blob: 304491bcb41b8d90738c49ef7b601f8ad41efceb [file] [log] [blame]
Sergey Lapin10794322008-10-31 12:28:43 +01001/*
2 * (C) Copyright 2007-2008
Stelian Popc9e798d2011-11-01 00:00:39 +01003 * Stelian Pop <stelian@popies.net>
Sergey Lapin10794322008-10-31 12:28:43 +01004 * Lead Tech Design <www.leadtechdesign.com>
5 *
6 * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
7 *
Wu, Joshbdfd59a2012-08-23 00:05:36 +00008 * Add Programmable Multibit ECC support for various AT91 SoC
9 * (C) Copyright 2012 ATMEL, Hong Xu
10 *
Wolfgang Denk1a459662013-07-08 09:37:19 +020011 * SPDX-License-Identifier: GPL-2.0+
Sergey Lapin10794322008-10-31 12:28:43 +010012 */
13
14#include <common.h>
Jean-Christophe PLAGNIOL-VILLARD74c076d2009-03-22 10:22:34 +010015#include <asm/arch/hardware.h>
Sergey Lapin10794322008-10-31 12:28:43 +010016#include <asm/arch/gpio.h>
17#include <asm/arch/at91_pio.h>
18
19#include <nand.h>
Wu, Joshbdfd59a2012-08-23 00:05:36 +000020#include <watchdog.h>
Sergey Lapin10794322008-10-31 12:28:43 +010021
Nikolay Petukhov7c27b7b2010-03-19 10:49:27 +050022#ifdef CONFIG_ATMEL_NAND_HWECC
23
24/* Register access macros */
25#define ecc_readl(add, reg) \
26 readl(AT91_BASE_SYS + add + ATMEL_ECC_##reg)
27#define ecc_writel(add, reg, value) \
28 writel((value), AT91_BASE_SYS + add + ATMEL_ECC_##reg)
29
30#include "atmel_nand_ecc.h" /* Hardware ECC registers */
31
Wu, Joshbdfd59a2012-08-23 00:05:36 +000032#ifdef CONFIG_ATMEL_NAND_HW_PMECC
33
34struct atmel_nand_host {
35 struct pmecc_regs __iomem *pmecc;
36 struct pmecc_errloc_regs __iomem *pmerrloc;
37 void __iomem *pmecc_rom_base;
38
39 u8 pmecc_corr_cap;
40 u16 pmecc_sector_size;
41 u32 pmecc_index_table_offset;
42
43 int pmecc_bytes_per_sector;
44 int pmecc_sector_number;
45 int pmecc_degree; /* Degree of remainders */
46 int pmecc_cw_len; /* Length of codeword */
47
48 /* lookup table for alpha_to and index_of */
49 void __iomem *pmecc_alpha_to;
50 void __iomem *pmecc_index_of;
51
52 /* data for pmecc computation */
53 int16_t pmecc_smu[(CONFIG_PMECC_CAP + 2) * (2 * CONFIG_PMECC_CAP + 1)];
54 int16_t pmecc_partial_syn[2 * CONFIG_PMECC_CAP + 1];
55 int16_t pmecc_si[2 * CONFIG_PMECC_CAP + 1];
56 int16_t pmecc_lmu[CONFIG_PMECC_CAP + 1]; /* polynomal order */
57 int pmecc_mu[CONFIG_PMECC_CAP + 1];
58 int pmecc_dmu[CONFIG_PMECC_CAP + 1];
59 int pmecc_delta[CONFIG_PMECC_CAP + 1];
60};
61
62static struct atmel_nand_host pmecc_host;
63static struct nand_ecclayout atmel_pmecc_oobinfo;
64
65/*
66 * Return number of ecc bytes per sector according to sector size and
67 * correction capability
68 *
69 * Following table shows what at91 PMECC supported:
70 * Correction Capability Sector_512_bytes Sector_1024_bytes
71 * ===================== ================ =================
72 * 2-bits 4-bytes 4-bytes
73 * 4-bits 7-bytes 7-bytes
74 * 8-bits 13-bytes 14-bytes
75 * 12-bits 20-bytes 21-bytes
76 * 24-bits 39-bytes 42-bytes
77 */
78static int pmecc_get_ecc_bytes(int cap, int sector_size)
79{
80 int m = 12 + sector_size / 512;
81 return (m * cap + 7) / 8;
82}
83
84static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
85 int oobsize, int ecc_len)
86{
87 int i;
88
89 layout->eccbytes = ecc_len;
90
91 /* ECC will occupy the last ecc_len bytes continuously */
92 for (i = 0; i < ecc_len; i++)
93 layout->eccpos[i] = oobsize - ecc_len + i;
94
95 layout->oobfree[0].offset = 2;
96 layout->oobfree[0].length =
97 oobsize - ecc_len - layout->oobfree[0].offset;
98}
99
100static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
101{
102 int table_size;
103
104 table_size = host->pmecc_sector_size == 512 ?
105 PMECC_INDEX_TABLE_SIZE_512 : PMECC_INDEX_TABLE_SIZE_1024;
106
107 /* the ALPHA lookup table is right behind the INDEX lookup table. */
108 return host->pmecc_rom_base + host->pmecc_index_table_offset +
109 table_size * sizeof(int16_t);
110}
111
112static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
113{
114 struct nand_chip *nand_chip = mtd->priv;
115 struct atmel_nand_host *host = nand_chip->priv;
116 int i;
117 uint32_t value;
118
119 /* Fill odd syndromes */
120 for (i = 0; i < host->pmecc_corr_cap; i++) {
121 value = readl(&host->pmecc->rem_port[sector].rem[i / 2]);
122 if (i & 1)
123 value >>= 16;
124 value &= 0xffff;
125 host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
126 }
127}
128
129static void pmecc_substitute(struct mtd_info *mtd)
130{
131 struct nand_chip *nand_chip = mtd->priv;
132 struct atmel_nand_host *host = nand_chip->priv;
133 int16_t __iomem *alpha_to = host->pmecc_alpha_to;
134 int16_t __iomem *index_of = host->pmecc_index_of;
135 int16_t *partial_syn = host->pmecc_partial_syn;
136 const int cap = host->pmecc_corr_cap;
137 int16_t *si;
138 int i, j;
139
140 /* si[] is a table that holds the current syndrome value,
141 * an element of that table belongs to the field
142 */
143 si = host->pmecc_si;
144
145 memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
146
147 /* Computation 2t syndromes based on S(x) */
148 /* Odd syndromes */
149 for (i = 1; i < 2 * cap; i += 2) {
150 for (j = 0; j < host->pmecc_degree; j++) {
151 if (partial_syn[i] & (0x1 << j))
152 si[i] = readw(alpha_to + i * j) ^ si[i];
153 }
154 }
155 /* Even syndrome = (Odd syndrome) ** 2 */
156 for (i = 2, j = 1; j <= cap; i = ++j << 1) {
157 if (si[j] == 0) {
158 si[i] = 0;
159 } else {
160 int16_t tmp;
161
162 tmp = readw(index_of + si[j]);
163 tmp = (tmp * 2) % host->pmecc_cw_len;
164 si[i] = readw(alpha_to + tmp);
165 }
166 }
167}
168
169/*
170 * This function defines a Berlekamp iterative procedure for
171 * finding the value of the error location polynomial.
172 * The input is si[], initialize by pmecc_substitute().
173 * The output is smu[][].
174 *
175 * This function is written according to chip datasheet Chapter:
176 * Find the Error Location Polynomial Sigma(x) of Section:
177 * Programmable Multibit ECC Control (PMECC).
178 */
179static void pmecc_get_sigma(struct mtd_info *mtd)
180{
181 struct nand_chip *nand_chip = mtd->priv;
182 struct atmel_nand_host *host = nand_chip->priv;
183
184 int16_t *lmu = host->pmecc_lmu;
185 int16_t *si = host->pmecc_si;
186 int *mu = host->pmecc_mu;
187 int *dmu = host->pmecc_dmu; /* Discrepancy */
188 int *delta = host->pmecc_delta; /* Delta order */
189 int cw_len = host->pmecc_cw_len;
190 const int16_t cap = host->pmecc_corr_cap;
191 const int num = 2 * cap + 1;
192 int16_t __iomem *index_of = host->pmecc_index_of;
193 int16_t __iomem *alpha_to = host->pmecc_alpha_to;
194 int i, j, k;
195 uint32_t dmu_0_count, tmp;
196 int16_t *smu = host->pmecc_smu;
197
198 /* index of largest delta */
199 int ro;
200 int largest;
201 int diff;
202
203 /* Init the Sigma(x) */
204 memset(smu, 0, sizeof(int16_t) * ARRAY_SIZE(smu));
205
206 dmu_0_count = 0;
207
208 /* First Row */
209
210 /* Mu */
211 mu[0] = -1;
212
213 smu[0] = 1;
214
215 /* discrepancy set to 1 */
216 dmu[0] = 1;
217 /* polynom order set to 0 */
218 lmu[0] = 0;
219 /* delta[0] = (mu[0] * 2 - lmu[0]) >> 1; */
220 delta[0] = -1;
221
222 /* Second Row */
223
224 /* Mu */
225 mu[1] = 0;
226 /* Sigma(x) set to 1 */
227 smu[num] = 1;
228
229 /* discrepancy set to S1 */
230 dmu[1] = si[1];
231
232 /* polynom order set to 0 */
233 lmu[1] = 0;
234
235 /* delta[1] = (mu[1] * 2 - lmu[1]) >> 1; */
236 delta[1] = 0;
237
238 for (i = 1; i <= cap; i++) {
239 mu[i + 1] = i << 1;
240 /* Begin Computing Sigma (Mu+1) and L(mu) */
241 /* check if discrepancy is set to 0 */
242 if (dmu[i] == 0) {
243 dmu_0_count++;
244
245 tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
246 if ((cap - (lmu[i] >> 1) - 1) & 0x1)
247 tmp += 2;
248 else
249 tmp += 1;
250
251 if (dmu_0_count == tmp) {
252 for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
253 smu[(cap + 1) * num + j] =
254 smu[i * num + j];
255
256 lmu[cap + 1] = lmu[i];
257 return;
258 }
259
260 /* copy polynom */
261 for (j = 0; j <= lmu[i] >> 1; j++)
262 smu[(i + 1) * num + j] = smu[i * num + j];
263
264 /* copy previous polynom order to the next */
265 lmu[i + 1] = lmu[i];
266 } else {
267 ro = 0;
268 largest = -1;
269 /* find largest delta with dmu != 0 */
270 for (j = 0; j < i; j++) {
271 if ((dmu[j]) && (delta[j] > largest)) {
272 largest = delta[j];
273 ro = j;
274 }
275 }
276
277 /* compute difference */
278 diff = (mu[i] - mu[ro]);
279
280 /* Compute degree of the new smu polynomial */
281 if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
282 lmu[i + 1] = lmu[i];
283 else
284 lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
285
286 /* Init smu[i+1] with 0 */
287 for (k = 0; k < num; k++)
288 smu[(i + 1) * num + k] = 0;
289
290 /* Compute smu[i+1] */
291 for (k = 0; k <= lmu[ro] >> 1; k++) {
292 int16_t a, b, c;
293
294 if (!(smu[ro * num + k] && dmu[i]))
295 continue;
296 a = readw(index_of + dmu[i]);
297 b = readw(index_of + dmu[ro]);
298 c = readw(index_of + smu[ro * num + k]);
299 tmp = a + (cw_len - b) + c;
300 a = readw(alpha_to + tmp % cw_len);
301 smu[(i + 1) * num + (k + diff)] = a;
302 }
303
304 for (k = 0; k <= lmu[i] >> 1; k++)
305 smu[(i + 1) * num + k] ^= smu[i * num + k];
306 }
307
308 /* End Computing Sigma (Mu+1) and L(mu) */
309 /* In either case compute delta */
310 delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
311
312 /* Do not compute discrepancy for the last iteration */
313 if (i >= cap)
314 continue;
315
316 for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
317 tmp = 2 * (i - 1);
318 if (k == 0) {
319 dmu[i + 1] = si[tmp + 3];
320 } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
321 int16_t a, b, c;
322 a = readw(index_of +
323 smu[(i + 1) * num + k]);
324 b = si[2 * (i - 1) + 3 - k];
325 c = readw(index_of + b);
326 tmp = a + c;
327 tmp %= cw_len;
328 dmu[i + 1] = readw(alpha_to + tmp) ^
329 dmu[i + 1];
330 }
331 }
332 }
333}
334
335static int pmecc_err_location(struct mtd_info *mtd)
336{
337 struct nand_chip *nand_chip = mtd->priv;
338 struct atmel_nand_host *host = nand_chip->priv;
339 const int cap = host->pmecc_corr_cap;
340 const int num = 2 * cap + 1;
341 int sector_size = host->pmecc_sector_size;
342 int err_nbr = 0; /* number of error */
343 int roots_nbr; /* number of roots */
344 int i;
345 uint32_t val;
346 int16_t *smu = host->pmecc_smu;
347 int timeout = PMECC_MAX_TIMEOUT_US;
348
349 writel(PMERRLOC_DISABLE, &host->pmerrloc->eldis);
350
351 for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
352 writel(smu[(cap + 1) * num + i], &host->pmerrloc->sigma[i]);
353 err_nbr++;
354 }
355
356 val = PMERRLOC_ELCFG_NUM_ERRORS(err_nbr - 1);
357 if (sector_size == 1024)
358 val |= PMERRLOC_ELCFG_SECTOR_1024;
359
360 writel(val, &host->pmerrloc->elcfg);
361 writel(sector_size * 8 + host->pmecc_degree * cap,
362 &host->pmerrloc->elen);
363
364 while (--timeout) {
365 if (readl(&host->pmerrloc->elisr) & PMERRLOC_CALC_DONE)
366 break;
367 WATCHDOG_RESET();
368 udelay(1);
369 }
370
371 if (!timeout) {
372 printk(KERN_ERR "atmel_nand : Timeout to calculate PMECC error location\n");
373 return -1;
374 }
375
376 roots_nbr = (readl(&host->pmerrloc->elisr) & PMERRLOC_ERR_NUM_MASK)
377 >> 8;
378 /* Number of roots == degree of smu hence <= cap */
379 if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
380 return err_nbr - 1;
381
382 /* Number of roots does not match the degree of smu
383 * unable to correct error */
384 return -1;
385}
386
387static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
388 int sector_num, int extra_bytes, int err_nbr)
389{
390 struct nand_chip *nand_chip = mtd->priv;
391 struct atmel_nand_host *host = nand_chip->priv;
392 int i = 0;
393 int byte_pos, bit_pos, sector_size, pos;
394 uint32_t tmp;
395 uint8_t err_byte;
396
397 sector_size = host->pmecc_sector_size;
398
399 while (err_nbr) {
400 tmp = readl(&host->pmerrloc->el[i]) - 1;
401 byte_pos = tmp / 8;
402 bit_pos = tmp % 8;
403
404 if (byte_pos >= (sector_size + extra_bytes))
405 BUG(); /* should never happen */
406
407 if (byte_pos < sector_size) {
408 err_byte = *(buf + byte_pos);
409 *(buf + byte_pos) ^= (1 << bit_pos);
410
411 pos = sector_num * host->pmecc_sector_size + byte_pos;
412 printk(KERN_INFO "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
413 pos, bit_pos, err_byte, *(buf + byte_pos));
414 } else {
415 /* Bit flip in OOB area */
416 tmp = sector_num * host->pmecc_bytes_per_sector
417 + (byte_pos - sector_size);
418 err_byte = ecc[tmp];
419 ecc[tmp] ^= (1 << bit_pos);
420
421 pos = tmp + nand_chip->ecc.layout->eccpos[0];
422 printk(KERN_INFO "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
423 pos, bit_pos, err_byte, ecc[tmp]);
424 }
425
426 i++;
427 err_nbr--;
428 }
429
430 return;
431}
432
433static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
434 u8 *ecc)
435{
436 struct nand_chip *nand_chip = mtd->priv;
437 struct atmel_nand_host *host = nand_chip->priv;
438 int i, err_nbr, eccbytes;
439 uint8_t *buf_pos;
440
441 eccbytes = nand_chip->ecc.bytes;
442 for (i = 0; i < eccbytes; i++)
443 if (ecc[i] != 0xff)
444 goto normal_check;
445 /* Erased page, return OK */
446 return 0;
447
448normal_check:
449 for (i = 0; i < host->pmecc_sector_number; i++) {
450 err_nbr = 0;
451 if (pmecc_stat & 0x1) {
452 buf_pos = buf + i * host->pmecc_sector_size;
453
454 pmecc_gen_syndrome(mtd, i);
455 pmecc_substitute(mtd);
456 pmecc_get_sigma(mtd);
457
458 err_nbr = pmecc_err_location(mtd);
459 if (err_nbr == -1) {
460 printk(KERN_ERR "PMECC: Too many errors\n");
461 mtd->ecc_stats.failed++;
462 return -EIO;
463 } else {
464 pmecc_correct_data(mtd, buf_pos, ecc, i,
465 host->pmecc_bytes_per_sector, err_nbr);
466 mtd->ecc_stats.corrected += err_nbr;
467 }
468 }
469 pmecc_stat >>= 1;
470 }
471
472 return 0;
473}
474
475static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
Sergey Lapindfe64e22013-01-14 03:46:50 +0000476 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
Wu, Joshbdfd59a2012-08-23 00:05:36 +0000477{
478 struct atmel_nand_host *host = chip->priv;
479 int eccsize = chip->ecc.size;
480 uint8_t *oob = chip->oob_poi;
481 uint32_t *eccpos = chip->ecc.layout->eccpos;
482 uint32_t stat;
483 int timeout = PMECC_MAX_TIMEOUT_US;
484
485 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
486 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
487 pmecc_writel(host->pmecc, cfg, ((pmecc_readl(host->pmecc, cfg))
488 & ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE);
489
490 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
491 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
492
493 chip->read_buf(mtd, buf, eccsize);
494 chip->read_buf(mtd, oob, mtd->oobsize);
495
496 while (--timeout) {
497 if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
498 break;
499 WATCHDOG_RESET();
500 udelay(1);
501 }
502
503 if (!timeout) {
504 printk(KERN_ERR "atmel_nand : Timeout to read PMECC page\n");
505 return -1;
506 }
507
508 stat = pmecc_readl(host->pmecc, isr);
509 if (stat != 0)
510 if (pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]) != 0)
511 return -EIO;
512
513 return 0;
514}
515
Sergey Lapindfe64e22013-01-14 03:46:50 +0000516static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
517 struct nand_chip *chip, const uint8_t *buf,
518 int oob_required)
Wu, Joshbdfd59a2012-08-23 00:05:36 +0000519{
520 struct atmel_nand_host *host = chip->priv;
521 uint32_t *eccpos = chip->ecc.layout->eccpos;
522 int i, j;
523 int timeout = PMECC_MAX_TIMEOUT_US;
524
525 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
526 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
527
528 pmecc_writel(host->pmecc, cfg, (pmecc_readl(host->pmecc, cfg) |
529 PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE);
530
531 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
532 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
533
534 chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
535
536 while (--timeout) {
537 if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
538 break;
539 WATCHDOG_RESET();
540 udelay(1);
541 }
542
543 if (!timeout) {
544 printk(KERN_ERR "atmel_nand : Timeout to read PMECC status, fail to write PMECC in oob\n");
Sergey Lapindfe64e22013-01-14 03:46:50 +0000545 goto out;
Wu, Joshbdfd59a2012-08-23 00:05:36 +0000546 }
547
548 for (i = 0; i < host->pmecc_sector_number; i++) {
549 for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
550 int pos;
551
552 pos = i * host->pmecc_bytes_per_sector + j;
553 chip->oob_poi[eccpos[pos]] =
554 readb(&host->pmecc->ecc_port[i].ecc[j]);
555 }
556 }
557 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
Sergey Lapindfe64e22013-01-14 03:46:50 +0000558out:
559 return 0;
Wu, Joshbdfd59a2012-08-23 00:05:36 +0000560}
561
562static void atmel_pmecc_core_init(struct mtd_info *mtd)
563{
564 struct nand_chip *nand_chip = mtd->priv;
565 struct atmel_nand_host *host = nand_chip->priv;
566 uint32_t val = 0;
567 struct nand_ecclayout *ecc_layout;
568
569 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
570 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
571
572 switch (host->pmecc_corr_cap) {
573 case 2:
574 val = PMECC_CFG_BCH_ERR2;
575 break;
576 case 4:
577 val = PMECC_CFG_BCH_ERR4;
578 break;
579 case 8:
580 val = PMECC_CFG_BCH_ERR8;
581 break;
582 case 12:
583 val = PMECC_CFG_BCH_ERR12;
584 break;
585 case 24:
586 val = PMECC_CFG_BCH_ERR24;
587 break;
588 }
589
590 if (host->pmecc_sector_size == 512)
591 val |= PMECC_CFG_SECTOR512;
592 else if (host->pmecc_sector_size == 1024)
593 val |= PMECC_CFG_SECTOR1024;
594
595 switch (host->pmecc_sector_number) {
596 case 1:
597 val |= PMECC_CFG_PAGE_1SECTOR;
598 break;
599 case 2:
600 val |= PMECC_CFG_PAGE_2SECTORS;
601 break;
602 case 4:
603 val |= PMECC_CFG_PAGE_4SECTORS;
604 break;
605 case 8:
606 val |= PMECC_CFG_PAGE_8SECTORS;
607 break;
608 }
609
610 val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
611 | PMECC_CFG_AUTO_DISABLE);
612 pmecc_writel(host->pmecc, cfg, val);
613
614 ecc_layout = nand_chip->ecc.layout;
615 pmecc_writel(host->pmecc, sarea, mtd->oobsize - 1);
616 pmecc_writel(host->pmecc, saddr, ecc_layout->eccpos[0]);
617 pmecc_writel(host->pmecc, eaddr,
618 ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
619 /* See datasheet about PMECC Clock Control Register */
620 pmecc_writel(host->pmecc, clk, PMECC_CLK_133MHZ);
621 pmecc_writel(host->pmecc, idr, 0xff);
622 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
623}
624
625static int atmel_pmecc_nand_init_params(struct nand_chip *nand,
626 struct mtd_info *mtd)
627{
628 struct atmel_nand_host *host;
629 int cap, sector_size;
630
631 host = nand->priv = &pmecc_host;
632
633 nand->ecc.mode = NAND_ECC_HW;
634 nand->ecc.calculate = NULL;
635 nand->ecc.correct = NULL;
636 nand->ecc.hwctl = NULL;
637
638 cap = host->pmecc_corr_cap = CONFIG_PMECC_CAP;
639 sector_size = host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
Wu, Joshb2d96dc2013-07-03 11:11:45 +0800640 if (host->pmecc_sector_size == 512)
641 host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_512;
642 else
643 host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_1024;
Wu, Joshbdfd59a2012-08-23 00:05:36 +0000644
Wu, Joshb9c83c62012-09-09 23:45:49 +0000645 MTDDEBUG(MTD_DEBUG_LEVEL1,
646 "Initialize PMECC params, cap: %d, sector: %d\n",
647 cap, sector_size);
Wu, Joshbdfd59a2012-08-23 00:05:36 +0000648
649 host->pmecc = (struct pmecc_regs __iomem *) ATMEL_BASE_PMECC;
650 host->pmerrloc = (struct pmecc_errloc_regs __iomem *)
651 ATMEL_BASE_PMERRLOC;
652 host->pmecc_rom_base = (void __iomem *) ATMEL_BASE_ROM;
653
654 /* ECC is calculated for the whole page (1 step) */
655 nand->ecc.size = mtd->writesize;
656
657 /* set ECC page size and oob layout */
658 switch (mtd->writesize) {
659 case 2048:
660 case 4096:
661 host->pmecc_degree = PMECC_GF_DIMENSION_13;
662 host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
663 host->pmecc_sector_number = mtd->writesize / sector_size;
664 host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
665 cap, sector_size);
666 host->pmecc_alpha_to = pmecc_get_alpha_to(host);
667 host->pmecc_index_of = host->pmecc_rom_base +
668 host->pmecc_index_table_offset;
669
670 nand->ecc.steps = 1;
671 nand->ecc.bytes = host->pmecc_bytes_per_sector *
672 host->pmecc_sector_number;
673 if (nand->ecc.bytes > mtd->oobsize - 2) {
674 printk(KERN_ERR "No room for ECC bytes\n");
675 return -EINVAL;
676 }
677 pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
678 mtd->oobsize,
679 nand->ecc.bytes);
680 nand->ecc.layout = &atmel_pmecc_oobinfo;
681 break;
682 case 512:
683 case 1024:
684 /* TODO */
685 printk(KERN_ERR "Unsupported page size for PMECC, use Software ECC\n");
686 default:
687 /* page size not handled by HW ECC */
688 /* switching back to soft ECC */
689 nand->ecc.mode = NAND_ECC_SOFT;
690 nand->ecc.read_page = NULL;
691 nand->ecc.postpad = 0;
692 nand->ecc.prepad = 0;
693 nand->ecc.bytes = 0;
694 return 0;
695 }
696
697 nand->ecc.read_page = atmel_nand_pmecc_read_page;
698 nand->ecc.write_page = atmel_nand_pmecc_write_page;
Sergey Lapindfe64e22013-01-14 03:46:50 +0000699 nand->ecc.strength = cap;
Wu, Joshbdfd59a2012-08-23 00:05:36 +0000700
701 atmel_pmecc_core_init(mtd);
702
703 return 0;
704}
705
706#else
707
Nikolay Petukhov7c27b7b2010-03-19 10:49:27 +0500708/* oob layout for large page size
709 * bad block info is on bytes 0 and 1
710 * the bytes have to be consecutives to avoid
711 * several NAND_CMD_RNDOUT during read
712 */
713static struct nand_ecclayout atmel_oobinfo_large = {
714 .eccbytes = 4,
715 .eccpos = {60, 61, 62, 63},
716 .oobfree = {
717 {2, 58}
718 },
719};
720
721/* oob layout for small page size
722 * bad block info is on bytes 4 and 5
723 * the bytes have to be consecutives to avoid
724 * several NAND_CMD_RNDOUT during read
725 */
726static struct nand_ecclayout atmel_oobinfo_small = {
727 .eccbytes = 4,
728 .eccpos = {0, 1, 2, 3},
729 .oobfree = {
730 {6, 10}
731 },
732};
733
734/*
735 * Calculate HW ECC
736 *
737 * function called after a write
738 *
739 * mtd: MTD block structure
740 * dat: raw data (unused)
741 * ecc_code: buffer for ECC
742 */
743static int atmel_nand_calculate(struct mtd_info *mtd,
744 const u_char *dat, unsigned char *ecc_code)
745{
Nikolay Petukhov7c27b7b2010-03-19 10:49:27 +0500746 unsigned int ecc_value;
747
748 /* get the first 2 ECC bytes */
749 ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR);
750
751 ecc_code[0] = ecc_value & 0xFF;
752 ecc_code[1] = (ecc_value >> 8) & 0xFF;
753
754 /* get the last 2 ECC bytes */
755 ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, NPR) & ATMEL_ECC_NPARITY;
756
757 ecc_code[2] = ecc_value & 0xFF;
758 ecc_code[3] = (ecc_value >> 8) & 0xFF;
759
760 return 0;
761}
762
763/*
764 * HW ECC read page function
765 *
766 * mtd: mtd info structure
767 * chip: nand chip info structure
768 * buf: buffer to store read data
Sergey Lapindfe64e22013-01-14 03:46:50 +0000769 * oob_required: caller expects OOB data read to chip->oob_poi
Nikolay Petukhov7c27b7b2010-03-19 10:49:27 +0500770 */
Sergey Lapindfe64e22013-01-14 03:46:50 +0000771static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
772 uint8_t *buf, int oob_required, int page)
Nikolay Petukhov7c27b7b2010-03-19 10:49:27 +0500773{
774 int eccsize = chip->ecc.size;
775 int eccbytes = chip->ecc.bytes;
776 uint32_t *eccpos = chip->ecc.layout->eccpos;
777 uint8_t *p = buf;
778 uint8_t *oob = chip->oob_poi;
779 uint8_t *ecc_pos;
780 int stat;
781
782 /* read the page */
783 chip->read_buf(mtd, p, eccsize);
784
785 /* move to ECC position if needed */
786 if (eccpos[0] != 0) {
787 /* This only works on large pages
788 * because the ECC controller waits for
789 * NAND_CMD_RNDOUTSTART after the
790 * NAND_CMD_RNDOUT.
791 * anyway, for small pages, the eccpos[0] == 0
792 */
793 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
794 mtd->writesize + eccpos[0], -1);
795 }
796
797 /* the ECC controller needs to read the ECC just after the data */
798 ecc_pos = oob + eccpos[0];
799 chip->read_buf(mtd, ecc_pos, eccbytes);
800
801 /* check if there's an error */
802 stat = chip->ecc.correct(mtd, p, oob, NULL);
803
804 if (stat < 0)
805 mtd->ecc_stats.failed++;
806 else
807 mtd->ecc_stats.corrected += stat;
808
809 /* get back to oob start (end of page) */
810 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
811
812 /* read the oob */
813 chip->read_buf(mtd, oob, mtd->oobsize);
814
815 return 0;
816}
817
818/*
819 * HW ECC Correction
820 *
821 * function called after a read
822 *
823 * mtd: MTD block structure
824 * dat: raw data read from the chip
825 * read_ecc: ECC from the chip (unused)
826 * isnull: unused
827 *
828 * Detect and correct a 1 bit error for a page
829 */
830static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
831 u_char *read_ecc, u_char *isnull)
832{
833 struct nand_chip *nand_chip = mtd->priv;
Wu, Joshae797942012-08-23 00:05:35 +0000834 unsigned int ecc_status;
Nikolay Petukhov7c27b7b2010-03-19 10:49:27 +0500835 unsigned int ecc_word, ecc_bit;
836
837 /* get the status from the Status Register */
838 ecc_status = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, SR);
839
840 /* if there's no error */
841 if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
842 return 0;
843
844 /* get error bit offset (4 bits) */
845 ecc_bit = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_BITADDR;
846 /* get word address (12 bits) */
847 ecc_word = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_WORDADDR;
848 ecc_word >>= 4;
849
850 /* if there are multiple errors */
851 if (ecc_status & ATMEL_ECC_MULERR) {
852 /* check if it is a freshly erased block
853 * (filled with 0xff) */
854 if ((ecc_bit == ATMEL_ECC_BITADDR)
855 && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
856 /* the block has just been erased, return OK */
857 return 0;
858 }
859 /* it doesn't seems to be a freshly
860 * erased block.
861 * We can't correct so many errors */
862 printk(KERN_WARNING "atmel_nand : multiple errors detected."
863 " Unable to correct.\n");
864 return -EIO;
865 }
866
867 /* if there's a single bit error : we can correct it */
868 if (ecc_status & ATMEL_ECC_ECCERR) {
869 /* there's nothing much to do here.
870 * the bit error is on the ECC itself.
871 */
872 printk(KERN_WARNING "atmel_nand : one bit error on ECC code."
873 " Nothing to correct\n");
874 return 0;
875 }
876
877 printk(KERN_WARNING "atmel_nand : one bit error on data."
878 " (word offset in the page :"
879 " 0x%x bit offset : 0x%x)\n",
880 ecc_word, ecc_bit);
881 /* correct the error */
882 if (nand_chip->options & NAND_BUSWIDTH_16) {
883 /* 16 bits words */
884 ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
885 } else {
886 /* 8 bits words */
887 dat[ecc_word] ^= (1 << ecc_bit);
888 }
889 printk(KERN_WARNING "atmel_nand : error corrected\n");
890 return 1;
891}
892
893/*
894 * Enable HW ECC : unused on most chips
895 */
896static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
897{
898}
Wu, Joshfe2185e2012-08-23 00:05:34 +0000899
900int atmel_hwecc_nand_init_param(struct nand_chip *nand, struct mtd_info *mtd)
901{
902 nand->ecc.mode = NAND_ECC_HW;
903 nand->ecc.calculate = atmel_nand_calculate;
904 nand->ecc.correct = atmel_nand_correct;
905 nand->ecc.hwctl = atmel_nand_hwctl;
906 nand->ecc.read_page = atmel_nand_read_page;
907 nand->ecc.bytes = 4;
908
909 if (nand->ecc.mode == NAND_ECC_HW) {
910 /* ECC is calculated for the whole page (1 step) */
911 nand->ecc.size = mtd->writesize;
912
913 /* set ECC page size and oob layout */
914 switch (mtd->writesize) {
915 case 512:
916 nand->ecc.layout = &atmel_oobinfo_small;
917 ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
918 ATMEL_ECC_PAGESIZE_528);
919 break;
920 case 1024:
921 nand->ecc.layout = &atmel_oobinfo_large;
922 ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
923 ATMEL_ECC_PAGESIZE_1056);
924 break;
925 case 2048:
926 nand->ecc.layout = &atmel_oobinfo_large;
927 ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
928 ATMEL_ECC_PAGESIZE_2112);
929 break;
930 case 4096:
931 nand->ecc.layout = &atmel_oobinfo_large;
932 ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
933 ATMEL_ECC_PAGESIZE_4224);
934 break;
935 default:
936 /* page size not handled by HW ECC */
937 /* switching back to soft ECC */
938 nand->ecc.mode = NAND_ECC_SOFT;
939 nand->ecc.calculate = NULL;
940 nand->ecc.correct = NULL;
941 nand->ecc.hwctl = NULL;
942 nand->ecc.read_page = NULL;
943 nand->ecc.postpad = 0;
944 nand->ecc.prepad = 0;
945 nand->ecc.bytes = 0;
946 break;
947 }
948 }
949
950 return 0;
951}
952
Wu, Joshbdfd59a2012-08-23 00:05:36 +0000953#endif /* CONFIG_ATMEL_NAND_HW_PMECC */
954
955#endif /* CONFIG_ATMEL_NAND_HWECC */
Nikolay Petukhov7c27b7b2010-03-19 10:49:27 +0500956
Jean-Christophe PLAGNIOL-VILLARD74c076d2009-03-22 10:22:34 +0100957static void at91_nand_hwcontrol(struct mtd_info *mtd,
Sergey Lapin10794322008-10-31 12:28:43 +0100958 int cmd, unsigned int ctrl)
959{
960 struct nand_chip *this = mtd->priv;
961
962 if (ctrl & NAND_CTRL_CHANGE) {
963 ulong IO_ADDR_W = (ulong) this->IO_ADDR_W;
Jean-Christophe PLAGNIOL-VILLARD74c076d2009-03-22 10:22:34 +0100964 IO_ADDR_W &= ~(CONFIG_SYS_NAND_MASK_ALE
965 | CONFIG_SYS_NAND_MASK_CLE);
Sergey Lapin10794322008-10-31 12:28:43 +0100966
967 if (ctrl & NAND_CLE)
Jean-Christophe PLAGNIOL-VILLARD74c076d2009-03-22 10:22:34 +0100968 IO_ADDR_W |= CONFIG_SYS_NAND_MASK_CLE;
Sergey Lapin10794322008-10-31 12:28:43 +0100969 if (ctrl & NAND_ALE)
Jean-Christophe PLAGNIOL-VILLARD74c076d2009-03-22 10:22:34 +0100970 IO_ADDR_W |= CONFIG_SYS_NAND_MASK_ALE;
Sergey Lapin10794322008-10-31 12:28:43 +0100971
michael67a490d2011-03-14 21:16:38 +0000972#ifdef CONFIG_SYS_NAND_ENABLE_PIN
Jean-Christophe PLAGNIOL-VILLARD74c076d2009-03-22 10:22:34 +0100973 at91_set_gpio_value(CONFIG_SYS_NAND_ENABLE_PIN,
974 !(ctrl & NAND_NCE));
michael67a490d2011-03-14 21:16:38 +0000975#endif
Sergey Lapin10794322008-10-31 12:28:43 +0100976 this->IO_ADDR_W = (void *) IO_ADDR_W;
977 }
978
979 if (cmd != NAND_CMD_NONE)
980 writeb(cmd, this->IO_ADDR_W);
981}
982
Jean-Christophe PLAGNIOL-VILLARD74c076d2009-03-22 10:22:34 +0100983#ifdef CONFIG_SYS_NAND_READY_PIN
984static int at91_nand_ready(struct mtd_info *mtd)
Sergey Lapin10794322008-10-31 12:28:43 +0100985{
Jean-Christophe PLAGNIOL-VILLARD74c076d2009-03-22 10:22:34 +0100986 return at91_get_gpio_value(CONFIG_SYS_NAND_READY_PIN);
Sergey Lapin10794322008-10-31 12:28:43 +0100987}
Jean-Christophe PLAGNIOL-VILLARD74c076d2009-03-22 10:22:34 +0100988#endif
Sergey Lapin10794322008-10-31 12:28:43 +0100989
Wu, Joshfe2185e2012-08-23 00:05:34 +0000990#ifndef CONFIG_SYS_NAND_BASE_LIST
991#define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE }
Nikolay Petukhov7c27b7b2010-03-19 10:49:27 +0500992#endif
Wu, Joshfe2185e2012-08-23 00:05:34 +0000993static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE];
994static ulong base_addr[CONFIG_SYS_MAX_NAND_DEVICE] = CONFIG_SYS_NAND_BASE_LIST;
995
996int atmel_nand_chip_init(int devnum, ulong base_addr)
997{
998 int ret;
999 struct mtd_info *mtd = &nand_info[devnum];
1000 struct nand_chip *nand = &nand_chip[devnum];
1001
1002 mtd->priv = nand;
1003 nand->IO_ADDR_R = nand->IO_ADDR_W = (void __iomem *)base_addr;
Nikolay Petukhov7c27b7b2010-03-19 10:49:27 +05001004
Sergey Lapin10794322008-10-31 12:28:43 +01001005 nand->ecc.mode = NAND_ECC_SOFT;
1006#ifdef CONFIG_SYS_NAND_DBW_16
1007 nand->options = NAND_BUSWIDTH_16;
1008#endif
Jean-Christophe PLAGNIOL-VILLARD74c076d2009-03-22 10:22:34 +01001009 nand->cmd_ctrl = at91_nand_hwcontrol;
1010#ifdef CONFIG_SYS_NAND_READY_PIN
1011 nand->dev_ready = at91_nand_ready;
1012#endif
Sergey Lapin10794322008-10-31 12:28:43 +01001013 nand->chip_delay = 20;
1014
Wu, Joshfe2185e2012-08-23 00:05:34 +00001015 ret = nand_scan_ident(mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL);
1016 if (ret)
1017 return ret;
Nikolay Petukhov7c27b7b2010-03-19 10:49:27 +05001018
1019#ifdef CONFIG_ATMEL_NAND_HWECC
Wu, Joshbdfd59a2012-08-23 00:05:36 +00001020#ifdef CONFIG_ATMEL_NAND_HW_PMECC
1021 ret = atmel_pmecc_nand_init_params(nand, mtd);
1022#else
Wu, Joshfe2185e2012-08-23 00:05:34 +00001023 ret = atmel_hwecc_nand_init_param(nand, mtd);
Wu, Joshbdfd59a2012-08-23 00:05:36 +00001024#endif
Wu, Joshfe2185e2012-08-23 00:05:34 +00001025 if (ret)
1026 return ret;
Nikolay Petukhov7c27b7b2010-03-19 10:49:27 +05001027#endif
1028
Wu, Joshfe2185e2012-08-23 00:05:34 +00001029 ret = nand_scan_tail(mtd);
1030 if (!ret)
1031 nand_register(devnum);
1032
1033 return ret;
1034}
1035
1036void board_nand_init(void)
1037{
1038 int i;
1039 for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++)
1040 if (atmel_nand_chip_init(i, base_addr[i]))
1041 printk(KERN_ERR "atmel_nand: Fail to initialize #%d chip",
1042 i);
Sergey Lapin10794322008-10-31 12:28:43 +01001043}