Tom Rini | 83d290c | 2018-05-06 17:58:06 -0400 | [diff] [blame] | 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 2 | /* |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 3 | * Copyright (c) 1994 - 1997, 1999, 2000 Ralf Baechle (ralf@gnu.org) |
| 4 | * Copyright (c) 2000 Silicon Graphics, Inc. |
| 5 | */ |
| 6 | #ifndef _ASM_BITOPS_H |
| 7 | #define _ASM_BITOPS_H |
| 8 | |
| 9 | #include <linux/types.h> |
| 10 | #include <asm/byteorder.h> /* sigh ... */ |
| 11 | |
| 12 | #ifdef __KERNEL__ |
| 13 | |
| 14 | #include <asm/sgidefs.h> |
| 15 | #include <asm/system.h> |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 16 | |
Fabio Estevam | b810aa1 | 2015-11-05 12:43:35 -0200 | [diff] [blame] | 17 | #include <asm-generic/bitops/fls.h> |
| 18 | #include <asm-generic/bitops/__fls.h> |
| 19 | #include <asm-generic/bitops/fls64.h> |
| 20 | #include <asm-generic/bitops/__ffs.h> |
| 21 | |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 22 | /* |
| 23 | * clear_bit() doesn't provide any barrier for the compiler. |
| 24 | */ |
| 25 | #define smp_mb__before_clear_bit() barrier() |
| 26 | #define smp_mb__after_clear_bit() barrier() |
| 27 | |
| 28 | /* |
| 29 | * Only disable interrupt for kernel mode stuff to keep usermode stuff |
| 30 | * that dares to use kernel include files alive. |
| 31 | */ |
| 32 | #define __bi_flags unsigned long flags |
| 33 | #define __bi_cli() __cli() |
| 34 | #define __bi_save_flags(x) __save_flags(x) |
| 35 | #define __bi_save_and_cli(x) __save_and_cli(x) |
| 36 | #define __bi_restore_flags(x) __restore_flags(x) |
| 37 | #else |
| 38 | #define __bi_flags |
| 39 | #define __bi_cli() |
| 40 | #define __bi_save_flags(x) |
| 41 | #define __bi_save_and_cli(x) |
| 42 | #define __bi_restore_flags(x) |
| 43 | #endif /* __KERNEL__ */ |
| 44 | |
| 45 | #ifdef CONFIG_CPU_HAS_LLSC |
| 46 | |
| 47 | #include <asm/mipsregs.h> |
| 48 | |
| 49 | /* |
| 50 | * These functions for MIPS ISA > 1 are interrupt and SMP proof and |
| 51 | * interrupt friendly |
| 52 | */ |
| 53 | |
| 54 | /* |
| 55 | * set_bit - Atomically set a bit in memory |
| 56 | * @nr: the bit to set |
| 57 | * @addr: the address to start counting from |
| 58 | * |
| 59 | * This function is atomic and may not be reordered. See __set_bit() |
| 60 | * if you do not require the atomic guarantees. |
| 61 | * Note that @nr may be almost arbitrarily large; this function is not |
| 62 | * restricted to acting on a single-word quantity. |
| 63 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 64 | static __inline__ void |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 65 | set_bit(int nr, volatile void *addr) |
| 66 | { |
| 67 | unsigned long *m = ((unsigned long *) addr) + (nr >> 5); |
| 68 | unsigned long temp; |
| 69 | |
| 70 | __asm__ __volatile__( |
| 71 | "1:\tll\t%0, %1\t\t# set_bit\n\t" |
| 72 | "or\t%0, %2\n\t" |
| 73 | "sc\t%0, %1\n\t" |
| 74 | "beqz\t%0, 1b" |
| 75 | : "=&r" (temp), "=m" (*m) |
| 76 | : "ir" (1UL << (nr & 0x1f)), "m" (*m)); |
| 77 | } |
| 78 | |
| 79 | /* |
| 80 | * __set_bit - Set a bit in memory |
| 81 | * @nr: the bit to set |
| 82 | * @addr: the address to start counting from |
| 83 | * |
| 84 | * Unlike set_bit(), this function is non-atomic and may be reordered. |
| 85 | * If it's called on the same region of memory simultaneously, the effect |
| 86 | * may be that only one operation succeeds. |
| 87 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 88 | static __inline__ void __set_bit(int nr, volatile void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 89 | { |
| 90 | unsigned long * m = ((unsigned long *) addr) + (nr >> 5); |
| 91 | |
| 92 | *m |= 1UL << (nr & 31); |
| 93 | } |
Simon Kagstrom | 0413cfe | 2009-09-17 15:15:52 +0200 | [diff] [blame] | 94 | #define PLATFORM__SET_BIT |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 95 | |
| 96 | /* |
| 97 | * clear_bit - Clears a bit in memory |
| 98 | * @nr: Bit to clear |
| 99 | * @addr: Address to start counting from |
| 100 | * |
| 101 | * clear_bit() is atomic and may not be reordered. However, it does |
| 102 | * not contain a memory barrier, so if it is used for locking purposes, |
| 103 | * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() |
| 104 | * in order to ensure changes are visible on other processors. |
| 105 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 106 | static __inline__ void |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 107 | clear_bit(int nr, volatile void *addr) |
| 108 | { |
| 109 | unsigned long *m = ((unsigned long *) addr) + (nr >> 5); |
| 110 | unsigned long temp; |
| 111 | |
| 112 | __asm__ __volatile__( |
| 113 | "1:\tll\t%0, %1\t\t# clear_bit\n\t" |
| 114 | "and\t%0, %2\n\t" |
| 115 | "sc\t%0, %1\n\t" |
| 116 | "beqz\t%0, 1b\n\t" |
| 117 | : "=&r" (temp), "=m" (*m) |
| 118 | : "ir" (~(1UL << (nr & 0x1f))), "m" (*m)); |
| 119 | } |
| 120 | |
| 121 | /* |
| 122 | * change_bit - Toggle a bit in memory |
| 123 | * @nr: Bit to clear |
| 124 | * @addr: Address to start counting from |
| 125 | * |
| 126 | * change_bit() is atomic and may not be reordered. |
| 127 | * Note that @nr may be almost arbitrarily large; this function is not |
| 128 | * restricted to acting on a single-word quantity. |
| 129 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 130 | static __inline__ void |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 131 | change_bit(int nr, volatile void *addr) |
| 132 | { |
| 133 | unsigned long *m = ((unsigned long *) addr) + (nr >> 5); |
| 134 | unsigned long temp; |
| 135 | |
| 136 | __asm__ __volatile__( |
| 137 | "1:\tll\t%0, %1\t\t# change_bit\n\t" |
| 138 | "xor\t%0, %2\n\t" |
| 139 | "sc\t%0, %1\n\t" |
| 140 | "beqz\t%0, 1b" |
| 141 | : "=&r" (temp), "=m" (*m) |
| 142 | : "ir" (1UL << (nr & 0x1f)), "m" (*m)); |
| 143 | } |
| 144 | |
| 145 | /* |
| 146 | * __change_bit - Toggle a bit in memory |
| 147 | * @nr: the bit to set |
| 148 | * @addr: the address to start counting from |
| 149 | * |
| 150 | * Unlike change_bit(), this function is non-atomic and may be reordered. |
| 151 | * If it's called on the same region of memory simultaneously, the effect |
| 152 | * may be that only one operation succeeds. |
| 153 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 154 | static __inline__ void __change_bit(int nr, volatile void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 155 | { |
| 156 | unsigned long * m = ((unsigned long *) addr) + (nr >> 5); |
| 157 | |
| 158 | *m ^= 1UL << (nr & 31); |
| 159 | } |
| 160 | |
| 161 | /* |
| 162 | * test_and_set_bit - Set a bit and return its old value |
| 163 | * @nr: Bit to set |
| 164 | * @addr: Address to count from |
| 165 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 166 | * This operation is atomic and cannot be reordered. |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 167 | * It also implies a memory barrier. |
| 168 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 169 | static __inline__ int |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 170 | test_and_set_bit(int nr, volatile void *addr) |
| 171 | { |
| 172 | unsigned long *m = ((unsigned long *) addr) + (nr >> 5); |
| 173 | unsigned long temp, res; |
| 174 | |
| 175 | __asm__ __volatile__( |
| 176 | ".set\tnoreorder\t\t# test_and_set_bit\n" |
| 177 | "1:\tll\t%0, %1\n\t" |
| 178 | "or\t%2, %0, %3\n\t" |
| 179 | "sc\t%2, %1\n\t" |
| 180 | "beqz\t%2, 1b\n\t" |
| 181 | " and\t%2, %0, %3\n\t" |
| 182 | ".set\treorder" |
| 183 | : "=&r" (temp), "=m" (*m), "=&r" (res) |
| 184 | : "r" (1UL << (nr & 0x1f)), "m" (*m) |
| 185 | : "memory"); |
| 186 | |
| 187 | return res != 0; |
| 188 | } |
| 189 | |
| 190 | /* |
| 191 | * __test_and_set_bit - Set a bit and return its old value |
| 192 | * @nr: Bit to set |
| 193 | * @addr: Address to count from |
| 194 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 195 | * This operation is non-atomic and can be reordered. |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 196 | * If two examples of this operation race, one can appear to succeed |
| 197 | * but actually fail. You must protect multiple accesses with a lock. |
| 198 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 199 | static __inline__ int __test_and_set_bit(int nr, volatile void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 200 | { |
| 201 | int mask, retval; |
| 202 | volatile int *a = addr; |
| 203 | |
| 204 | a += nr >> 5; |
| 205 | mask = 1 << (nr & 0x1f); |
| 206 | retval = (mask & *a) != 0; |
| 207 | *a |= mask; |
| 208 | |
| 209 | return retval; |
| 210 | } |
| 211 | |
| 212 | /* |
| 213 | * test_and_clear_bit - Clear a bit and return its old value |
| 214 | * @nr: Bit to set |
| 215 | * @addr: Address to count from |
| 216 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 217 | * This operation is atomic and cannot be reordered. |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 218 | * It also implies a memory barrier. |
| 219 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 220 | static __inline__ int |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 221 | test_and_clear_bit(int nr, volatile void *addr) |
| 222 | { |
| 223 | unsigned long *m = ((unsigned long *) addr) + (nr >> 5); |
| 224 | unsigned long temp, res; |
| 225 | |
| 226 | __asm__ __volatile__( |
| 227 | ".set\tnoreorder\t\t# test_and_clear_bit\n" |
| 228 | "1:\tll\t%0, %1\n\t" |
| 229 | "or\t%2, %0, %3\n\t" |
| 230 | "xor\t%2, %3\n\t" |
| 231 | "sc\t%2, %1\n\t" |
| 232 | "beqz\t%2, 1b\n\t" |
| 233 | " and\t%2, %0, %3\n\t" |
| 234 | ".set\treorder" |
| 235 | : "=&r" (temp), "=m" (*m), "=&r" (res) |
| 236 | : "r" (1UL << (nr & 0x1f)), "m" (*m) |
| 237 | : "memory"); |
| 238 | |
| 239 | return res != 0; |
| 240 | } |
| 241 | |
| 242 | /* |
| 243 | * __test_and_clear_bit - Clear a bit and return its old value |
| 244 | * @nr: Bit to set |
| 245 | * @addr: Address to count from |
| 246 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 247 | * This operation is non-atomic and can be reordered. |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 248 | * If two examples of this operation race, one can appear to succeed |
| 249 | * but actually fail. You must protect multiple accesses with a lock. |
| 250 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 251 | static __inline__ int __test_and_clear_bit(int nr, volatile void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 252 | { |
| 253 | int mask, retval; |
| 254 | volatile int *a = addr; |
| 255 | |
| 256 | a += nr >> 5; |
| 257 | mask = 1 << (nr & 0x1f); |
| 258 | retval = (mask & *a) != 0; |
| 259 | *a &= ~mask; |
| 260 | |
| 261 | return retval; |
| 262 | } |
| 263 | |
| 264 | /* |
| 265 | * test_and_change_bit - Change a bit and return its new value |
| 266 | * @nr: Bit to set |
| 267 | * @addr: Address to count from |
| 268 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 269 | * This operation is atomic and cannot be reordered. |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 270 | * It also implies a memory barrier. |
| 271 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 272 | static __inline__ int |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 273 | test_and_change_bit(int nr, volatile void *addr) |
| 274 | { |
| 275 | unsigned long *m = ((unsigned long *) addr) + (nr >> 5); |
| 276 | unsigned long temp, res; |
| 277 | |
| 278 | __asm__ __volatile__( |
| 279 | ".set\tnoreorder\t\t# test_and_change_bit\n" |
| 280 | "1:\tll\t%0, %1\n\t" |
| 281 | "xor\t%2, %0, %3\n\t" |
| 282 | "sc\t%2, %1\n\t" |
| 283 | "beqz\t%2, 1b\n\t" |
| 284 | " and\t%2, %0, %3\n\t" |
| 285 | ".set\treorder" |
| 286 | : "=&r" (temp), "=m" (*m), "=&r" (res) |
| 287 | : "r" (1UL << (nr & 0x1f)), "m" (*m) |
| 288 | : "memory"); |
| 289 | |
| 290 | return res != 0; |
| 291 | } |
| 292 | |
| 293 | /* |
| 294 | * __test_and_change_bit - Change a bit and return its old value |
| 295 | * @nr: Bit to set |
| 296 | * @addr: Address to count from |
| 297 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 298 | * This operation is non-atomic and can be reordered. |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 299 | * If two examples of this operation race, one can appear to succeed |
| 300 | * but actually fail. You must protect multiple accesses with a lock. |
| 301 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 302 | static __inline__ int __test_and_change_bit(int nr, volatile void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 303 | { |
| 304 | int mask, retval; |
| 305 | volatile int *a = addr; |
| 306 | |
| 307 | a += nr >> 5; |
| 308 | mask = 1 << (nr & 0x1f); |
| 309 | retval = (mask & *a) != 0; |
| 310 | *a ^= mask; |
| 311 | |
| 312 | return retval; |
| 313 | } |
| 314 | |
| 315 | #else /* MIPS I */ |
| 316 | |
| 317 | /* |
| 318 | * set_bit - Atomically set a bit in memory |
| 319 | * @nr: the bit to set |
| 320 | * @addr: the address to start counting from |
| 321 | * |
| 322 | * This function is atomic and may not be reordered. See __set_bit() |
| 323 | * if you do not require the atomic guarantees. |
| 324 | * Note that @nr may be almost arbitrarily large; this function is not |
| 325 | * restricted to acting on a single-word quantity. |
| 326 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 327 | static __inline__ void set_bit(int nr, volatile void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 328 | { |
| 329 | int mask; |
| 330 | volatile int *a = addr; |
| 331 | __bi_flags; |
| 332 | |
| 333 | a += nr >> 5; |
| 334 | mask = 1 << (nr & 0x1f); |
| 335 | __bi_save_and_cli(flags); |
| 336 | *a |= mask; |
| 337 | __bi_restore_flags(flags); |
| 338 | } |
| 339 | |
| 340 | /* |
| 341 | * __set_bit - Set a bit in memory |
| 342 | * @nr: the bit to set |
| 343 | * @addr: the address to start counting from |
| 344 | * |
| 345 | * Unlike set_bit(), this function is non-atomic and may be reordered. |
| 346 | * If it's called on the same region of memory simultaneously, the effect |
| 347 | * may be that only one operation succeeds. |
| 348 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 349 | static __inline__ void __set_bit(int nr, volatile void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 350 | { |
| 351 | int mask; |
| 352 | volatile int *a = addr; |
| 353 | |
| 354 | a += nr >> 5; |
| 355 | mask = 1 << (nr & 0x1f); |
| 356 | *a |= mask; |
| 357 | } |
| 358 | |
| 359 | /* |
| 360 | * clear_bit - Clears a bit in memory |
| 361 | * @nr: Bit to clear |
| 362 | * @addr: Address to start counting from |
| 363 | * |
| 364 | * clear_bit() is atomic and may not be reordered. However, it does |
| 365 | * not contain a memory barrier, so if it is used for locking purposes, |
| 366 | * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() |
| 367 | * in order to ensure changes are visible on other processors. |
| 368 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 369 | static __inline__ void clear_bit(int nr, volatile void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 370 | { |
| 371 | int mask; |
| 372 | volatile int *a = addr; |
| 373 | __bi_flags; |
| 374 | |
| 375 | a += nr >> 5; |
| 376 | mask = 1 << (nr & 0x1f); |
| 377 | __bi_save_and_cli(flags); |
| 378 | *a &= ~mask; |
| 379 | __bi_restore_flags(flags); |
| 380 | } |
| 381 | |
| 382 | /* |
| 383 | * change_bit - Toggle a bit in memory |
| 384 | * @nr: Bit to clear |
| 385 | * @addr: Address to start counting from |
| 386 | * |
| 387 | * change_bit() is atomic and may not be reordered. |
| 388 | * Note that @nr may be almost arbitrarily large; this function is not |
| 389 | * restricted to acting on a single-word quantity. |
| 390 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 391 | static __inline__ void change_bit(int nr, volatile void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 392 | { |
| 393 | int mask; |
| 394 | volatile int *a = addr; |
| 395 | __bi_flags; |
| 396 | |
| 397 | a += nr >> 5; |
| 398 | mask = 1 << (nr & 0x1f); |
| 399 | __bi_save_and_cli(flags); |
| 400 | *a ^= mask; |
| 401 | __bi_restore_flags(flags); |
| 402 | } |
| 403 | |
| 404 | /* |
| 405 | * __change_bit - Toggle a bit in memory |
| 406 | * @nr: the bit to set |
| 407 | * @addr: the address to start counting from |
| 408 | * |
| 409 | * Unlike change_bit(), this function is non-atomic and may be reordered. |
| 410 | * If it's called on the same region of memory simultaneously, the effect |
| 411 | * may be that only one operation succeeds. |
| 412 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 413 | static __inline__ void __change_bit(int nr, volatile void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 414 | { |
| 415 | unsigned long * m = ((unsigned long *) addr) + (nr >> 5); |
| 416 | |
| 417 | *m ^= 1UL << (nr & 31); |
| 418 | } |
| 419 | |
| 420 | /* |
| 421 | * test_and_set_bit - Set a bit and return its old value |
| 422 | * @nr: Bit to set |
| 423 | * @addr: Address to count from |
| 424 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 425 | * This operation is atomic and cannot be reordered. |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 426 | * It also implies a memory barrier. |
| 427 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 428 | static __inline__ int test_and_set_bit(int nr, volatile void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 429 | { |
| 430 | int mask, retval; |
| 431 | volatile int *a = addr; |
| 432 | __bi_flags; |
| 433 | |
| 434 | a += nr >> 5; |
| 435 | mask = 1 << (nr & 0x1f); |
| 436 | __bi_save_and_cli(flags); |
| 437 | retval = (mask & *a) != 0; |
| 438 | *a |= mask; |
| 439 | __bi_restore_flags(flags); |
| 440 | |
| 441 | return retval; |
| 442 | } |
| 443 | |
| 444 | /* |
| 445 | * __test_and_set_bit - Set a bit and return its old value |
| 446 | * @nr: Bit to set |
| 447 | * @addr: Address to count from |
| 448 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 449 | * This operation is non-atomic and can be reordered. |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 450 | * If two examples of this operation race, one can appear to succeed |
| 451 | * but actually fail. You must protect multiple accesses with a lock. |
| 452 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 453 | static __inline__ int __test_and_set_bit(int nr, volatile void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 454 | { |
| 455 | int mask, retval; |
| 456 | volatile int *a = addr; |
| 457 | |
| 458 | a += nr >> 5; |
| 459 | mask = 1 << (nr & 0x1f); |
| 460 | retval = (mask & *a) != 0; |
| 461 | *a |= mask; |
| 462 | |
| 463 | return retval; |
| 464 | } |
| 465 | |
| 466 | /* |
| 467 | * test_and_clear_bit - Clear a bit and return its old value |
| 468 | * @nr: Bit to set |
| 469 | * @addr: Address to count from |
| 470 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 471 | * This operation is atomic and cannot be reordered. |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 472 | * It also implies a memory barrier. |
| 473 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 474 | static __inline__ int test_and_clear_bit(int nr, volatile void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 475 | { |
| 476 | int mask, retval; |
| 477 | volatile int *a = addr; |
| 478 | __bi_flags; |
| 479 | |
| 480 | a += nr >> 5; |
| 481 | mask = 1 << (nr & 0x1f); |
| 482 | __bi_save_and_cli(flags); |
| 483 | retval = (mask & *a) != 0; |
| 484 | *a &= ~mask; |
| 485 | __bi_restore_flags(flags); |
| 486 | |
| 487 | return retval; |
| 488 | } |
| 489 | |
| 490 | /* |
| 491 | * __test_and_clear_bit - Clear a bit and return its old value |
| 492 | * @nr: Bit to set |
| 493 | * @addr: Address to count from |
| 494 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 495 | * This operation is non-atomic and can be reordered. |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 496 | * If two examples of this operation race, one can appear to succeed |
| 497 | * but actually fail. You must protect multiple accesses with a lock. |
| 498 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 499 | static __inline__ int __test_and_clear_bit(int nr, volatile void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 500 | { |
| 501 | int mask, retval; |
| 502 | volatile int *a = addr; |
| 503 | |
| 504 | a += nr >> 5; |
| 505 | mask = 1 << (nr & 0x1f); |
| 506 | retval = (mask & *a) != 0; |
| 507 | *a &= ~mask; |
| 508 | |
| 509 | return retval; |
| 510 | } |
| 511 | |
| 512 | /* |
| 513 | * test_and_change_bit - Change a bit and return its new value |
| 514 | * @nr: Bit to set |
| 515 | * @addr: Address to count from |
| 516 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 517 | * This operation is atomic and cannot be reordered. |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 518 | * It also implies a memory barrier. |
| 519 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 520 | static __inline__ int test_and_change_bit(int nr, volatile void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 521 | { |
| 522 | int mask, retval; |
| 523 | volatile int *a = addr; |
| 524 | __bi_flags; |
| 525 | |
| 526 | a += nr >> 5; |
| 527 | mask = 1 << (nr & 0x1f); |
| 528 | __bi_save_and_cli(flags); |
| 529 | retval = (mask & *a) != 0; |
| 530 | *a ^= mask; |
| 531 | __bi_restore_flags(flags); |
| 532 | |
| 533 | return retval; |
| 534 | } |
| 535 | |
| 536 | /* |
| 537 | * __test_and_change_bit - Change a bit and return its old value |
| 538 | * @nr: Bit to set |
| 539 | * @addr: Address to count from |
| 540 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 541 | * This operation is non-atomic and can be reordered. |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 542 | * If two examples of this operation race, one can appear to succeed |
| 543 | * but actually fail. You must protect multiple accesses with a lock. |
| 544 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 545 | static __inline__ int __test_and_change_bit(int nr, volatile void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 546 | { |
| 547 | int mask, retval; |
| 548 | volatile int *a = addr; |
| 549 | |
| 550 | a += nr >> 5; |
| 551 | mask = 1 << (nr & 0x1f); |
| 552 | retval = (mask & *a) != 0; |
| 553 | *a ^= mask; |
| 554 | |
| 555 | return retval; |
| 556 | } |
| 557 | |
| 558 | #undef __bi_flags |
| 559 | #undef __bi_cli |
| 560 | #undef __bi_save_flags |
| 561 | #undef __bi_restore_flags |
| 562 | |
| 563 | #endif /* MIPS I */ |
| 564 | |
| 565 | /* |
| 566 | * test_bit - Determine whether a bit is set |
| 567 | * @nr: bit number to test |
| 568 | * @addr: Address to start counting from |
| 569 | */ |
Daniel Schwierzeck | ea40a05 | 2012-12-08 21:33:44 +0100 | [diff] [blame] | 570 | static __inline__ int test_bit(int nr, const volatile void *addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 571 | { |
| 572 | return ((1UL << (nr & 31)) & (((const unsigned int *) addr)[nr >> 5])) != 0; |
| 573 | } |
| 574 | |
| 575 | #ifndef __MIPSEB__ |
| 576 | |
| 577 | /* Little endian versions. */ |
| 578 | |
| 579 | /* |
| 580 | * find_first_zero_bit - find the first zero bit in a memory region |
| 581 | * @addr: The address to start the search at |
| 582 | * @size: The maximum size to search |
| 583 | * |
| 584 | * Returns the bit-number of the first zero bit, not the number of the byte |
| 585 | * containing a bit. |
| 586 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 587 | static __inline__ int find_first_zero_bit (void *addr, unsigned size) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 588 | { |
| 589 | unsigned long dummy; |
| 590 | int res; |
| 591 | |
| 592 | if (!size) |
| 593 | return 0; |
| 594 | |
| 595 | __asm__ (".set\tnoreorder\n\t" |
| 596 | ".set\tnoat\n" |
| 597 | "1:\tsubu\t$1,%6,%0\n\t" |
| 598 | "blez\t$1,2f\n\t" |
| 599 | "lw\t$1,(%5)\n\t" |
| 600 | "addiu\t%5,4\n\t" |
| 601 | #if (_MIPS_ISA == _MIPS_ISA_MIPS2 ) || (_MIPS_ISA == _MIPS_ISA_MIPS3 ) || \ |
| 602 | (_MIPS_ISA == _MIPS_ISA_MIPS4 ) || (_MIPS_ISA == _MIPS_ISA_MIPS5 ) || \ |
| 603 | (_MIPS_ISA == _MIPS_ISA_MIPS32) || (_MIPS_ISA == _MIPS_ISA_MIPS64) |
| 604 | "beql\t%1,$1,1b\n\t" |
| 605 | "addiu\t%0,32\n\t" |
| 606 | #else |
| 607 | "addiu\t%0,32\n\t" |
| 608 | "beq\t%1,$1,1b\n\t" |
| 609 | "nop\n\t" |
| 610 | "subu\t%0,32\n\t" |
| 611 | #endif |
| 612 | #ifdef __MIPSEB__ |
| 613 | #error "Fix this for big endian" |
| 614 | #endif /* __MIPSEB__ */ |
| 615 | "li\t%1,1\n" |
| 616 | "1:\tand\t%2,$1,%1\n\t" |
| 617 | "beqz\t%2,2f\n\t" |
| 618 | "sll\t%1,%1,1\n\t" |
| 619 | "bnez\t%1,1b\n\t" |
| 620 | "add\t%0,%0,1\n\t" |
| 621 | ".set\tat\n\t" |
| 622 | ".set\treorder\n" |
| 623 | "2:" |
| 624 | : "=r" (res), "=r" (dummy), "=r" (addr) |
| 625 | : "0" ((signed int) 0), "1" ((unsigned int) 0xffffffff), |
| 626 | "2" (addr), "r" (size) |
| 627 | : "$1"); |
| 628 | |
| 629 | return res; |
| 630 | } |
| 631 | |
| 632 | /* |
| 633 | * find_next_zero_bit - find the first zero bit in a memory region |
| 634 | * @addr: The address to base the search on |
| 635 | * @offset: The bitnumber to start searching at |
| 636 | * @size: The maximum size to search |
| 637 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 638 | static __inline__ int find_next_zero_bit (void * addr, int size, int offset) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 639 | { |
| 640 | unsigned int *p = ((unsigned int *) addr) + (offset >> 5); |
| 641 | int set = 0, bit = offset & 31, res; |
| 642 | unsigned long dummy; |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 643 | |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 644 | if (bit) { |
| 645 | /* |
| 646 | * Look for zero in first byte |
| 647 | */ |
| 648 | #ifdef __MIPSEB__ |
| 649 | #error "Fix this for big endian byte order" |
| 650 | #endif |
| 651 | __asm__(".set\tnoreorder\n\t" |
| 652 | ".set\tnoat\n" |
| 653 | "1:\tand\t$1,%4,%1\n\t" |
| 654 | "beqz\t$1,1f\n\t" |
| 655 | "sll\t%1,%1,1\n\t" |
| 656 | "bnez\t%1,1b\n\t" |
| 657 | "addiu\t%0,1\n\t" |
| 658 | ".set\tat\n\t" |
| 659 | ".set\treorder\n" |
| 660 | "1:" |
| 661 | : "=r" (set), "=r" (dummy) |
| 662 | : "0" (0), "1" (1 << bit), "r" (*p) |
| 663 | : "$1"); |
| 664 | if (set < (32 - bit)) |
| 665 | return set + offset; |
| 666 | set = 32 - bit; |
| 667 | p++; |
| 668 | } |
| 669 | /* |
| 670 | * No zero yet, search remaining full bytes for a zero |
| 671 | */ |
| 672 | res = find_first_zero_bit(p, size - 32 * (p - (unsigned int *) addr)); |
| 673 | return offset + set + res; |
| 674 | } |
| 675 | |
| 676 | #endif /* !(__MIPSEB__) */ |
| 677 | |
| 678 | /* |
| 679 | * ffz - find first zero in word. |
| 680 | * @word: The word to search |
| 681 | * |
| 682 | * Undefined if no zero exists, so code should check against ~0UL first. |
| 683 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 684 | static __inline__ unsigned long ffz(unsigned long word) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 685 | { |
| 686 | unsigned int __res; |
| 687 | unsigned int mask = 1; |
| 688 | |
| 689 | __asm__ ( |
| 690 | ".set\tnoreorder\n\t" |
| 691 | ".set\tnoat\n\t" |
| 692 | "move\t%0,$0\n" |
| 693 | "1:\tand\t$1,%2,%1\n\t" |
| 694 | "beqz\t$1,2f\n\t" |
| 695 | "sll\t%1,1\n\t" |
| 696 | "bnez\t%1,1b\n\t" |
| 697 | "addiu\t%0,1\n\t" |
| 698 | ".set\tat\n\t" |
| 699 | ".set\treorder\n" |
| 700 | "2:\n\t" |
| 701 | : "=&r" (__res), "=r" (mask) |
| 702 | : "r" (word), "1" (mask) |
| 703 | : "$1"); |
| 704 | |
| 705 | return __res; |
| 706 | } |
| 707 | |
| 708 | #ifdef __KERNEL__ |
| 709 | |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 710 | /* |
| 711 | * hweightN - returns the hamming weight of a N-bit word |
| 712 | * @x: the word to weigh |
| 713 | * |
| 714 | * The Hamming Weight of a number is the total number of bits set in it. |
| 715 | */ |
| 716 | |
| 717 | #define hweight32(x) generic_hweight32(x) |
| 718 | #define hweight16(x) generic_hweight16(x) |
| 719 | #define hweight8(x) generic_hweight8(x) |
| 720 | |
| 721 | #endif /* __KERNEL__ */ |
| 722 | |
| 723 | #ifdef __MIPSEB__ |
| 724 | /* |
| 725 | * find_next_zero_bit - find the first zero bit in a memory region |
| 726 | * @addr: The address to base the search on |
| 727 | * @offset: The bitnumber to start searching at |
| 728 | * @size: The maximum size to search |
| 729 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 730 | static __inline__ int find_next_zero_bit(void *addr, int size, int offset) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 731 | { |
| 732 | unsigned long *p = ((unsigned long *) addr) + (offset >> 5); |
| 733 | unsigned long result = offset & ~31UL; |
| 734 | unsigned long tmp; |
| 735 | |
| 736 | if (offset >= size) |
| 737 | return size; |
| 738 | size -= result; |
| 739 | offset &= 31UL; |
| 740 | if (offset) { |
| 741 | tmp = *(p++); |
| 742 | tmp |= ~0UL >> (32-offset); |
| 743 | if (size < 32) |
| 744 | goto found_first; |
| 745 | if (~tmp) |
| 746 | goto found_middle; |
| 747 | size -= 32; |
| 748 | result += 32; |
| 749 | } |
| 750 | while (size & ~31UL) { |
| 751 | if (~(tmp = *(p++))) |
| 752 | goto found_middle; |
| 753 | result += 32; |
| 754 | size -= 32; |
| 755 | } |
| 756 | if (!size) |
| 757 | return result; |
| 758 | tmp = *p; |
| 759 | |
| 760 | found_first: |
| 761 | tmp |= ~0UL << size; |
| 762 | found_middle: |
| 763 | return result + ffz(tmp); |
| 764 | } |
| 765 | |
| 766 | /* Linus sez that gcc can optimize the following correctly, we'll see if this |
| 767 | * holds on the Sparc as it does for the ALPHA. |
| 768 | */ |
| 769 | |
| 770 | #if 0 /* Fool kernel-doc since it doesn't do macros yet */ |
| 771 | /* |
| 772 | * find_first_zero_bit - find the first zero bit in a memory region |
| 773 | * @addr: The address to start the search at |
| 774 | * @size: The maximum size to search |
| 775 | * |
| 776 | * Returns the bit-number of the first zero bit, not the number of the byte |
| 777 | * containing a bit. |
| 778 | */ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 779 | static int find_first_zero_bit (void *addr, unsigned size); |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 780 | #endif |
| 781 | |
| 782 | #define find_first_zero_bit(addr, size) \ |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 783 | find_next_zero_bit((addr), (size), 0) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 784 | |
| 785 | #endif /* (__MIPSEB__) */ |
| 786 | |
| 787 | /* Now for the ext2 filesystem bit operations and helper routines. */ |
| 788 | |
| 789 | #ifdef __MIPSEB__ |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 790 | static __inline__ int ext2_set_bit(int nr, void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 791 | { |
| 792 | int mask, retval, flags; |
| 793 | unsigned char *ADDR = (unsigned char *) addr; |
| 794 | |
| 795 | ADDR += nr >> 3; |
| 796 | mask = 1 << (nr & 0x07); |
| 797 | save_and_cli(flags); |
| 798 | retval = (mask & *ADDR) != 0; |
| 799 | *ADDR |= mask; |
| 800 | restore_flags(flags); |
| 801 | return retval; |
| 802 | } |
| 803 | |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 804 | static __inline__ int ext2_clear_bit(int nr, void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 805 | { |
| 806 | int mask, retval, flags; |
| 807 | unsigned char *ADDR = (unsigned char *) addr; |
| 808 | |
| 809 | ADDR += nr >> 3; |
| 810 | mask = 1 << (nr & 0x07); |
| 811 | save_and_cli(flags); |
| 812 | retval = (mask & *ADDR) != 0; |
| 813 | *ADDR &= ~mask; |
| 814 | restore_flags(flags); |
| 815 | return retval; |
| 816 | } |
| 817 | |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 818 | static __inline__ int ext2_test_bit(int nr, const void * addr) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 819 | { |
| 820 | int mask; |
| 821 | const unsigned char *ADDR = (const unsigned char *) addr; |
| 822 | |
| 823 | ADDR += nr >> 3; |
| 824 | mask = 1 << (nr & 0x07); |
| 825 | return ((mask & *ADDR) != 0); |
| 826 | } |
| 827 | |
| 828 | #define ext2_find_first_zero_bit(addr, size) \ |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 829 | ext2_find_next_zero_bit((addr), (size), 0) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 830 | |
Shinya Kuribayashi | 47f6a36 | 2009-05-16 09:12:09 +0900 | [diff] [blame] | 831 | static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset) |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 832 | { |
| 833 | unsigned long *p = ((unsigned long *) addr) + (offset >> 5); |
| 834 | unsigned long result = offset & ~31UL; |
| 835 | unsigned long tmp; |
| 836 | |
| 837 | if (offset >= size) |
| 838 | return size; |
| 839 | size -= result; |
| 840 | offset &= 31UL; |
| 841 | if(offset) { |
| 842 | /* We hold the little endian value in tmp, but then the |
| 843 | * shift is illegal. So we could keep a big endian value |
| 844 | * in tmp, like this: |
| 845 | * |
| 846 | * tmp = __swab32(*(p++)); |
| 847 | * tmp |= ~0UL >> (32-offset); |
| 848 | * |
| 849 | * but this would decrease preformance, so we change the |
| 850 | * shift: |
| 851 | */ |
| 852 | tmp = *(p++); |
| 853 | tmp |= __swab32(~0UL >> (32-offset)); |
| 854 | if(size < 32) |
| 855 | goto found_first; |
| 856 | if(~tmp) |
| 857 | goto found_middle; |
| 858 | size -= 32; |
| 859 | result += 32; |
| 860 | } |
| 861 | while(size & ~31UL) { |
| 862 | if(~(tmp = *(p++))) |
| 863 | goto found_middle; |
| 864 | result += 32; |
| 865 | size -= 32; |
| 866 | } |
| 867 | if(!size) |
| 868 | return result; |
| 869 | tmp = *p; |
| 870 | |
| 871 | found_first: |
| 872 | /* tmp is little endian, so we would have to swab the shift, |
| 873 | * see above. But then we have to swab tmp below for ffz, so |
| 874 | * we might as well do this here. |
| 875 | */ |
| 876 | return result + ffz(__swab32(tmp) | (~0UL << size)); |
| 877 | found_middle: |
| 878 | return result + ffz(__swab32(tmp)); |
| 879 | } |
| 880 | #else /* !(__MIPSEB__) */ |
| 881 | |
| 882 | /* Native ext2 byte ordering, just collapse using defines. */ |
| 883 | #define ext2_set_bit(nr, addr) test_and_set_bit((nr), (addr)) |
| 884 | #define ext2_clear_bit(nr, addr) test_and_clear_bit((nr), (addr)) |
| 885 | #define ext2_test_bit(nr, addr) test_bit((nr), (addr)) |
| 886 | #define ext2_find_first_zero_bit(addr, size) find_first_zero_bit((addr), (size)) |
| 887 | #define ext2_find_next_zero_bit(addr, size, offset) \ |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 888 | find_next_zero_bit((addr), (size), (offset)) |
| 889 | |
wdenk | 6069ff2 | 2003-02-28 00:49:47 +0000 | [diff] [blame] | 890 | #endif /* !(__MIPSEB__) */ |
| 891 | |
| 892 | /* |
| 893 | * Bitmap functions for the minix filesystem. |
| 894 | * FIXME: These assume that Minix uses the native byte/bitorder. |
| 895 | * This limits the Minix filesystem's value for data exchange very much. |
| 896 | */ |
| 897 | #define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr) |
| 898 | #define minix_set_bit(nr,addr) set_bit(nr,addr) |
| 899 | #define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr) |
| 900 | #define minix_test_bit(nr,addr) test_bit(nr,addr) |
| 901 | #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) |
| 902 | |
| 903 | #endif /* _ASM_BITOPS_H */ |