blob: 76aee2e0e4f796e6c3f84ae4b5e505e0c5a51d63 [file] [log] [blame]
wdenkfe8c2802002-11-03 00:38:21 +00001/*
2 * (C) Copyright 2001
3 * Bill Hunter, Wave 7 Optics, williamhunter@attbi.com
4 *
5 * Based on code by:
6 *
wdenkdb2f721f2003-03-06 00:58:30 +00007 * Kenneth Johansson ,Ericsson AB.
8 * kenneth.johansson@etx.ericsson.se
wdenkfe8c2802002-11-03 00:38:21 +00009 *
10 * hacked up by bill hunter. fixed so we could run before
11 * serial_init and console_init. previous version avoided this by
12 * running out of cache memory during serial/console init, then running
13 * this code later.
14 *
15 * (C) Copyright 2002
16 * Jun Gu, Artesyn Technology, jung@artesyncp.com
17 * Support for IBM 440 based on OpenBIOS draminit.c from IBM.
18 *
19 * See file CREDITS for list of people who contributed to this
20 * project.
21 *
22 * This program is free software; you can redistribute it and/or
23 * modify it under the terms of the GNU General Public License as
24 * published by the Free Software Foundation; either version 2 of
25 * the License, or (at your option) any later version.
26 *
27 * This program is distributed in the hope that it will be useful,
28 * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
30 * GNU General Public License for more details.
31 *
32 * You should have received a copy of the GNU General Public License
33 * along with this program; if not, write to the Free Software
34 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
35 * MA 02111-1307 USA
36 */
37
38#include <common.h>
39#include <asm/processor.h>
40#include <i2c.h>
41#include <ppc4xx.h>
42
43#ifdef CONFIG_SPD_EEPROM
44
45/*
46 * Set default values
47 */
48#ifndef CFG_I2C_SPEED
49#define CFG_I2C_SPEED 50000
50#endif
51
52#ifndef CFG_I2C_SLAVE
53#define CFG_I2C_SLAVE 0xFE
54#endif
55
56#ifndef CONFIG_440 /* for 405 WALNUT board */
57
58#define SDRAM0_CFG_DCE 0x80000000
59#define SDRAM0_CFG_SRE 0x40000000
60#define SDRAM0_CFG_PME 0x20000000
61#define SDRAM0_CFG_MEMCHK 0x10000000
62#define SDRAM0_CFG_REGEN 0x08000000
63#define SDRAM0_CFG_ECCDD 0x00400000
64#define SDRAM0_CFG_EMDULR 0x00200000
65#define SDRAM0_CFG_DRW_SHIFT (31-6)
66#define SDRAM0_CFG_BRPF_SHIFT (31-8)
67
68#define SDRAM0_TR_CASL_SHIFT (31-8)
69#define SDRAM0_TR_PTA_SHIFT (31-13)
70#define SDRAM0_TR_CTP_SHIFT (31-15)
71#define SDRAM0_TR_LDF_SHIFT (31-17)
72#define SDRAM0_TR_RFTA_SHIFT (31-29)
73#define SDRAM0_TR_RCD_SHIFT (31-31)
74
75#define SDRAM0_RTR_SHIFT (31-15)
76#define SDRAM0_ECCCFG_SHIFT (31-11)
77
78/* SDRAM0_CFG enable macro */
79#define SDRAM0_CFG_BRPF(x) ( ( x & 0x3)<< SDRAM0_CFG_BRPF_SHIFT )
80
81#define SDRAM0_BXCR_SZ_MASK 0x000e0000
82#define SDRAM0_BXCR_AM_MASK 0x0000e000
83
84#define SDRAM0_BXCR_SZ_SHIFT (31-14)
85#define SDRAM0_BXCR_AM_SHIFT (31-18)
86
87#define SDRAM0_BXCR_SZ(x) ( (( x << SDRAM0_BXCR_SZ_SHIFT) & SDRAM0_BXCR_SZ_MASK) )
88#define SDRAM0_BXCR_AM(x) ( (( x << SDRAM0_BXCR_AM_SHIFT) & SDRAM0_BXCR_AM_MASK) )
89
wdenkdb2f721f2003-03-06 00:58:30 +000090#ifdef CONFIG_SPDDRAM_SILENT
wdenkfe8c2802002-11-03 00:38:21 +000091# define SPD_ERR(x) do { return 0; } while (0)
92#else
wdenkdb2f721f2003-03-06 00:58:30 +000093# define SPD_ERR(x) do { printf(x); return(0); } while (0)
wdenkfe8c2802002-11-03 00:38:21 +000094#endif
95
wdenkfe8c2802002-11-03 00:38:21 +000096#define sdram_HZ_to_ns(hertz) (1000000000/(hertz))
97
98/* function prototypes */
wdenkdb2f721f2003-03-06 00:58:30 +000099int spd_read(uint addr);
wdenkfe8c2802002-11-03 00:38:21 +0000100
101
102/*
103 * This function is reading data from the DIMM module EEPROM over the SPD bus
104 * and uses that to program the sdram controller.
105 *
106 * This works on boards that has the same schematics that the IBM walnut has.
107 *
wdenkdb2f721f2003-03-06 00:58:30 +0000108 * Input: null for default I2C spd functions or a pointer to a custom function
109 * returning spd_data.
wdenkfe8c2802002-11-03 00:38:21 +0000110 */
111
wdenkdb2f721f2003-03-06 00:58:30 +0000112long int spd_sdram(int(read_spd)(uint addr))
wdenkfe8c2802002-11-03 00:38:21 +0000113{
114 int bus_period,tmp,row,col;
115 int total_size,bank_size,bank_code;
116 int ecc_on;
wdenkdb2f721f2003-03-06 00:58:30 +0000117 int mode;
118 int bank_cnt;
wdenkfe8c2802002-11-03 00:38:21 +0000119
120 int sdram0_pmit=0x07c00000;
stroeseb867d702003-05-23 11:18:02 +0000121#ifndef CONFIG_405EP /* not on PPC405EP */
wdenkfe8c2802002-11-03 00:38:21 +0000122 int sdram0_besr0=-1;
123 int sdram0_besr1=-1;
124 int sdram0_eccesr=-1;
stroeseb867d702003-05-23 11:18:02 +0000125#endif
wdenkfe8c2802002-11-03 00:38:21 +0000126 int sdram0_ecccfg;
127
128 int sdram0_rtr=0;
129 int sdram0_tr=0;
130
131 int sdram0_b0cr;
132 int sdram0_b1cr;
133 int sdram0_b2cr;
134 int sdram0_b3cr;
135
136 int sdram0_cfg=0;
137
138 int t_rp;
139 int t_rcd;
wdenkdb2f721f2003-03-06 00:58:30 +0000140 int t_ras;
141 int t_rc;
142 int min_cas;
wdenkfe8c2802002-11-03 00:38:21 +0000143
wdenkdb2f721f2003-03-06 00:58:30 +0000144 if(read_spd == 0){
145 read_spd=spd_read;
wdenkfe8c2802002-11-03 00:38:21 +0000146 /*
147 * Make sure I2C controller is initialized
148 * before continuing.
149 */
wdenkdb2f721f2003-03-06 00:58:30 +0000150 i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
151 }
152
wdenkfe8c2802002-11-03 00:38:21 +0000153
154 /*
155 * Calculate the bus period, we do it this
156 * way to minimize stack utilization.
157 */
stroeseb867d702003-05-23 11:18:02 +0000158#ifndef CONFIG_405EP
wdenkfe8c2802002-11-03 00:38:21 +0000159 tmp = (mfdcr(pllmd) >> (31-6)) & 0xf; /* get FBDV bits */
160 tmp = CONFIG_SYS_CLK_FREQ * tmp; /* get plb freq */
stroeseb867d702003-05-23 11:18:02 +0000161#else
162 {
163 unsigned long freqCPU;
164 unsigned long pllmr0;
165 unsigned long pllmr1;
166 unsigned long pllFbkDiv;
167 unsigned long pllPlbDiv;
168 unsigned long pllmr0_ccdv;
169
170 /*
171 * Read PLL Mode registers
172 */
173 pllmr0 = mfdcr (cpc0_pllmr0);
174 pllmr1 = mfdcr (cpc0_pllmr1);
175
176 pllFbkDiv = ((pllmr1 & PLLMR1_FBMUL_MASK) >> 20);
177 if (pllFbkDiv == 0) {
178 pllFbkDiv = 16;
179 }
180 pllPlbDiv = ((pllmr0 & PLLMR0_CPU_TO_PLB_MASK) >> 16) + 1;
181
182 /*
183 * Determine CPU clock frequency
184 */
185 pllmr0_ccdv = ((pllmr0 & PLLMR0_CPU_DIV_MASK) >> 20) + 1;
186 if (pllmr1 & PLLMR1_SSCS_MASK) {
187 freqCPU = (CONFIG_SYS_CLK_FREQ * pllFbkDiv) / pllmr0_ccdv;
188 } else {
189 freqCPU = CONFIG_SYS_CLK_FREQ / pllmr0_ccdv;
190 }
191
192 /*
193 * Determine PLB clock frequency
194 */
195 tmp = freqCPU / pllPlbDiv;
196 }
197#endif
wdenkfe8c2802002-11-03 00:38:21 +0000198 bus_period = sdram_HZ_to_ns(tmp); /* get sdram speed */
199
200 /* Make shure we are using SDRAM */
wdenkdb2f721f2003-03-06 00:58:30 +0000201 if (read_spd(2) != 0x04){
wdenkfe8c2802002-11-03 00:38:21 +0000202 SPD_ERR("SDRAM - non SDRAM memory module found\n");
203 }
204
205/*------------------------------------------------------------------
206 configure memory timing register
207
208 data from DIMM:
209 27 IN Row Precharge Time ( t RP)
210 29 MIN RAS to CAS Delay ( t RCD)
211 127 Component and Clock Detail ,clk0-clk3, junction temp, CAS
212 -------------------------------------------------------------------*/
213
214 /*
215 * first figure out which cas latency mode to use
216 * use the min supported mode
217 */
218
wdenkdb2f721f2003-03-06 00:58:30 +0000219 tmp = read_spd(127) & 0x6;
wdenkfe8c2802002-11-03 00:38:21 +0000220 if(tmp == 0x02){ /* only cas = 2 supported */
221 min_cas = 2;
wdenkdb2f721f2003-03-06 00:58:30 +0000222/* t_ck = read_spd(9); */
223/* t_ac = read_spd(10); */
wdenkfe8c2802002-11-03 00:38:21 +0000224 }
225 else if (tmp == 0x04){ /* only cas = 3 supported */
226 min_cas = 3;
wdenkdb2f721f2003-03-06 00:58:30 +0000227/* t_ck = read_spd(9); */
228/* t_ac = read_spd(10); */
wdenkfe8c2802002-11-03 00:38:21 +0000229 }
230 else if (tmp == 0x06){ /* 2,3 supported, so use 2 */
231 min_cas = 2;
wdenkdb2f721f2003-03-06 00:58:30 +0000232/* t_ck = read_spd(23); */
233/* t_ac = read_spd(24); */
wdenkfe8c2802002-11-03 00:38:21 +0000234 }
235 else {
236 SPD_ERR("SDRAM - unsupported CAS latency \n");
237 }
238
wdenkdb2f721f2003-03-06 00:58:30 +0000239 /* get some timing values, t_rp,t_rcd,t_ras,t_rc
wdenkfe8c2802002-11-03 00:38:21 +0000240 */
wdenkdb2f721f2003-03-06 00:58:30 +0000241 t_rp = read_spd(27);
242 t_rcd = read_spd(29);
243 t_ras = read_spd(30);
244 t_rc = t_ras + t_rp;
wdenkfe8c2802002-11-03 00:38:21 +0000245
246 /* The following timing calcs subtract 1 before deviding.
wdenkdb2f721f2003-03-06 00:58:30 +0000247 * this has effect of using ceiling instead of floor rounding,
wdenkfe8c2802002-11-03 00:38:21 +0000248 * and also subtracting 1 to convert number to reg value
249 */
250 /* set up CASL */
251 sdram0_tr = (min_cas - 1) << SDRAM0_TR_CASL_SHIFT;
252 /* set up PTA */
253 sdram0_tr |= (((t_rp - 1)/bus_period) & 0x3) << SDRAM0_TR_PTA_SHIFT;
254 /* set up CTP */
255 tmp = ((t_rc - t_rcd - t_rp -1) / bus_period) & 0x3;
wdenkdb2f721f2003-03-06 00:58:30 +0000256 if(tmp<1) tmp=1;
wdenkfe8c2802002-11-03 00:38:21 +0000257 sdram0_tr |= tmp << SDRAM0_TR_CTP_SHIFT;
258 /* set LDF = 2 cycles, reg value = 1 */
259 sdram0_tr |= 1 << SDRAM0_TR_LDF_SHIFT;
260 /* set RFTA = t_rfc/bus_period, use t_rfc = t_rc */
wdenkdb2f721f2003-03-06 00:58:30 +0000261 tmp = ( (t_rc - 1) / bus_period)-3;
wdenkfe8c2802002-11-03 00:38:21 +0000262 if(tmp<0)tmp=0;
263 if(tmp>6)tmp=6;
264 sdram0_tr |= tmp << SDRAM0_TR_RFTA_SHIFT;
265 /* set RCD = t_rcd/bus_period*/
266 sdram0_tr |= (((t_rcd - 1) / bus_period) &0x3) << SDRAM0_TR_RCD_SHIFT ;
267
268
269/*------------------------------------------------------------------
270 configure RTR register
271 -------------------------------------------------------------------*/
wdenkdb2f721f2003-03-06 00:58:30 +0000272 row = read_spd(3);
273 col = read_spd(4);
274 tmp = read_spd(12) & 0x7f ; /* refresh type less self refresh bit */
wdenkfe8c2802002-11-03 00:38:21 +0000275 switch(tmp){
276 case 0x00:
277 tmp=15625;
278 break;
279 case 0x01:
280 tmp=15625/4;
281 break;
282 case 0x02:
283 tmp=15625/2;
284 break;
285 case 0x03:
286 tmp=15625*2;
287 break;
288 case 0x04:
289 tmp=15625*4;
290 break;
291 case 0x05:
292 tmp=15625*8;
293 break;
294 default:
295 SPD_ERR("SDRAM - Bad refresh period \n");
296 }
297 /* convert from nsec to bus cycles */
298 tmp = tmp/bus_period;
299 sdram0_rtr = (tmp & 0x3ff8)<< SDRAM0_RTR_SHIFT;
300
301/*------------------------------------------------------------------
302 determine the number of banks used
303 -------------------------------------------------------------------*/
304 /* byte 7:6 is module data width */
wdenkdb2f721f2003-03-06 00:58:30 +0000305 if(read_spd(7) != 0)
wdenkfe8c2802002-11-03 00:38:21 +0000306 SPD_ERR("SDRAM - unsupported module width\n");
wdenkdb2f721f2003-03-06 00:58:30 +0000307 tmp = read_spd(6);
wdenkfe8c2802002-11-03 00:38:21 +0000308 if (tmp < 32)
309 SPD_ERR("SDRAM - unsupported module width\n");
310 else if (tmp < 64)
311 bank_cnt=1; /* one bank per sdram side */
312 else if (tmp < 73)
313 bank_cnt=2; /* need two banks per side */
314 else if (tmp < 161)
315 bank_cnt=4; /* need four banks per side */
316 else
317 SPD_ERR("SDRAM - unsupported module width\n");
318
319 /* byte 5 is the module row count (refered to as dimm "sides") */
wdenkdb2f721f2003-03-06 00:58:30 +0000320 tmp = read_spd(5);
wdenkfe8c2802002-11-03 00:38:21 +0000321 if(tmp==1);
322 else if(tmp==2) bank_cnt *=2;
323 else if(tmp==4) bank_cnt *=4;
324 else bank_cnt = 8; /* 8 is an error code */
325
326 if(bank_cnt > 4) /* we only have 4 banks to work with */
327 SPD_ERR("SDRAM - unsupported module rows for this width\n");
328
329 /* now check for ECC ability of module. We only support ECC
330 * on 32 bit wide devices with 8 bit ECC.
331 */
wdenk5d232d02003-05-22 22:52:13 +0000332 if ( (read_spd(11)==2) && (read_spd(6)==40) && (read_spd(14)==8) ){
wdenkfe8c2802002-11-03 00:38:21 +0000333 sdram0_ecccfg=0xf<<SDRAM0_ECCCFG_SHIFT;
334 ecc_on = 1;
335 }
336 else{
337 sdram0_ecccfg=0;
338 ecc_on = 0;
339 }
340
341/*------------------------------------------------------------------
342 calculate total size
343 -------------------------------------------------------------------*/
344 /* calculate total size and do sanity check */
wdenkdb2f721f2003-03-06 00:58:30 +0000345 tmp = read_spd(31);
wdenkfe8c2802002-11-03 00:38:21 +0000346 total_size=1<<22; /* total_size = 4MB */
wdenkdb2f721f2003-03-06 00:58:30 +0000347 /* now multiply 4M by the smallest device row density */
wdenkfe8c2802002-11-03 00:38:21 +0000348 /* note that we don't support asymetric rows */
349 while (((tmp & 0x0001) == 0) && (tmp != 0)){
350 total_size= total_size<<1;
351 tmp = tmp>>1;
352 }
wdenkdb2f721f2003-03-06 00:58:30 +0000353 total_size *= read_spd(5); /* mult by module rows (dimm sides) */
wdenkfe8c2802002-11-03 00:38:21 +0000354
355/*------------------------------------------------------------------
356 map rows * cols * banks to a mode
357 -------------------------------------------------------------------*/
358
359 switch( row )
360 {
361 case 11:
362 switch ( col )
363 {
364 case 8:
365 mode=4; /* mode 5 */
366 break;
367 case 9:
368 case 10:
369 mode=0; /* mode 1 */
370 break;
371 default:
372 SPD_ERR("SDRAM - unsupported mode\n");
373 }
374 break;
375 case 12:
376 switch ( col )
377 {
378 case 8:
379 mode=3; /* mode 4 */
380 break;
381 case 9:
382 case 10:
383 mode=1; /* mode 2 */
384 break;
385 default:
386 SPD_ERR("SDRAM - unsupported mode\n");
387 }
388 break;
389 case 13:
390 switch ( col )
391 {
392 case 8:
393 mode=5; /* mode 6 */
394 break;
395 case 9:
396 case 10:
wdenkdb2f721f2003-03-06 00:58:30 +0000397 if (read_spd(17) ==2 )
wdenkfe8c2802002-11-03 00:38:21 +0000398 mode=6; /* mode 7 */
399 else
400 mode=2; /* mode 3 */
401 break;
402 case 11:
403 mode=2; /* mode 3 */
404 break;
405 default:
406 SPD_ERR("SDRAM - unsupported mode\n");
407 }
408 break;
409 default:
410 SPD_ERR("SDRAM - unsupported mode\n");
411 }
412
413/*------------------------------------------------------------------
414 using the calculated values, compute the bank
415 config register values.
416 -------------------------------------------------------------------*/
417 sdram0_b1cr = 0;
418 sdram0_b2cr = 0;
419 sdram0_b3cr = 0;
420
421 /* compute the size of each bank */
422 bank_size = total_size / bank_cnt;
423 /* convert bank size to bank size code for ppc4xx
424 by takeing log2(bank_size) - 22 */
425 tmp=bank_size; /* start with tmp = bank_size */
426 bank_code=0; /* and bank_code = 0 */
427 while (tmp>1){ /* this takes log2 of tmp */
428 bank_code++; /* and stores result in bank_code */
429 tmp=tmp>>1;
430 } /* bank_code is now log2(bank_size) */
431 bank_code-=22; /* subtract 22 to get the code */
432
433 tmp = SDRAM0_BXCR_SZ(bank_code) | SDRAM0_BXCR_AM(mode) | 1;
434 sdram0_b0cr = (bank_size) * 0 | tmp;
435 if(bank_cnt>1) sdram0_b2cr = (bank_size) * 1 | tmp;
436 if(bank_cnt>2) sdram0_b1cr = (bank_size) * 2 | tmp;
437 if(bank_cnt>3) sdram0_b3cr = (bank_size) * 3 | tmp;
438
439
440 /*
441 * enable sdram controller DCE=1
442 * enable burst read prefetch to 32 bytes BRPF=2
443 * leave other functions off
444 */
445
446/*------------------------------------------------------------------
447 now that we've done our calculations, we are ready to
448 program all the registers.
449 -------------------------------------------------------------------*/
450
451
452#define mtsdram0(reg, data) mtdcr(memcfga,reg);mtdcr(memcfgd,data)
453 /* disable memcontroller so updates work */
454 sdram0_cfg = 0;
455 mtsdram0( mem_mcopt1, sdram0_cfg );
456
stroeseb867d702003-05-23 11:18:02 +0000457#ifndef CONFIG_405EP /* not on PPC405EP */
wdenkfe8c2802002-11-03 00:38:21 +0000458 mtsdram0( mem_besra , sdram0_besr0 );
459 mtsdram0( mem_besrb , sdram0_besr1 );
stroeseb867d702003-05-23 11:18:02 +0000460 mtsdram0( mem_ecccf , sdram0_ecccfg );
461 mtsdram0( mem_eccerr, sdram0_eccesr );
462#endif
wdenkfe8c2802002-11-03 00:38:21 +0000463 mtsdram0( mem_rtr , sdram0_rtr );
464 mtsdram0( mem_pmit , sdram0_pmit );
465 mtsdram0( mem_mb0cf , sdram0_b0cr );
466 mtsdram0( mem_mb1cf , sdram0_b1cr );
467 mtsdram0( mem_mb2cf , sdram0_b2cr );
468 mtsdram0( mem_mb3cf , sdram0_b3cr );
469 mtsdram0( mem_sdtr1 , sdram0_tr );
wdenkfe8c2802002-11-03 00:38:21 +0000470
471 /* SDRAM have a power on delay, 500 micro should do */
472 udelay(500);
473 sdram0_cfg = SDRAM0_CFG_DCE | SDRAM0_CFG_BRPF(1) | SDRAM0_CFG_ECCDD | SDRAM0_CFG_EMDULR;
474 if(ecc_on) sdram0_cfg |= SDRAM0_CFG_MEMCHK;
475 mtsdram0( mem_mcopt1, sdram0_cfg );
476
477
478 /* kernel 2.4.2 from mvista has a bug with memory over 128MB */
479#ifdef MVISTA_MEM_BUG
480 if (total_size > 128*1024*1024 )
481 total_size=128*1024*1024;
482#endif
483 return (total_size);
484}
485
486int spd_read(uint addr)
487{
488 char data[2];
489
490 if (i2c_read(SPD_EEPROM_ADDRESS, addr, 1, data, 1) == 0)
491 return (int)data[0];
492 else
493 return 0;
494}
495
496#else /* CONFIG_440 */
497
498/*-----------------------------------------------------------------------------
499| Memory Controller Options 0
500+-----------------------------------------------------------------------------*/
501#define SDRAM_CFG0_DCEN 0x80000000 /* SDRAM Controller Enable */
502#define SDRAM_CFG0_MCHK_MASK 0x30000000 /* Memory data errchecking mask */
503#define SDRAM_CFG0_MCHK_NON 0x00000000 /* No ECC generation */
504#define SDRAM_CFG0_MCHK_GEN 0x20000000 /* ECC generation */
505#define SDRAM_CFG0_MCHK_CHK 0x30000000 /* ECC generation and checking */
506#define SDRAM_CFG0_RDEN 0x08000000 /* Registered DIMM enable */
507#define SDRAM_CFG0_PMUD 0x04000000 /* Page management unit */
508#define SDRAM_CFG0_DMWD_MASK 0x02000000 /* DRAM width mask */
509#define SDRAM_CFG0_DMWD_32 0x00000000 /* 32 bits */
510#define SDRAM_CFG0_DMWD_64 0x02000000 /* 64 bits */
511#define SDRAM_CFG0_UIOS_MASK 0x00C00000 /* Unused IO State */
512#define SDRAM_CFG0_PDP 0x00200000 /* Page deallocation policy */
513
514/*-----------------------------------------------------------------------------
515| Memory Controller Options 1
516+-----------------------------------------------------------------------------*/
517#define SDRAM_CFG1_SRE 0x80000000 /* Self-Refresh Entry */
518#define SDRAM_CFG1_PMEN 0x40000000 /* Power Management Enable */
519
520/*-----------------------------------------------------------------------------+
521| SDRAM DEVPOT Options
522+-----------------------------------------------------------------------------*/
523#define SDRAM_DEVOPT_DLL 0x80000000
524#define SDRAM_DEVOPT_DS 0x40000000
525
526/*-----------------------------------------------------------------------------+
527| SDRAM MCSTS Options
528+-----------------------------------------------------------------------------*/
529#define SDRAM_MCSTS_MRSC 0x80000000
530#define SDRAM_MCSTS_SRMS 0x40000000
531#define SDRAM_MCSTS_CIS 0x20000000
532
533/*-----------------------------------------------------------------------------
534| SDRAM Refresh Timer Register
535+-----------------------------------------------------------------------------*/
536#define SDRAM_RTR_RINT_MASK 0xFFFF0000
537#define SDRAM_RTR_RINT_ENCODE(n) (((n) << 16) & SDRAM_RTR_RINT_MASK)
538#define sdram_HZ_to_ns(hertz) (1000000000/(hertz))
539
540/*-----------------------------------------------------------------------------+
541| SDRAM UABus Base Address Reg
542+-----------------------------------------------------------------------------*/
543#define SDRAM_UABBA_UBBA_MASK 0x0000000F
544
545/*-----------------------------------------------------------------------------+
546| Memory Bank 0-7 configuration
547+-----------------------------------------------------------------------------*/
548#define SDRAM_BXCR_SDBA_MASK 0xff800000 /* Base address */
549#define SDRAM_BXCR_SDSZ_MASK 0x000e0000 /* Size */
550#define SDRAM_BXCR_SDSZ_8 0x00020000 /* 8M */
551#define SDRAM_BXCR_SDSZ_16 0x00040000 /* 16M */
552#define SDRAM_BXCR_SDSZ_32 0x00060000 /* 32M */
553#define SDRAM_BXCR_SDSZ_64 0x00080000 /* 64M */
554#define SDRAM_BXCR_SDSZ_128 0x000a0000 /* 128M */
555#define SDRAM_BXCR_SDSZ_256 0x000c0000 /* 256M */
556#define SDRAM_BXCR_SDSZ_512 0x000e0000 /* 512M */
557#define SDRAM_BXCR_SDAM_MASK 0x0000e000 /* Addressing mode */
558#define SDRAM_BXCR_SDAM_1 0x00000000 /* Mode 1 */
559#define SDRAM_BXCR_SDAM_2 0x00002000 /* Mode 2 */
560#define SDRAM_BXCR_SDAM_3 0x00004000 /* Mode 3 */
561#define SDRAM_BXCR_SDAM_4 0x00006000 /* Mode 4 */
562#define SDRAM_BXCR_SDBE 0x00000001 /* Memory Bank Enable */
563
564/*-----------------------------------------------------------------------------+
565| SDRAM TR0 Options
566+-----------------------------------------------------------------------------*/
567#define SDRAM_TR0_SDWR_MASK 0x80000000
568#define SDRAM_TR0_SDWR_2_CLK 0x00000000
569#define SDRAM_TR0_SDWR_3_CLK 0x80000000
570#define SDRAM_TR0_SDWD_MASK 0x40000000
571#define SDRAM_TR0_SDWD_0_CLK 0x00000000
572#define SDRAM_TR0_SDWD_1_CLK 0x40000000
573#define SDRAM_TR0_SDCL_MASK 0x01800000
574#define SDRAM_TR0_SDCL_2_0_CLK 0x00800000
575#define SDRAM_TR0_SDCL_2_5_CLK 0x01000000
576#define SDRAM_TR0_SDCL_3_0_CLK 0x01800000
577#define SDRAM_TR0_SDPA_MASK 0x000C0000
578#define SDRAM_TR0_SDPA_2_CLK 0x00040000
579#define SDRAM_TR0_SDPA_3_CLK 0x00080000
580#define SDRAM_TR0_SDPA_4_CLK 0x000C0000
581#define SDRAM_TR0_SDCP_MASK 0x00030000
582#define SDRAM_TR0_SDCP_2_CLK 0x00000000
583#define SDRAM_TR0_SDCP_3_CLK 0x00010000
584#define SDRAM_TR0_SDCP_4_CLK 0x00020000
585#define SDRAM_TR0_SDCP_5_CLK 0x00030000
586#define SDRAM_TR0_SDLD_MASK 0x0000C000
587#define SDRAM_TR0_SDLD_1_CLK 0x00000000
588#define SDRAM_TR0_SDLD_2_CLK 0x00004000
589#define SDRAM_TR0_SDRA_MASK 0x0000001C
590#define SDRAM_TR0_SDRA_6_CLK 0x00000000
591#define SDRAM_TR0_SDRA_7_CLK 0x00000004
592#define SDRAM_TR0_SDRA_8_CLK 0x00000008
593#define SDRAM_TR0_SDRA_9_CLK 0x0000000C
594#define SDRAM_TR0_SDRA_10_CLK 0x00000010
595#define SDRAM_TR0_SDRA_11_CLK 0x00000014
596#define SDRAM_TR0_SDRA_12_CLK 0x00000018
597#define SDRAM_TR0_SDRA_13_CLK 0x0000001C
598#define SDRAM_TR0_SDRD_MASK 0x00000003
599#define SDRAM_TR0_SDRD_2_CLK 0x00000001
600#define SDRAM_TR0_SDRD_3_CLK 0x00000002
601#define SDRAM_TR0_SDRD_4_CLK 0x00000003
602
603/*-----------------------------------------------------------------------------+
604| SDRAM TR1 Options
605+-----------------------------------------------------------------------------*/
606#define SDRAM_TR1_RDSS_MASK 0xC0000000
607#define SDRAM_TR1_RDSS_TR0 0x00000000
608#define SDRAM_TR1_RDSS_TR1 0x40000000
609#define SDRAM_TR1_RDSS_TR2 0x80000000
610#define SDRAM_TR1_RDSS_TR3 0xC0000000
611#define SDRAM_TR1_RDSL_MASK 0x00C00000
612#define SDRAM_TR1_RDSL_STAGE1 0x00000000
613#define SDRAM_TR1_RDSL_STAGE2 0x00400000
614#define SDRAM_TR1_RDSL_STAGE3 0x00800000
615#define SDRAM_TR1_RDCD_MASK 0x00000800
616#define SDRAM_TR1_RDCD_RCD_0_0 0x00000000
617#define SDRAM_TR1_RDCD_RCD_1_2 0x00000800
618#define SDRAM_TR1_RDCT_MASK 0x000001FF
619#define SDRAM_TR1_RDCT_ENCODE(x) (((x) << 0) & SDRAM_TR1_RDCT_MASK)
620#define SDRAM_TR1_RDCT_DECODE(x) (((x) & SDRAM_TR1_RDCT_MASK) >> 0)
621#define SDRAM_TR1_RDCT_MIN 0x00000000
622#define SDRAM_TR1_RDCT_MAX 0x000001FF
623
624/*-----------------------------------------------------------------------------+
625| SDRAM WDDCTR Options
626+-----------------------------------------------------------------------------*/
627#define SDRAM_WDDCTR_WRCP_MASK 0xC0000000
628#define SDRAM_WDDCTR_WRCP_0DEG 0x00000000
629#define SDRAM_WDDCTR_WRCP_90DEG 0x40000000
630#define SDRAM_WDDCTR_WRCP_180DEG 0x80000000
631#define SDRAM_WDDCTR_DCD_MASK 0x000001FF
632
633/*-----------------------------------------------------------------------------+
634| SDRAM CLKTR Options
635+-----------------------------------------------------------------------------*/
636#define SDRAM_CLKTR_CLKP_MASK 0xC0000000
637#define SDRAM_CLKTR_CLKP_0DEG 0x00000000
638#define SDRAM_CLKTR_CLKP_90DEG 0x40000000
639#define SDRAM_CLKTR_CLKP_180DEG 0x80000000
640#define SDRAM_CLKTR_DCDT_MASK 0x000001FF
641
642/*-----------------------------------------------------------------------------+
643| SDRAM DLYCAL Options
644+-----------------------------------------------------------------------------*/
645#define SDRAM_DLYCAL_DLCV_MASK 0x000003FC
646#define SDRAM_DLYCAL_DLCV_ENCODE(x) (((x)<<2) & SDRAM_DLYCAL_DLCV_MASK)
647#define SDRAM_DLYCAL_DLCV_DECODE(x) (((x) & SDRAM_DLYCAL_DLCV_MASK)>>2)
648
649/*-----------------------------------------------------------------------------+
650| General Definition
651+-----------------------------------------------------------------------------*/
652#define DEFAULT_SPD_ADDR1 0x53
653#define DEFAULT_SPD_ADDR2 0x52
654#define ONE_BILLION 1000000000
655#define MAXBANKS 4 /* at most 4 dimm banks */
656#define MAX_SPD_BYTES 256
657#define NUMHALFCYCLES 4
658#define NUMMEMTESTS 8
659#define NUMMEMWORDS 8
660#define MAXBXCR 4
661#define TRUE 1
662#define FALSE 0
663
664const unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
665 {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
666 0xFFFFFFFF, 0xFFFFFFFF},
667 {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
668 0x00000000, 0x00000000},
669 {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
670 0x55555555, 0x55555555},
671 {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
672 0xAAAAAAAA, 0xAAAAAAAA},
673 {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
674 0x5A5A5A5A, 0x5A5A5A5A},
675 {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
676 0xA5A5A5A5, 0xA5A5A5A5},
677 {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
678 0x55AA55AA, 0x55AA55AA},
679 {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
680 0xAA55AA55, 0xAA55AA55}
681};
682
683
684unsigned char spd_read(uchar chip, uint addr);
685
686void get_spd_info(unsigned long* dimm_populated,
687 unsigned char* iic0_dimm_addr,
688 unsigned long num_dimm_banks);
689
690void check_mem_type
691 (unsigned long* dimm_populated,
692 unsigned char* iic0_dimm_addr,
693 unsigned long num_dimm_banks);
694
695void check_volt_type
696 (unsigned long* dimm_populated,
697 unsigned char* iic0_dimm_addr,
698 unsigned long num_dimm_banks);
699
700void program_cfg0(unsigned long* dimm_populated,
701 unsigned char* iic0_dimm_addr,
702 unsigned long num_dimm_banks);
703
704void program_cfg1(unsigned long* dimm_populated,
705 unsigned char* iic0_dimm_addr,
706 unsigned long num_dimm_banks);
707
708void program_rtr (unsigned long* dimm_populated,
709 unsigned char* iic0_dimm_addr,
710 unsigned long num_dimm_banks);
711
712void program_tr0 (unsigned long* dimm_populated,
713 unsigned char* iic0_dimm_addr,
714 unsigned long num_dimm_banks);
715
716void program_tr1 (void);
717
718void program_ecc (unsigned long num_bytes);
719
720unsigned
721long program_bxcr(unsigned long* dimm_populated,
722 unsigned char* iic0_dimm_addr,
723 unsigned long num_dimm_banks);
724
725/*
726 * This function is reading data from the DIMM module EEPROM over the SPD bus
727 * and uses that to program the sdram controller.
728 *
729 * This works on boards that has the same schematics that the IBM walnut has.
730 *
731 * BUG: Don't handle ECC memory
732 * BUG: A few values in the TR register is currently hardcoded
733 */
734
735long int spd_sdram(void) {
736 unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
737 unsigned long dimm_populated[sizeof(iic0_dimm_addr)];
738 unsigned long total_size;
739 unsigned long cfg0;
740 unsigned long mcsts;
741 unsigned long num_dimm_banks; /* on board dimm banks */
742
743 num_dimm_banks = sizeof(iic0_dimm_addr);
744
745 /*
746 * Make sure I2C controller is initialized
747 * before continuing.
748 */
749 i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
750
751 /*
752 * Read the SPD information using I2C interface. Check to see if the
753 * DIMM slots are populated.
754 */
755 get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
756
757 /*
758 * Check the memory type for the dimms plugged.
759 */
760 check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
761
762 /*
763 * Check the voltage type for the dimms plugged.
764 */
765 check_volt_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
766
767 /*
768 * program 440GP SDRAM controller options (SDRAM0_CFG0)
769 */
770 program_cfg0(dimm_populated, iic0_dimm_addr, num_dimm_banks);
771
772 /*
773 * program 440GP SDRAM controller options (SDRAM0_CFG1)
774 */
775 program_cfg1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
776
777 /*
778 * program SDRAM refresh register (SDRAM0_RTR)
779 */
780 program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
781
782 /*
783 * program SDRAM Timing Register 0 (SDRAM0_TR0)
784 */
785 program_tr0(dimm_populated, iic0_dimm_addr, num_dimm_banks);
786
787 /*
788 * program the BxCR registers to find out total sdram installed
789 */
790 total_size = program_bxcr(dimm_populated, iic0_dimm_addr,
791 num_dimm_banks);
792
793 /*
794 * program SDRAM Clock Timing Register (SDRAM0_CLKTR)
795 */
796 mtsdram(mem_clktr, 0x40000000);
797
798 /*
799 * delay to ensure 200 usec has elapsed
800 */
801 udelay(400);
802
803 /*
804 * enable the memory controller
805 */
806 mfsdram(mem_cfg0, cfg0);
807 mtsdram(mem_cfg0, cfg0 | SDRAM_CFG0_DCEN);
808
809 /*
810 * wait for SDRAM_CFG0_DC_EN to complete
811 */
812 while(1) {
813 mfsdram(mem_mcsts, mcsts);
814 if ((mcsts & SDRAM_MCSTS_MRSC) != 0) {
815 break;
816 }
817 }
818
819 /*
820 * program SDRAM Timing Register 1, adding some delays
821 */
822 program_tr1();
823
824 /*
825 * if ECC is enabled, initialize parity bits
826 */
827
828 return total_size;
829}
830
831unsigned char spd_read(uchar chip, uint addr) {
832 unsigned char data[2];
833
834 if (i2c_read(chip, addr, 1, data, 1) == 0)
835 return data[0];
836 else
837 return 0;
838}
839
840void get_spd_info(unsigned long* dimm_populated,
841 unsigned char* iic0_dimm_addr,
842 unsigned long num_dimm_banks)
843{
844 unsigned long dimm_num;
845 unsigned long dimm_found;
846 unsigned char num_of_bytes;
847 unsigned char total_size;
848
849 dimm_found = FALSE;
850 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
851 num_of_bytes = 0;
852 total_size = 0;
853
854 num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
855 total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
856
857 if ((num_of_bytes != 0) && (total_size != 0)) {
858 dimm_populated[dimm_num] = TRUE;
859 dimm_found = TRUE;
860#if 0
861 printf("DIMM slot %lu: populated\n", dimm_num);
862#endif
863 }
864 else {
865 dimm_populated[dimm_num] = FALSE;
866#if 0
867 printf("DIMM slot %lu: Not populated\n", dimm_num);
868#endif
869 }
870 }
871
872 if (dimm_found == FALSE) {
873 printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
874 hang();
875 }
876}
877
878void check_mem_type(unsigned long* dimm_populated,
879 unsigned char* iic0_dimm_addr,
880 unsigned long num_dimm_banks)
881{
882 unsigned long dimm_num;
883 unsigned char dimm_type;
884
885 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
886 if (dimm_populated[dimm_num] == TRUE) {
887 dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
888 switch (dimm_type) {
889 case 7:
890#if 0
891 printf("DIMM slot %lu: DDR SDRAM detected\n", dimm_num);
892#endif
893 break;
894 default:
895 printf("ERROR: Unsupported DIMM detected in slot %lu.\n",
896 dimm_num);
897 printf("Only DDR SDRAM DIMMs are supported.\n");
898 printf("Replace the DIMM module with a supported DIMM.\n\n");
899 hang();
900 break;
901 }
902 }
903 }
904}
905
906
907void check_volt_type(unsigned long* dimm_populated,
908 unsigned char* iic0_dimm_addr,
909 unsigned long num_dimm_banks)
910{
911 unsigned long dimm_num;
912 unsigned long voltage_type;
913
914 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
915 if (dimm_populated[dimm_num] == TRUE) {
916 voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
917 if (voltage_type != 0x04) {
918 printf("ERROR: DIMM %lu with unsupported voltage level.\n",
919 dimm_num);
920 hang();
921 }
922 else {
923#if 0
924 printf("DIMM %lu voltage level supported.\n", dimm_num);
925#endif
926 }
927 break;
928 }
929 }
930}
931
932void program_cfg0(unsigned long* dimm_populated,
933 unsigned char* iic0_dimm_addr,
934 unsigned long num_dimm_banks)
935{
936 unsigned long dimm_num;
937 unsigned long cfg0;
938 unsigned long ecc_enabled;
939 unsigned char ecc;
940 unsigned char attributes;
941 unsigned long data_width;
942 unsigned long dimm_32bit;
943 unsigned long dimm_64bit;
944
945 /*
946 * get Memory Controller Options 0 data
947 */
948 mfsdram(mem_cfg0, cfg0);
949
950 /*
951 * clear bits
952 */
953 cfg0 &= ~(SDRAM_CFG0_DCEN | SDRAM_CFG0_MCHK_MASK |
954 SDRAM_CFG0_RDEN | SDRAM_CFG0_PMUD |
955 SDRAM_CFG0_DMWD_MASK |
956 SDRAM_CFG0_UIOS_MASK | SDRAM_CFG0_PDP);
957
958
959 /*
960 * FIXME: assume the DDR SDRAMs in both banks are the same
961 */
962 ecc_enabled = TRUE;
963 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
964 if (dimm_populated[dimm_num] == TRUE) {
965 ecc = spd_read(iic0_dimm_addr[dimm_num], 11);
966 if (ecc != 0x02) {
967 ecc_enabled = FALSE;
968 }
969
970 /*
971 * program Registered DIMM Enable
972 */
973 attributes = spd_read(iic0_dimm_addr[dimm_num], 21);
974 if ((attributes & 0x02) != 0x00) {
975 cfg0 |= SDRAM_CFG0_RDEN;
976 }
977
978 /*
979 * program DDR SDRAM Data Width
980 */
981 data_width =
982 (unsigned long)spd_read(iic0_dimm_addr[dimm_num],6) +
983 (((unsigned long)spd_read(iic0_dimm_addr[dimm_num],7)) << 8);
984 if (data_width == 64 || data_width == 72) {
985 dimm_64bit = TRUE;
986 cfg0 |= SDRAM_CFG0_DMWD_64;
987 }
988 else if (data_width == 32 || data_width == 40) {
989 dimm_32bit = TRUE;
990 cfg0 |= SDRAM_CFG0_DMWD_32;
991 }
992 else {
993 printf("WARNING: DIMM with datawidth of %lu bits.\n",
994 data_width);
995 printf("Only DIMMs with 32 or 64 bit datawidths supported.\n");
996 hang();
997 }
998 break;
999 }
1000 }
1001
1002 /*
1003 * program Memory Data Error Checking
1004 */
1005 if (ecc_enabled == TRUE) {
1006 cfg0 |= SDRAM_CFG0_MCHK_GEN;
1007 }
1008 else {
1009 cfg0 |= SDRAM_CFG0_MCHK_NON;
1010 }
1011
1012 /*
1013 * program Page Management Unit
1014 */
1015 cfg0 |= SDRAM_CFG0_PMUD;
1016
1017 /*
1018 * program Memory Controller Options 0
1019 * Note: DCEN must be enabled after all DDR SDRAM controller
1020 * configuration registers get initialized.
1021 */
1022 mtsdram(mem_cfg0, cfg0);
1023}
1024
1025void program_cfg1(unsigned long* dimm_populated,
1026 unsigned char* iic0_dimm_addr,
1027 unsigned long num_dimm_banks)
1028{
1029 unsigned long cfg1;
1030 mfsdram(mem_cfg1, cfg1);
1031
1032 /*
1033 * Self-refresh exit, disable PM
1034 */
1035 cfg1 &= ~(SDRAM_CFG1_SRE | SDRAM_CFG1_PMEN);
1036
1037 /*
1038 * program Memory Controller Options 1
1039 */
1040 mtsdram(mem_cfg1, cfg1);
1041}
1042
1043void program_rtr (unsigned long* dimm_populated,
1044 unsigned char* iic0_dimm_addr,
1045 unsigned long num_dimm_banks)
1046{
1047 unsigned long dimm_num;
1048 unsigned long bus_period_x_10;
1049 unsigned long refresh_rate = 0;
1050 unsigned char refresh_rate_type;
1051 unsigned long refresh_interval;
1052 unsigned long sdram_rtr;
1053 PPC440_SYS_INFO sys_info;
1054
1055 /*
1056 * get the board info
1057 */
1058 get_sys_info(&sys_info);
1059 bus_period_x_10 = ONE_BILLION / (sys_info.freqPLB / 10);
1060
1061
1062 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1063 if (dimm_populated[dimm_num] == TRUE) {
1064 refresh_rate_type = 0x7F & spd_read(iic0_dimm_addr[dimm_num], 12);
1065 switch (refresh_rate_type) {
1066 case 0x00:
1067 refresh_rate = 15625;
1068 break;
1069 case 0x011:
1070 refresh_rate = 15625/4;
1071 break;
1072 case 0x02:
1073 refresh_rate = 15625/2;
1074 break;
1075 case 0x03:
1076 refresh_rate = 15626*2;
1077 break;
1078 case 0x04:
1079 refresh_rate = 15625*4;
1080 break;
1081 case 0x05:
1082 refresh_rate = 15625*8;
1083 break;
1084 default:
1085 printf("ERROR: DIMM %lu, unsupported refresh rate/type.\n",
1086 dimm_num);
1087 printf("Replace the DIMM module with a supported DIMM.\n");
1088 break;
1089 }
1090
1091 break;
1092 }
1093 }
1094
1095 refresh_interval = refresh_rate * 10 / bus_period_x_10;
1096 sdram_rtr = (refresh_interval & 0x3ff8) << 16;
1097
1098 /*
1099 * program Refresh Timer Register (SDRAM0_RTR)
1100 */
1101 mtsdram(mem_rtr, sdram_rtr);
1102}
1103
1104void program_tr0 (unsigned long* dimm_populated,
1105 unsigned char* iic0_dimm_addr,
1106 unsigned long num_dimm_banks)
1107{
1108 unsigned long dimm_num;
1109 unsigned long tr0;
1110 unsigned char wcsbc;
1111 unsigned char t_rp_ns;
1112 unsigned char t_rcd_ns;
1113 unsigned char t_ras_ns;
1114 unsigned long t_rp_clk;
1115 unsigned long t_ras_rcd_clk;
1116 unsigned long t_rcd_clk;
1117 unsigned long t_rfc_clk;
1118 unsigned long plb_check;
1119 unsigned char cas_bit;
1120 unsigned long cas_index;
1121 unsigned char cas_2_0_available;
1122 unsigned char cas_2_5_available;
1123 unsigned char cas_3_0_available;
1124 unsigned long cycle_time_ns_x_10[3];
1125 unsigned long tcyc_3_0_ns_x_10;
1126 unsigned long tcyc_2_5_ns_x_10;
1127 unsigned long tcyc_2_0_ns_x_10;
1128 unsigned long tcyc_reg;
1129 unsigned long bus_period_x_10;
1130 PPC440_SYS_INFO sys_info;
1131 unsigned long residue;
1132
1133 /*
1134 * get the board info
1135 */
1136 get_sys_info(&sys_info);
1137 bus_period_x_10 = ONE_BILLION / (sys_info.freqPLB / 10);
1138
1139 /*
1140 * get SDRAM Timing Register 0 (SDRAM_TR0) and clear bits
1141 */
1142 mfsdram(mem_tr0, tr0);
1143 tr0 &= ~(SDRAM_TR0_SDWR_MASK | SDRAM_TR0_SDWD_MASK |
1144 SDRAM_TR0_SDCL_MASK | SDRAM_TR0_SDPA_MASK |
1145 SDRAM_TR0_SDCP_MASK | SDRAM_TR0_SDLD_MASK |
1146 SDRAM_TR0_SDRA_MASK | SDRAM_TR0_SDRD_MASK);
1147
1148 /*
1149 * initialization
1150 */
1151 wcsbc = 0;
1152 t_rp_ns = 0;
1153 t_rcd_ns = 0;
1154 t_ras_ns = 0;
1155 cas_2_0_available = TRUE;
1156 cas_2_5_available = TRUE;
1157 cas_3_0_available = TRUE;
1158 tcyc_2_0_ns_x_10 = 0;
1159 tcyc_2_5_ns_x_10 = 0;
1160 tcyc_3_0_ns_x_10 = 0;
1161
1162 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1163 if (dimm_populated[dimm_num] == TRUE) {
1164 wcsbc = spd_read(iic0_dimm_addr[dimm_num], 15);
1165 t_rp_ns = spd_read(iic0_dimm_addr[dimm_num], 27) >> 2;
1166 t_rcd_ns = spd_read(iic0_dimm_addr[dimm_num], 29) >> 2;
1167 t_ras_ns = spd_read(iic0_dimm_addr[dimm_num], 30);
1168 cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
1169
1170 for (cas_index = 0; cas_index < 3; cas_index++) {
1171 switch (cas_index) {
1172 case 0:
1173 tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
1174 break;
1175 case 1:
1176 tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
1177 break;
1178 default:
1179 tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
1180 break;
1181 }
1182
1183 if ((tcyc_reg & 0x0F) >= 10) {
1184 printf("ERROR: Tcyc incorrect for DIMM in slot %lu\n",
1185 dimm_num);
1186 hang();
1187 }
1188
1189 cycle_time_ns_x_10[cas_index] =
1190 (((tcyc_reg & 0xF0) >> 4) * 10) + (tcyc_reg & 0x0F);
1191 }
1192
1193 cas_index = 0;
1194
1195 if ((cas_bit & 0x80) != 0) {
1196 cas_index += 3;
1197 }
1198 else if ((cas_bit & 0x40) != 0) {
1199 cas_index += 2;
1200 }
1201 else if ((cas_bit & 0x20) != 0) {
1202 cas_index += 1;
1203 }
1204
1205 if (((cas_bit & 0x10) != 0) && (cas_index < 3)) {
1206 tcyc_3_0_ns_x_10 = cycle_time_ns_x_10[cas_index];
1207 cas_index++;
1208 }
1209 else {
1210 if (cas_index != 0) {
1211 cas_index++;
1212 }
1213 cas_3_0_available = FALSE;
1214 }
1215
1216 if (((cas_bit & 0x08) != 0) || (cas_index < 3)) {
1217 tcyc_2_5_ns_x_10 = cycle_time_ns_x_10[cas_index];
1218 cas_index++;
1219 }
1220 else {
1221 if (cas_index != 0) {
1222 cas_index++;
1223 }
1224 cas_2_5_available = FALSE;
1225 }
1226
1227 if (((cas_bit & 0x04) != 0) || (cas_index < 3)) {
1228 tcyc_2_0_ns_x_10 = cycle_time_ns_x_10[cas_index];
1229 cas_index++;
1230 }
1231 else {
1232 if (cas_index != 0) {
1233 cas_index++;
1234 }
1235 cas_2_0_available = FALSE;
1236 }
1237
1238 break;
1239 }
1240 }
1241
1242 /*
1243 * Program SD_WR and SD_WCSBC fields
1244 */
1245 tr0 |= SDRAM_TR0_SDWR_2_CLK; /* Write Recovery: 2 CLK */
1246 switch (wcsbc) {
1247 case 0:
1248 tr0 |= SDRAM_TR0_SDWD_0_CLK;
1249 break;
1250 default:
1251 tr0 |= SDRAM_TR0_SDWD_1_CLK;
1252 break;
1253 }
1254
1255 /*
1256 * Program SD_CASL field
1257 */
1258 if ((cas_2_0_available == TRUE) &&
1259 (bus_period_x_10 >= tcyc_2_0_ns_x_10)) {
1260 tr0 |= SDRAM_TR0_SDCL_2_0_CLK;
1261 }
1262 else if((cas_2_5_available == TRUE) &&
1263 (bus_period_x_10 >= tcyc_2_5_ns_x_10)) {
1264 tr0 |= SDRAM_TR0_SDCL_2_5_CLK;
1265 }
1266 else if((cas_3_0_available == TRUE) &&
1267 (bus_period_x_10 >= tcyc_3_0_ns_x_10)) {
1268 tr0 |= SDRAM_TR0_SDCL_3_0_CLK;
1269 }
1270 else {
1271 printf("ERROR: No supported CAS latency with the installed DIMMs.\n");
1272 printf("Only CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
1273 printf("Make sure the PLB speed is within the supported range.\n");
1274 hang();
1275 }
1276
1277 /*
1278 * Calculate Trp in clock cycles and round up if necessary
1279 * Program SD_PTA field
1280 */
1281 t_rp_clk = sys_info.freqPLB * t_rp_ns / ONE_BILLION;
1282 plb_check = ONE_BILLION * t_rp_clk / t_rp_ns;
1283 if (sys_info.freqPLB != plb_check) {
1284 t_rp_clk++;
1285 }
1286 switch ((unsigned long)t_rp_clk) {
1287 case 0:
1288 case 1:
1289 case 2:
1290 tr0 |= SDRAM_TR0_SDPA_2_CLK;
1291 break;
1292 case 3:
1293 tr0 |= SDRAM_TR0_SDPA_3_CLK;
1294 break;
1295 default:
1296 tr0 |= SDRAM_TR0_SDPA_4_CLK;
1297 break;
1298 }
1299
1300 /*
1301 * Program SD_CTP field
1302 */
1303 t_ras_rcd_clk = sys_info.freqPLB * (t_ras_ns - t_rcd_ns) / ONE_BILLION;
1304 plb_check = ONE_BILLION * t_ras_rcd_clk / (t_ras_ns - t_rcd_ns);
1305 if (sys_info.freqPLB != plb_check) {
1306 t_ras_rcd_clk++;
1307 }
1308 switch (t_ras_rcd_clk) {
1309 case 0:
1310 case 1:
1311 case 2:
1312 tr0 |= SDRAM_TR0_SDCP_2_CLK;
1313 break;
1314 case 3:
1315 tr0 |= SDRAM_TR0_SDCP_3_CLK;
1316 break;
1317 case 4:
1318 tr0 |= SDRAM_TR0_SDCP_4_CLK;
1319 break;
1320 default:
1321 tr0 |= SDRAM_TR0_SDCP_5_CLK;
1322 break;
1323 }
1324
1325 /*
1326 * Program SD_LDF field
1327 */
1328 tr0 |= SDRAM_TR0_SDLD_2_CLK;
1329
1330 /*
1331 * Program SD_RFTA field
1332 * FIXME tRFC hardcoded as 75 nanoseconds
1333 */
1334 t_rfc_clk = sys_info.freqPLB / (ONE_BILLION / 75);
1335 residue = sys_info.freqPLB % (ONE_BILLION / 75);
1336 if (residue >= (ONE_BILLION / 150)) {
1337 t_rfc_clk++;
1338 }
1339 switch (t_rfc_clk) {
1340 case 0:
1341 case 1:
1342 case 2:
1343 case 3:
1344 case 4:
1345 case 5:
1346 case 6:
1347 tr0 |= SDRAM_TR0_SDRA_6_CLK;
1348 break;
1349 case 7:
1350 tr0 |= SDRAM_TR0_SDRA_7_CLK;
1351 break;
1352 case 8:
1353 tr0 |= SDRAM_TR0_SDRA_8_CLK;
1354 break;
1355 case 9:
1356 tr0 |= SDRAM_TR0_SDRA_9_CLK;
1357 break;
1358 case 10:
1359 tr0 |= SDRAM_TR0_SDRA_10_CLK;
1360 break;
1361 case 11:
1362 tr0 |= SDRAM_TR0_SDRA_11_CLK;
1363 break;
1364 case 12:
1365 tr0 |= SDRAM_TR0_SDRA_12_CLK;
1366 break;
1367 default:
1368 tr0 |= SDRAM_TR0_SDRA_13_CLK;
1369 break;
1370 }
1371
1372 /*
1373 * Program SD_RCD field
1374 */
1375 t_rcd_clk = sys_info.freqPLB * t_rcd_ns / ONE_BILLION;
1376 plb_check = ONE_BILLION * t_rcd_clk / t_rcd_ns;
1377 if (sys_info.freqPLB != plb_check) {
1378 t_rcd_clk++;
1379 }
1380 switch (t_rcd_clk) {
1381 case 0:
1382 case 1:
1383 case 2:
1384 tr0 |= SDRAM_TR0_SDRD_2_CLK;
1385 break;
1386 case 3:
1387 tr0 |= SDRAM_TR0_SDRD_3_CLK;
1388 break;
1389 default:
1390 tr0 |= SDRAM_TR0_SDRD_4_CLK;
1391 break;
1392 }
1393
1394#if 0
1395 printf("tr0: %x\n", tr0);
1396#endif
1397 mtsdram(mem_tr0, tr0);
1398}
1399
1400void program_tr1 (void)
1401{
1402 unsigned long tr0;
1403 unsigned long tr1;
1404 unsigned long cfg0;
1405 unsigned long ecc_temp;
1406 unsigned long dlycal;
1407 unsigned long dly_val;
1408 unsigned long i, j, k;
1409 unsigned long bxcr_num;
1410 unsigned long max_pass_length;
1411 unsigned long current_pass_length;
1412 unsigned long current_fail_length;
1413 unsigned long current_start;
1414 unsigned long rdclt;
1415 unsigned long rdclt_offset;
1416 long max_start;
1417 long max_end;
1418 long rdclt_average;
1419 unsigned char window_found;
1420 unsigned char fail_found;
1421 unsigned char pass_found;
1422 unsigned long * membase;
1423 PPC440_SYS_INFO sys_info;
1424
1425 /*
1426 * get the board info
1427 */
1428 get_sys_info(&sys_info);
1429
1430 /*
1431 * get SDRAM Timing Register 0 (SDRAM_TR0) and clear bits
1432 */
1433 mfsdram(mem_tr1, tr1);
1434 tr1 &= ~(SDRAM_TR1_RDSS_MASK | SDRAM_TR1_RDSL_MASK |
1435 SDRAM_TR1_RDCD_MASK | SDRAM_TR1_RDCT_MASK);
1436
1437 mfsdram(mem_tr0, tr0);
1438 if (((tr0 & SDRAM_TR0_SDCL_MASK) == SDRAM_TR0_SDCL_2_5_CLK) &&
1439 (sys_info.freqPLB > 100000000)) {
1440 tr1 |= SDRAM_TR1_RDSS_TR2;
1441 tr1 |= SDRAM_TR1_RDSL_STAGE3;
1442 tr1 |= SDRAM_TR1_RDCD_RCD_1_2;
1443 }
1444 else {
1445 tr1 |= SDRAM_TR1_RDSS_TR1;
1446 tr1 |= SDRAM_TR1_RDSL_STAGE2;
1447 tr1 |= SDRAM_TR1_RDCD_RCD_0_0;
1448 }
1449
1450 /*
1451 * save CFG0 ECC setting to a temporary variable and turn ECC off
1452 */
1453 mfsdram(mem_cfg0, cfg0);
1454 ecc_temp = cfg0 & SDRAM_CFG0_MCHK_MASK;
1455 mtsdram(mem_cfg0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) | SDRAM_CFG0_MCHK_NON);
1456
1457 /*
1458 * get the delay line calibration register value
1459 */
1460 mfsdram(mem_dlycal, dlycal);
1461 dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
1462
1463 max_pass_length = 0;
1464 max_start = 0;
1465 max_end = 0;
1466 current_pass_length = 0;
1467 current_fail_length = 0;
1468 current_start = 0;
1469 rdclt_offset = 0;
1470 window_found = FALSE;
1471 fail_found = FALSE;
1472 pass_found = FALSE;
1473#ifdef DEBUG
1474 printf("Starting memory test ");
1475#endif
1476 for (k = 0; k < NUMHALFCYCLES; k++) {
1477 for (rdclt = 0; rdclt < dly_val; rdclt++) {
1478 /*
1479 * Set the timing reg for the test.
1480 */
1481 mtsdram(mem_tr1, (tr1 | SDRAM_TR1_RDCT_ENCODE(rdclt)));
1482
1483 for (bxcr_num = 0; bxcr_num < MAXBXCR; bxcr_num++) {
1484 mtdcr(memcfga, mem_b0cr + (bxcr_num<<2));
1485 if ((mfdcr(memcfgd) & SDRAM_BXCR_SDBE) == SDRAM_BXCR_SDBE) {
1486 /* Bank is enabled */
1487 membase = (unsigned long*)
1488 (mfdcr(memcfgd) & SDRAM_BXCR_SDBA_MASK);
1489
1490 /*
1491 * Run the short memory test
1492 */
1493 for (i = 0; i < NUMMEMTESTS; i++) {
1494 for (j = 0; j < NUMMEMWORDS; j++) {
1495 membase[j] = test[i][j];
1496 ppcDcbf((unsigned long)&(membase[j]));
1497 }
1498
1499 for (j = 0; j < NUMMEMWORDS; j++) {
1500 if (membase[j] != test[i][j]) {
1501 ppcDcbf((unsigned long)&(membase[j]));
1502 break;
1503 }
1504 ppcDcbf((unsigned long)&(membase[j]));
1505 }
1506
1507 if (j < NUMMEMWORDS) {
1508 break;
1509 }
1510 }
1511
1512 /*
1513 * see if the rdclt value passed
1514 */
1515 if (i < NUMMEMTESTS) {
1516 break;
1517 }
1518 }
1519 }
1520
1521 if (bxcr_num == MAXBXCR) {
1522 if (fail_found == TRUE) {
1523 pass_found = TRUE;
1524 if (current_pass_length == 0) {
1525 current_start = rdclt_offset + rdclt;
1526 }
1527
1528 current_fail_length = 0;
1529 current_pass_length++;
1530
1531 if (current_pass_length > max_pass_length) {
1532 max_pass_length = current_pass_length;
1533 max_start = current_start;
1534 max_end = rdclt_offset + rdclt;
1535 }
1536 }
1537 }
1538 else {
1539 current_pass_length = 0;
1540 current_fail_length++;
1541
1542 if (current_fail_length >= (dly_val>>2)) {
1543 if (fail_found == FALSE) {
1544 fail_found = TRUE;
1545 }
1546 else if (pass_found == TRUE) {
1547 window_found = TRUE;
1548 break;
1549 }
1550 }
1551 }
1552 }
1553#ifdef DEBUG
1554 printf(".");
1555#endif
1556 if (window_found == TRUE) {
1557 break;
1558 }
1559
1560 tr1 = tr1 ^ SDRAM_TR1_RDCD_MASK;
1561 rdclt_offset += dly_val;
1562 }
1563#ifdef DEBUG
1564 printf("\n");
1565#endif
1566
1567 /*
1568 * make sure we find the window
1569 */
1570 if (window_found == FALSE) {
1571 printf("ERROR: Cannot determine a common read delay.\n");
1572 hang();
1573 }
1574
1575 /*
1576 * restore the orignal ECC setting
1577 */
1578 mtsdram(mem_cfg0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) | ecc_temp);
1579
1580 /*
1581 * set the SDRAM TR1 RDCD value
1582 */
1583 tr1 &= ~SDRAM_TR1_RDCD_MASK;
1584 if ((tr0 & SDRAM_TR0_SDCL_MASK) == SDRAM_TR0_SDCL_2_5_CLK) {
1585 tr1 |= SDRAM_TR1_RDCD_RCD_1_2;
1586 }
1587 else {
1588 tr1 |= SDRAM_TR1_RDCD_RCD_0_0;
1589 }
1590
1591 /*
1592 * set the SDRAM TR1 RDCLT value
1593 */
1594 tr1 &= ~SDRAM_TR1_RDCT_MASK;
1595 while (max_end >= (dly_val<<1)) {
1596 max_end -= (dly_val<<1);
1597 max_start -= (dly_val<<1);
1598 }
1599
1600 rdclt_average = ((max_start + max_end) >> 1);
1601 if (rdclt_average >= 0x60)
1602 while(1);
1603
1604 if (rdclt_average < 0) {
1605 rdclt_average = 0;
1606 }
1607
1608 if (rdclt_average >= dly_val) {
1609 rdclt_average -= dly_val;
1610 tr1 = tr1 ^ SDRAM_TR1_RDCD_MASK;
1611 }
1612 tr1 |= SDRAM_TR1_RDCT_ENCODE(rdclt_average);
1613
1614#if 0
1615 printf("tr1: %x\n", tr1);
1616#endif
1617 /*
1618 * program SDRAM Timing Register 1 TR1
1619 */
1620 mtsdram(mem_tr1, tr1);
1621}
1622
1623unsigned long program_bxcr(unsigned long* dimm_populated,
1624 unsigned char* iic0_dimm_addr,
1625 unsigned long num_dimm_banks)
1626{
1627 unsigned long dimm_num;
1628 unsigned long bxcr_num;
1629 unsigned long bank_base_addr;
1630 unsigned long bank_size_bytes;
1631 unsigned long cr;
1632 unsigned long i;
1633 unsigned long temp;
1634 unsigned char num_row_addr;
1635 unsigned char num_col_addr;
1636 unsigned char num_banks;
1637 unsigned char bank_size_id;
1638
1639
1640 /*
1641 * Set the BxCR regs. First, wipe out the bank config registers.
1642 */
1643 for (bxcr_num = 0; bxcr_num < MAXBXCR; bxcr_num++) {
1644 mtdcr(memcfga, mem_b0cr + (bxcr_num << 2));
1645 mtdcr(memcfgd, 0x00000000);
1646 }
1647
1648 /*
1649 * reset the bank_base address
1650 */
1651 bank_base_addr = CFG_SDRAM_BASE;
1652
1653 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1654 if (dimm_populated[dimm_num] == TRUE) {
1655 num_row_addr = spd_read(iic0_dimm_addr[dimm_num], 3);
1656 num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
1657 num_banks = spd_read(iic0_dimm_addr[dimm_num], 5);
1658 bank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
1659
1660 /*
1661 * Set the SDRAM0_BxCR regs
1662 */
1663 cr = 0;
1664 bank_size_bytes = 4 * 1024 * 1024 * bank_size_id;
1665 switch (bank_size_id) {
1666 case 0x02:
1667 cr |= SDRAM_BXCR_SDSZ_8;
1668 break;
1669 case 0x04:
1670 cr |= SDRAM_BXCR_SDSZ_16;
1671 break;
1672 case 0x08:
1673 cr |= SDRAM_BXCR_SDSZ_32;
1674 break;
1675 case 0x10:
1676 cr |= SDRAM_BXCR_SDSZ_64;
1677 break;
1678 case 0x20:
1679 cr |= SDRAM_BXCR_SDSZ_128;
1680 break;
1681 case 0x40:
1682 cr |= SDRAM_BXCR_SDSZ_256;
1683 break;
1684 case 0x80:
1685 cr |= SDRAM_BXCR_SDSZ_512;
1686 break;
1687 default:
1688 printf("DDR-SDRAM: DIMM %lu BxCR configuration.\n",
1689 dimm_num);
1690 printf("ERROR: Unsupported value for the banksize: %d.\n",
1691 bank_size_id);
1692 printf("Replace the DIMM module with a supported DIMM.\n\n");
1693 hang();
1694 }
1695
1696 switch (num_col_addr) {
1697 case 0x08:
1698 cr |= SDRAM_BXCR_SDAM_1;
1699 break;
1700 case 0x09:
1701 cr |= SDRAM_BXCR_SDAM_2;
1702 break;
1703 case 0x0A:
1704 cr |= SDRAM_BXCR_SDAM_3;
1705 break;
1706 case 0x0B:
1707 cr |= SDRAM_BXCR_SDAM_4;
1708 break;
1709 default:
1710 printf("DDR-SDRAM: DIMM %lu BxCR configuration.\n",
1711 dimm_num);
1712 printf("ERROR: Unsupported value for number of "
1713 "column addresses: %d.\n", num_col_addr);
1714 printf("Replace the DIMM module with a supported DIMM.\n\n");
1715 hang();
1716 }
1717
1718 /*
1719 * enable the bank
1720 */
1721 cr |= SDRAM_BXCR_SDBE;
1722
1723 /*------------------------------------------------------------------
1724 | This next section is hardware dependent and must be programmed
1725 | to match the hardware.
1726 +-----------------------------------------------------------------*/
1727 if (dimm_num == 0) {
1728 for (i = 0; i < num_banks; i++) {
1729 mtdcr(memcfga, mem_b0cr + (i << 2));
1730 temp = mfdcr(memcfgd) & ~(SDRAM_BXCR_SDBA_MASK |
1731 SDRAM_BXCR_SDSZ_MASK |
1732 SDRAM_BXCR_SDAM_MASK |
1733 SDRAM_BXCR_SDBE);
1734 cr |= temp;
1735 cr |= bank_base_addr & SDRAM_BXCR_SDBA_MASK;
1736 mtdcr(memcfgd, cr);
1737 bank_base_addr += bank_size_bytes;
1738 }
1739 }
1740 else {
1741 for (i = 0; i < num_banks; i++) {
1742 mtdcr(memcfga, mem_b2cr + (i << 2));
1743 temp = mfdcr(memcfgd) & ~(SDRAM_BXCR_SDBA_MASK |
1744 SDRAM_BXCR_SDSZ_MASK |
1745 SDRAM_BXCR_SDAM_MASK |
1746 SDRAM_BXCR_SDBE);
1747 cr |= temp;
1748 cr |= bank_base_addr & SDRAM_BXCR_SDBA_MASK;
1749 mtdcr(memcfgd, cr);
1750 bank_base_addr += bank_size_bytes;
1751 }
1752 }
1753 }
1754 }
1755
1756 return(bank_base_addr);
1757}
1758
1759void program_ecc (unsigned long num_bytes)
1760{
1761 unsigned long bank_base_addr;
1762 unsigned long current_address;
1763 unsigned long end_address;
1764 unsigned long address_increment;
1765 unsigned long cfg0;
1766
1767 /*
1768 * get Memory Controller Options 0 data
1769 */
1770 mfsdram(mem_cfg0, cfg0);
1771
1772 /*
1773 * reset the bank_base address
1774 */
1775 bank_base_addr = CFG_SDRAM_BASE;
1776
1777 if ((cfg0 & SDRAM_CFG0_MCHK_MASK) != SDRAM_CFG0_MCHK_NON) {
1778 mtsdram(mem_cfg0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) |
1779 SDRAM_CFG0_MCHK_GEN);
1780
1781 if ((cfg0 & SDRAM_CFG0_DMWD_MASK) == SDRAM_CFG0_DMWD_32) {
1782 address_increment = 4;
1783 }
1784 else {
1785 address_increment = 8;
1786 }
1787
1788 current_address = (unsigned long)(bank_base_addr);
1789 end_address = (unsigned long)(bank_base_addr) + num_bytes;
1790
1791 while (current_address < end_address) {
1792 *((unsigned long*)current_address) = 0x00000000;
1793 current_address += address_increment;
1794 }
1795
1796 mtsdram(mem_cfg0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) |
1797 SDRAM_CFG0_MCHK_CHK);
1798 }
1799}
1800
1801#endif /* CONFIG_440 */
1802
1803#endif /* CONFIG_SPD_EEPROM */