | tmp = *(p++); |
| 745 | tmp |= ~0UL >> (32-offset); |
| 746 | if (size < 32) |
| 747 | goto found_first; |
| 748 | if (~tmp) |
| 749 | goto found_middle; |
| 750 | size -= 32; |
| 751 | result += 32; |
| 752 | } |
| 753 | while (size & ~31UL) { |
| 754 | if (~(tmp = *(p++))) |
| 755 | goto found_middle; |
| 756 | result += 32; |
| 757 | size -= 32; |
| 758 | } |
| 759 | if (!size) |
| 760 | return result; |
| 761 | tmp = *p; |
| 762 | |
| 763 | found_first: |
| 764 | tmp |= ~0UL << size; |
| 765 | found_middle: |
| 766 | return result + ffz(tmp); |
| 767 | } |
| 768 | |
| 769 | /* Linus sez that gcc can optimize the following correctly, we'll see if this |
| 770 | * holds on the Sparc as it does for the ALPHA. |
| 771 | */ |
| 772 | |
| 773 | #if 0 /* Fool kernel-doc since it doesn't do macros yet */ |
| 774 | /* |
| 775 | * find_first_zero_bit - find the first zero bit in a memory region |
| 776 | * @addr: The address to start the search at |
| 777 | * @size: The maximum size to search |
| 778 | * |
| 779 | * Returns the bit-number of the first zero bit, not the number of the byte |
| 780 | * containing a bit. |
| 781 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 782 | static int find_first_zero_bit (void *addr, unsigned size); |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 783 | #endif |
| 784 | |
| 785 | #define find_first_zero_bit(addr, size) \ |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 786 | find_next_zero_bit((addr), (size), 0) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 787 | |
| 788 | #endif /* (__MIPSEB__) */ |
| 789 | |
| 790 | /* Now for the ext2 filesystem bit operations and helper routines. */ |
| 791 | |
| 792 | #ifdef __MIPSEB__ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 793 | static __inline__ int ext2_set_bit(int nr, void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 794 | { |
| 795 | int mask, retval, flags; |
| 796 | unsigned char *ADDR = (unsigned char *) addr; |
| 797 | |
| 798 | ADDR += nr >> 3; |
| 799 | mask = 1 << (nr & 0x07); |
| 800 | save_and_cli(flags); |
| 801 | retval = (mask & *ADDR) != 0; |
| 802 | *ADDR |= mask; |
| 803 | restore_flags(flags); |
| 804 | return retval; |
| 805 | } |
| 806 | |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 807 | static __inline__ int ext2_clear_bit(int nr, void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 808 | { |
| 809 | int mask, retval, flags; |
| 810 | unsigned char *ADDR = (unsigned char *) addr; |
| 811 | |
| 812 | ADDR += nr >> 3; |
| 813 | mask = 1 << (nr & 0x07); |
| 814 | save_and_cli(flags); |
| 815 | retval = (mask & *ADDR) != 0; |
| 816 | *ADDR &= ~mask; |
| 817 | restore_flags(flags); |
| 818 | return retval; |
| 819 | } |
| 820 | |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 821 | static __inline__ int ext2_test_bit(int nr, const void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 822 | { |
| 823 | int mask; |
| 824 | const unsigned char *ADDR = (const unsigned char *) addr; |
| 825 | |
| 826 | ADDR += nr >> 3; |
| 827 | mask = 1 << (nr & 0x07); |
| 828 | return ((mask & *ADDR) != 0); |
| 829 | } |
| 830 | |
| 831 | #define ext2_find_first_zero_bit(addr, size) \ |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 832 | ext2_find_next_zero_bit((addr), (size), 0) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 833 | |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 834 | static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 835 | { |
| 836 | unsigned long *p = ((unsigned long *) addr) + (offset >> 5); |
| 837 | unsigned long result = offset & ~31UL; |
| 838 | unsigned long tmp; |
| 839 | |
| 840 | if (offset >= size) |
| 841 | return size; |
| 842 | size -= result; |
| 843 | offset &= 31UL; |
| 844 | if(offset) { |
| 845 | /* We hold the little endian value in tmp, but then the |
| 846 | * shift is illegal. So we could keep a big endian value |
| 847 | * in tmp, like this: |
| 848 | * |
| 849 | * tmp = __swab32(*(p++)); |
| 850 | * tmp |= ~0UL >> (32-offset); |
| 851 | * |
| 852 | * but this would decrease preformance, so we change the |
| 853 | * shift: |
| 854 | */ |
| 855 | tmp = *(p++); |
| 856 | tmp |= __swab32(~0UL >> (32-offset)); |
| 857 | if(size < 32) |
| 858 | goto found_first; |
| 859 | if(~tmp) |
| 860 | goto found_middle; |
| 861 | size -= 32; |
| 862 | result += 32; |
| 863 | } |
| 864 | while(size & ~31UL) { |
| 865 | if(~(tmp = *(p++))) |
| 866 | goto found_middle; |
| 867 | result += 32; |
| 868 | size -= 32; |
| 869 | } |
| 870 | if(!size) |
| 871 | return result; |
| 872 | tmp = *p; |
| 873 | |
| 874 | found_first: |
| 875 | /* tmp is little endian, so we would have to swab the shift, |
| 876 | * see above. But then we have to swab tmp below for ffz, so |
| 877 | * we might as well do this here. |
| 878 | */ |
| 879 | return result + ffz(__swab32(tmp) | (~0UL << size)); |
| 880 | found_middle: |
| 881 | return result + ffz(__swab32(tmp)); |
| 882 | } |
| 883 | #else /* !(__MIPSEB__) */ |
| 884 | |
| 885 | /* Native ext2 byte ordering, just collapse using defines. */ |
| 886 | #define ext2_set_bit(nr, addr) test_and_set_bit((nr), (addr)) |
| 887 | #define ext2_clear_bit(nr, addr) test_and_clear_bit((nr), (addr)) |
| 888 | #define ext2_test_bit(nr, addr) test_bit((nr), (addr)) |
| 889 | #define ext2_find_first_zero_bit(addr, size) find_first_zero_bit((addr), (size)) |
| 890 | #define ext2_find_next_zero_bit(addr, size, offset) \ |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 891 | find_next_zero_bit((addr), (size), (offset)) |
| 892 | |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 893 | #endif /* !(__MIPSEB__) */ |
| 894 | |
| 895 | /* |
| 896 | * Bitmap functions for the minix filesystem. |
| 897 | * FIXME: These assume that Minix uses the native byte/bitorder. |
| 898 | * This limits the Minix filesystem's value for data exchange very much. |
| 899 | */ |
| 900 | #define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr) |
| 901 | #define minix_set_bit(nr,addr) set_bit(nr,addr) |
| 902 | #define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr) |
| 903 | #define minix_test_bit(nr,addr) test_bit(nr,addr) |
| 904 | #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) |
| 905 | |
| 906 | #endif /* _ASM_BITOPS_H */ |