blob: 6e6f018b2f5ed4e52d947305e6fe378549bc78b0 [file] [log] [blame]
Stefan Roese9eefe2a2009-03-19 15:35:05 +01001/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation
5 *
Heiko Schocherff94bc42014-06-24 10:10:04 +02006 * SPDX-License-Identifier: GPL-2.0+
Stefan Roese9eefe2a2009-03-19 15:35:05 +01007 *
8 * Authors: Artem Bityutskiy (Битюцкий Артём)
9 * Adrian Hunter
10 */
11
12/*
13 * This file implements most of the debugging stuff which is compiled in only
14 * when it is enabled. But some debugging check functions are implemented in
15 * corresponding subsystem, just because they are closely related and utilize
16 * various local functions of those subsystems.
17 */
18
Heiko Schocherff94bc42014-06-24 10:10:04 +020019#ifndef __UBOOT__
20#include <linux/module.h>
21#include <linux/debugfs.h>
22#include <linux/math64.h>
23#include <linux/uaccess.h>
24#include <linux/random.h>
25#else
26#include <linux/compat.h>
27#include <linux/err.h>
28#endif
Stefan Roese9eefe2a2009-03-19 15:35:05 +010029#include "ubifs.h"
30
Heiko Schocherff94bc42014-06-24 10:10:04 +020031#ifndef __UBOOT__
32static DEFINE_SPINLOCK(dbg_lock);
33#endif
Stefan Roese9eefe2a2009-03-19 15:35:05 +010034
Heiko Schocherff94bc42014-06-24 10:10:04 +020035static const char *get_key_fmt(int fmt)
36{
37 switch (fmt) {
38 case UBIFS_SIMPLE_KEY_FMT:
39 return "simple";
40 default:
41 return "unknown/invalid format";
42 }
43}
Stefan Roese9eefe2a2009-03-19 15:35:05 +010044
Heiko Schocherff94bc42014-06-24 10:10:04 +020045static const char *get_key_hash(int hash)
46{
47 switch (hash) {
48 case UBIFS_KEY_HASH_R5:
49 return "R5";
50 case UBIFS_KEY_HASH_TEST:
51 return "test";
52 default:
53 return "unknown/invalid name hash";
54 }
55}
Stefan Roese9eefe2a2009-03-19 15:35:05 +010056
57static const char *get_key_type(int type)
58{
59 switch (type) {
60 case UBIFS_INO_KEY:
61 return "inode";
62 case UBIFS_DENT_KEY:
63 return "direntry";
64 case UBIFS_XENT_KEY:
65 return "xentry";
66 case UBIFS_DATA_KEY:
67 return "data";
68 case UBIFS_TRUN_KEY:
69 return "truncate";
70 default:
71 return "unknown/invalid key";
72 }
73}
74
Heiko Schocherff94bc42014-06-24 10:10:04 +020075#ifndef __UBOOT__
76static const char *get_dent_type(int type)
77{
78 switch (type) {
79 case UBIFS_ITYPE_REG:
80 return "file";
81 case UBIFS_ITYPE_DIR:
82 return "dir";
83 case UBIFS_ITYPE_LNK:
84 return "symlink";
85 case UBIFS_ITYPE_BLK:
86 return "blkdev";
87 case UBIFS_ITYPE_CHR:
88 return "char dev";
89 case UBIFS_ITYPE_FIFO:
90 return "fifo";
91 case UBIFS_ITYPE_SOCK:
92 return "socket";
93 default:
94 return "unknown/invalid type";
95 }
96}
97#endif
98
99const char *dbg_snprintf_key(const struct ubifs_info *c,
100 const union ubifs_key *key, char *buffer, int len)
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100101{
102 char *p = buffer;
103 int type = key_type(c, key);
104
105 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
106 switch (type) {
107 case UBIFS_INO_KEY:
Heiko Schocherff94bc42014-06-24 10:10:04 +0200108 len -= snprintf(p, len, "(%lu, %s)",
109 (unsigned long)key_inum(c, key),
110 get_key_type(type));
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100111 break;
112 case UBIFS_DENT_KEY:
113 case UBIFS_XENT_KEY:
Heiko Schocherff94bc42014-06-24 10:10:04 +0200114 len -= snprintf(p, len, "(%lu, %s, %#08x)",
115 (unsigned long)key_inum(c, key),
116 get_key_type(type), key_hash(c, key));
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100117 break;
118 case UBIFS_DATA_KEY:
Heiko Schocherff94bc42014-06-24 10:10:04 +0200119 len -= snprintf(p, len, "(%lu, %s, %u)",
120 (unsigned long)key_inum(c, key),
121 get_key_type(type), key_block(c, key));
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100122 break;
123 case UBIFS_TRUN_KEY:
Heiko Schocherff94bc42014-06-24 10:10:04 +0200124 len -= snprintf(p, len, "(%lu, %s)",
125 (unsigned long)key_inum(c, key),
126 get_key_type(type));
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100127 break;
128 default:
Heiko Schocherff94bc42014-06-24 10:10:04 +0200129 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
130 key->u32[0], key->u32[1]);
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100131 }
132 } else
Heiko Schocherff94bc42014-06-24 10:10:04 +0200133 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
134 ubifs_assert(len > 0);
135 return p;
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100136}
137
Heiko Schocherff94bc42014-06-24 10:10:04 +0200138const char *dbg_ntype(int type)
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100139{
Heiko Schocherff94bc42014-06-24 10:10:04 +0200140 switch (type) {
141 case UBIFS_PAD_NODE:
142 return "padding node";
143 case UBIFS_SB_NODE:
144 return "superblock node";
145 case UBIFS_MST_NODE:
146 return "master node";
147 case UBIFS_REF_NODE:
148 return "reference node";
149 case UBIFS_INO_NODE:
150 return "inode node";
151 case UBIFS_DENT_NODE:
152 return "direntry node";
153 case UBIFS_XENT_NODE:
154 return "xentry node";
155 case UBIFS_DATA_NODE:
156 return "data node";
157 case UBIFS_TRUN_NODE:
158 return "truncate node";
159 case UBIFS_IDX_NODE:
160 return "indexing node";
161 case UBIFS_CS_NODE:
162 return "commit start node";
163 case UBIFS_ORPH_NODE:
164 return "orphan node";
165 default:
166 return "unknown node";
167 }
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100168}
169
Heiko Schocherff94bc42014-06-24 10:10:04 +0200170static const char *dbg_gtype(int type)
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100171{
Heiko Schocherff94bc42014-06-24 10:10:04 +0200172 switch (type) {
173 case UBIFS_NO_NODE_GROUP:
174 return "no node group";
175 case UBIFS_IN_NODE_GROUP:
176 return "in node group";
177 case UBIFS_LAST_OF_NODE_GROUP:
178 return "last of node group";
179 default:
180 return "unknown";
181 }
182}
183
184const char *dbg_cstate(int cmt_state)
185{
186 switch (cmt_state) {
187 case COMMIT_RESTING:
188 return "commit resting";
189 case COMMIT_BACKGROUND:
190 return "background commit requested";
191 case COMMIT_REQUIRED:
192 return "commit required";
193 case COMMIT_RUNNING_BACKGROUND:
194 return "BACKGROUND commit running";
195 case COMMIT_RUNNING_REQUIRED:
196 return "commit running and required";
197 case COMMIT_BROKEN:
198 return "broken commit";
199 default:
200 return "unknown commit state";
201 }
202}
203
204const char *dbg_jhead(int jhead)
205{
206 switch (jhead) {
207 case GCHD:
208 return "0 (GC)";
209 case BASEHD:
210 return "1 (base)";
211 case DATAHD:
212 return "2 (data)";
213 default:
214 return "unknown journal head";
215 }
216}
217
218static void dump_ch(const struct ubifs_ch *ch)
219{
220 pr_err("\tmagic %#x\n", le32_to_cpu(ch->magic));
221 pr_err("\tcrc %#x\n", le32_to_cpu(ch->crc));
222 pr_err("\tnode_type %d (%s)\n", ch->node_type,
223 dbg_ntype(ch->node_type));
224 pr_err("\tgroup_type %d (%s)\n", ch->group_type,
225 dbg_gtype(ch->group_type));
226 pr_err("\tsqnum %llu\n",
227 (unsigned long long)le64_to_cpu(ch->sqnum));
228 pr_err("\tlen %u\n", le32_to_cpu(ch->len));
229}
230
231void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
232{
233#ifndef __UBOOT__
234 const struct ubifs_inode *ui = ubifs_inode(inode);
235 struct qstr nm = { .name = NULL };
236 union ubifs_key key;
237 struct ubifs_dent_node *dent, *pdent = NULL;
238 int count = 2;
239
240 pr_err("Dump in-memory inode:");
241 pr_err("\tinode %lu\n", inode->i_ino);
242 pr_err("\tsize %llu\n",
243 (unsigned long long)i_size_read(inode));
244 pr_err("\tnlink %u\n", inode->i_nlink);
245 pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode));
246 pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode));
247 pr_err("\tatime %u.%u\n",
248 (unsigned int)inode->i_atime.tv_sec,
249 (unsigned int)inode->i_atime.tv_nsec);
250 pr_err("\tmtime %u.%u\n",
251 (unsigned int)inode->i_mtime.tv_sec,
252 (unsigned int)inode->i_mtime.tv_nsec);
253 pr_err("\tctime %u.%u\n",
254 (unsigned int)inode->i_ctime.tv_sec,
255 (unsigned int)inode->i_ctime.tv_nsec);
256 pr_err("\tcreat_sqnum %llu\n", ui->creat_sqnum);
257 pr_err("\txattr_size %u\n", ui->xattr_size);
258 pr_err("\txattr_cnt %u\n", ui->xattr_cnt);
259 pr_err("\txattr_names %u\n", ui->xattr_names);
260 pr_err("\tdirty %u\n", ui->dirty);
261 pr_err("\txattr %u\n", ui->xattr);
262 pr_err("\tbulk_read %u\n", ui->xattr);
263 pr_err("\tsynced_i_size %llu\n",
264 (unsigned long long)ui->synced_i_size);
265 pr_err("\tui_size %llu\n",
266 (unsigned long long)ui->ui_size);
267 pr_err("\tflags %d\n", ui->flags);
268 pr_err("\tcompr_type %d\n", ui->compr_type);
269 pr_err("\tlast_page_read %lu\n", ui->last_page_read);
270 pr_err("\tread_in_a_row %lu\n", ui->read_in_a_row);
271 pr_err("\tdata_len %d\n", ui->data_len);
272
273 if (!S_ISDIR(inode->i_mode))
274 return;
275
276 pr_err("List of directory entries:\n");
277 ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
278
279 lowest_dent_key(c, &key, inode->i_ino);
280 while (1) {
281 dent = ubifs_tnc_next_ent(c, &key, &nm);
282 if (IS_ERR(dent)) {
283 if (PTR_ERR(dent) != -ENOENT)
284 pr_err("error %ld\n", PTR_ERR(dent));
285 break;
286 }
287
288 pr_err("\t%d: %s (%s)\n",
289 count++, dent->name, get_dent_type(dent->type));
290
291 nm.name = dent->name;
292 nm.len = le16_to_cpu(dent->nlen);
293 kfree(pdent);
294 pdent = dent;
295 key_read(c, &dent->key, &key);
296 }
297 kfree(pdent);
298#endif
299}
300
301void ubifs_dump_node(const struct ubifs_info *c, const void *node)
302{
303 int i, n;
304 union ubifs_key key;
305 const struct ubifs_ch *ch = node;
306 char key_buf[DBG_KEY_BUF_LEN];
307
308 /* If the magic is incorrect, just hexdump the first bytes */
309 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
310 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
311 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
312 (void *)node, UBIFS_CH_SZ, 1);
313 return;
314 }
315
316 spin_lock(&dbg_lock);
317 dump_ch(node);
318
319 switch (ch->node_type) {
320 case UBIFS_PAD_NODE:
321 {
322 const struct ubifs_pad_node *pad = node;
323
324 pr_err("\tpad_len %u\n", le32_to_cpu(pad->pad_len));
325 break;
326 }
327 case UBIFS_SB_NODE:
328 {
329 const struct ubifs_sb_node *sup = node;
330 unsigned int sup_flags = le32_to_cpu(sup->flags);
331
332 pr_err("\tkey_hash %d (%s)\n",
333 (int)sup->key_hash, get_key_hash(sup->key_hash));
334 pr_err("\tkey_fmt %d (%s)\n",
335 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
336 pr_err("\tflags %#x\n", sup_flags);
337 pr_err("\t big_lpt %u\n",
338 !!(sup_flags & UBIFS_FLG_BIGLPT));
339 pr_err("\t space_fixup %u\n",
340 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
341 pr_err("\tmin_io_size %u\n", le32_to_cpu(sup->min_io_size));
342 pr_err("\tleb_size %u\n", le32_to_cpu(sup->leb_size));
343 pr_err("\tleb_cnt %u\n", le32_to_cpu(sup->leb_cnt));
344 pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup->max_leb_cnt));
345 pr_err("\tmax_bud_bytes %llu\n",
346 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
347 pr_err("\tlog_lebs %u\n", le32_to_cpu(sup->log_lebs));
348 pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup->lpt_lebs));
349 pr_err("\torph_lebs %u\n", le32_to_cpu(sup->orph_lebs));
350 pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup->jhead_cnt));
351 pr_err("\tfanout %u\n", le32_to_cpu(sup->fanout));
352 pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup->lsave_cnt));
353 pr_err("\tdefault_compr %u\n",
354 (int)le16_to_cpu(sup->default_compr));
355 pr_err("\trp_size %llu\n",
356 (unsigned long long)le64_to_cpu(sup->rp_size));
357 pr_err("\trp_uid %u\n", le32_to_cpu(sup->rp_uid));
358 pr_err("\trp_gid %u\n", le32_to_cpu(sup->rp_gid));
359 pr_err("\tfmt_version %u\n", le32_to_cpu(sup->fmt_version));
360 pr_err("\ttime_gran %u\n", le32_to_cpu(sup->time_gran));
361 pr_err("\tUUID %pUB\n", sup->uuid);
362 break;
363 }
364 case UBIFS_MST_NODE:
365 {
366 const struct ubifs_mst_node *mst = node;
367
368 pr_err("\thighest_inum %llu\n",
369 (unsigned long long)le64_to_cpu(mst->highest_inum));
370 pr_err("\tcommit number %llu\n",
371 (unsigned long long)le64_to_cpu(mst->cmt_no));
372 pr_err("\tflags %#x\n", le32_to_cpu(mst->flags));
373 pr_err("\tlog_lnum %u\n", le32_to_cpu(mst->log_lnum));
374 pr_err("\troot_lnum %u\n", le32_to_cpu(mst->root_lnum));
375 pr_err("\troot_offs %u\n", le32_to_cpu(mst->root_offs));
376 pr_err("\troot_len %u\n", le32_to_cpu(mst->root_len));
377 pr_err("\tgc_lnum %u\n", le32_to_cpu(mst->gc_lnum));
378 pr_err("\tihead_lnum %u\n", le32_to_cpu(mst->ihead_lnum));
379 pr_err("\tihead_offs %u\n", le32_to_cpu(mst->ihead_offs));
380 pr_err("\tindex_size %llu\n",
381 (unsigned long long)le64_to_cpu(mst->index_size));
382 pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst->lpt_lnum));
383 pr_err("\tlpt_offs %u\n", le32_to_cpu(mst->lpt_offs));
384 pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst->nhead_lnum));
385 pr_err("\tnhead_offs %u\n", le32_to_cpu(mst->nhead_offs));
386 pr_err("\tltab_lnum %u\n", le32_to_cpu(mst->ltab_lnum));
387 pr_err("\tltab_offs %u\n", le32_to_cpu(mst->ltab_offs));
388 pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst->lsave_lnum));
389 pr_err("\tlsave_offs %u\n", le32_to_cpu(mst->lsave_offs));
390 pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst->lscan_lnum));
391 pr_err("\tleb_cnt %u\n", le32_to_cpu(mst->leb_cnt));
392 pr_err("\tempty_lebs %u\n", le32_to_cpu(mst->empty_lebs));
393 pr_err("\tidx_lebs %u\n", le32_to_cpu(mst->idx_lebs));
394 pr_err("\ttotal_free %llu\n",
395 (unsigned long long)le64_to_cpu(mst->total_free));
396 pr_err("\ttotal_dirty %llu\n",
397 (unsigned long long)le64_to_cpu(mst->total_dirty));
398 pr_err("\ttotal_used %llu\n",
399 (unsigned long long)le64_to_cpu(mst->total_used));
400 pr_err("\ttotal_dead %llu\n",
401 (unsigned long long)le64_to_cpu(mst->total_dead));
402 pr_err("\ttotal_dark %llu\n",
403 (unsigned long long)le64_to_cpu(mst->total_dark));
404 break;
405 }
406 case UBIFS_REF_NODE:
407 {
408 const struct ubifs_ref_node *ref = node;
409
410 pr_err("\tlnum %u\n", le32_to_cpu(ref->lnum));
411 pr_err("\toffs %u\n", le32_to_cpu(ref->offs));
412 pr_err("\tjhead %u\n", le32_to_cpu(ref->jhead));
413 break;
414 }
415 case UBIFS_INO_NODE:
416 {
417 const struct ubifs_ino_node *ino = node;
418
419 key_read(c, &ino->key, &key);
420 pr_err("\tkey %s\n",
421 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
422 pr_err("\tcreat_sqnum %llu\n",
423 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
424 pr_err("\tsize %llu\n",
425 (unsigned long long)le64_to_cpu(ino->size));
426 pr_err("\tnlink %u\n", le32_to_cpu(ino->nlink));
427 pr_err("\tatime %lld.%u\n",
428 (long long)le64_to_cpu(ino->atime_sec),
429 le32_to_cpu(ino->atime_nsec));
430 pr_err("\tmtime %lld.%u\n",
431 (long long)le64_to_cpu(ino->mtime_sec),
432 le32_to_cpu(ino->mtime_nsec));
433 pr_err("\tctime %lld.%u\n",
434 (long long)le64_to_cpu(ino->ctime_sec),
435 le32_to_cpu(ino->ctime_nsec));
436 pr_err("\tuid %u\n", le32_to_cpu(ino->uid));
437 pr_err("\tgid %u\n", le32_to_cpu(ino->gid));
438 pr_err("\tmode %u\n", le32_to_cpu(ino->mode));
439 pr_err("\tflags %#x\n", le32_to_cpu(ino->flags));
440 pr_err("\txattr_cnt %u\n", le32_to_cpu(ino->xattr_cnt));
441 pr_err("\txattr_size %u\n", le32_to_cpu(ino->xattr_size));
442 pr_err("\txattr_names %u\n", le32_to_cpu(ino->xattr_names));
443 pr_err("\tcompr_type %#x\n",
444 (int)le16_to_cpu(ino->compr_type));
445 pr_err("\tdata len %u\n", le32_to_cpu(ino->data_len));
446 break;
447 }
448 case UBIFS_DENT_NODE:
449 case UBIFS_XENT_NODE:
450 {
451 const struct ubifs_dent_node *dent = node;
452 int nlen = le16_to_cpu(dent->nlen);
453
454 key_read(c, &dent->key, &key);
455 pr_err("\tkey %s\n",
456 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
457 pr_err("\tinum %llu\n",
458 (unsigned long long)le64_to_cpu(dent->inum));
459 pr_err("\ttype %d\n", (int)dent->type);
460 pr_err("\tnlen %d\n", nlen);
461 pr_err("\tname ");
462
463 if (nlen > UBIFS_MAX_NLEN)
464 pr_err("(bad name length, not printing, bad or corrupted node)");
465 else {
466 for (i = 0; i < nlen && dent->name[i]; i++)
467 pr_cont("%c", dent->name[i]);
468 }
469 pr_cont("\n");
470
471 break;
472 }
473 case UBIFS_DATA_NODE:
474 {
475 const struct ubifs_data_node *dn = node;
476 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
477
478 key_read(c, &dn->key, &key);
479 pr_err("\tkey %s\n",
480 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
481 pr_err("\tsize %u\n", le32_to_cpu(dn->size));
482 pr_err("\tcompr_typ %d\n",
483 (int)le16_to_cpu(dn->compr_type));
484 pr_err("\tdata size %d\n", dlen);
485 pr_err("\tdata:\n");
486 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
487 (void *)&dn->data, dlen, 0);
488 break;
489 }
490 case UBIFS_TRUN_NODE:
491 {
492 const struct ubifs_trun_node *trun = node;
493
494 pr_err("\tinum %u\n", le32_to_cpu(trun->inum));
495 pr_err("\told_size %llu\n",
496 (unsigned long long)le64_to_cpu(trun->old_size));
497 pr_err("\tnew_size %llu\n",
498 (unsigned long long)le64_to_cpu(trun->new_size));
499 break;
500 }
501 case UBIFS_IDX_NODE:
502 {
503 const struct ubifs_idx_node *idx = node;
504
505 n = le16_to_cpu(idx->child_cnt);
506 pr_err("\tchild_cnt %d\n", n);
507 pr_err("\tlevel %d\n", (int)le16_to_cpu(idx->level));
508 pr_err("\tBranches:\n");
509
510 for (i = 0; i < n && i < c->fanout - 1; i++) {
511 const struct ubifs_branch *br;
512
513 br = ubifs_idx_branch(c, idx, i);
514 key_read(c, &br->key, &key);
515 pr_err("\t%d: LEB %d:%d len %d key %s\n",
516 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
517 le32_to_cpu(br->len),
518 dbg_snprintf_key(c, &key, key_buf,
519 DBG_KEY_BUF_LEN));
520 }
521 break;
522 }
523 case UBIFS_CS_NODE:
524 break;
525 case UBIFS_ORPH_NODE:
526 {
527 const struct ubifs_orph_node *orph = node;
528
529 pr_err("\tcommit number %llu\n",
530 (unsigned long long)
531 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
532 pr_err("\tlast node flag %llu\n",
533 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
534 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
535 pr_err("\t%d orphan inode numbers:\n", n);
536 for (i = 0; i < n; i++)
537 pr_err("\t ino %llu\n",
538 (unsigned long long)le64_to_cpu(orph->inos[i]));
539 break;
540 }
541 default:
542 pr_err("node type %d was not recognized\n",
543 (int)ch->node_type);
544 }
545 spin_unlock(&dbg_lock);
546}
547
548void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
549{
550 spin_lock(&dbg_lock);
551 pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
552 req->new_ino, req->dirtied_ino);
553 pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n",
554 req->new_ino_d, req->dirtied_ino_d);
555 pr_err("\tnew_page %d, dirtied_page %d\n",
556 req->new_page, req->dirtied_page);
557 pr_err("\tnew_dent %d, mod_dent %d\n",
558 req->new_dent, req->mod_dent);
559 pr_err("\tidx_growth %d\n", req->idx_growth);
560 pr_err("\tdata_growth %d dd_growth %d\n",
561 req->data_growth, req->dd_growth);
562 spin_unlock(&dbg_lock);
563}
564
565void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
566{
567 spin_lock(&dbg_lock);
568 pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n",
569 current->pid, lst->empty_lebs, lst->idx_lebs);
570 pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
571 lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
572 pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
573 lst->total_used, lst->total_dark, lst->total_dead);
574 spin_unlock(&dbg_lock);
575}
576
577#ifndef __UBOOT__
578void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
579{
580 int i;
581 struct rb_node *rb;
582 struct ubifs_bud *bud;
583 struct ubifs_gced_idx_leb *idx_gc;
584 long long available, outstanding, free;
585
586 spin_lock(&c->space_lock);
587 spin_lock(&dbg_lock);
588 pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
589 current->pid, bi->data_growth + bi->dd_growth,
590 bi->data_growth + bi->dd_growth + bi->idx_growth);
591 pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
592 bi->data_growth, bi->dd_growth, bi->idx_growth);
593 pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
594 bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
595 pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
596 bi->page_budget, bi->inode_budget, bi->dent_budget);
597 pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
598 pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
599 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
600
601 if (bi != &c->bi)
602 /*
603 * If we are dumping saved budgeting data, do not print
604 * additional information which is about the current state, not
605 * the old one which corresponded to the saved budgeting data.
606 */
607 goto out_unlock;
608
609 pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
610 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
611 pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
612 atomic_long_read(&c->dirty_pg_cnt),
613 atomic_long_read(&c->dirty_zn_cnt),
614 atomic_long_read(&c->clean_zn_cnt));
615 pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
616
617 /* If we are in R/O mode, journal heads do not exist */
618 if (c->jheads)
619 for (i = 0; i < c->jhead_cnt; i++)
620 pr_err("\tjhead %s\t LEB %d\n",
621 dbg_jhead(c->jheads[i].wbuf.jhead),
622 c->jheads[i].wbuf.lnum);
623 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
624 bud = rb_entry(rb, struct ubifs_bud, rb);
625 pr_err("\tbud LEB %d\n", bud->lnum);
626 }
627 list_for_each_entry(bud, &c->old_buds, list)
628 pr_err("\told bud LEB %d\n", bud->lnum);
629 list_for_each_entry(idx_gc, &c->idx_gc, list)
630 pr_err("\tGC'ed idx LEB %d unmap %d\n",
631 idx_gc->lnum, idx_gc->unmap);
632 pr_err("\tcommit state %d\n", c->cmt_state);
633
634 /* Print budgeting predictions */
635 available = ubifs_calc_available(c, c->bi.min_idx_lebs);
636 outstanding = c->bi.data_growth + c->bi.dd_growth;
637 free = ubifs_get_free_space_nolock(c);
638 pr_err("Budgeting predictions:\n");
639 pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
640 available, outstanding, free);
641out_unlock:
642 spin_unlock(&dbg_lock);
643 spin_unlock(&c->space_lock);
644}
645#else
646void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
647{
648}
649#endif
650
651void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
652{
653 int i, spc, dark = 0, dead = 0;
654 struct rb_node *rb;
655 struct ubifs_bud *bud;
656
657 spc = lp->free + lp->dirty;
658 if (spc < c->dead_wm)
659 dead = spc;
660 else
661 dark = ubifs_calc_dark(c, spc);
662
663 if (lp->flags & LPROPS_INDEX)
664 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
665 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
666 lp->flags);
667 else
668 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
669 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
670 dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
671
672 if (lp->flags & LPROPS_TAKEN) {
673 if (lp->flags & LPROPS_INDEX)
674 pr_cont("index, taken");
675 else
676 pr_cont("taken");
677 } else {
678 const char *s;
679
680 if (lp->flags & LPROPS_INDEX) {
681 switch (lp->flags & LPROPS_CAT_MASK) {
682 case LPROPS_DIRTY_IDX:
683 s = "dirty index";
684 break;
685 case LPROPS_FRDI_IDX:
686 s = "freeable index";
687 break;
688 default:
689 s = "index";
690 }
691 } else {
692 switch (lp->flags & LPROPS_CAT_MASK) {
693 case LPROPS_UNCAT:
694 s = "not categorized";
695 break;
696 case LPROPS_DIRTY:
697 s = "dirty";
698 break;
699 case LPROPS_FREE:
700 s = "free";
701 break;
702 case LPROPS_EMPTY:
703 s = "empty";
704 break;
705 case LPROPS_FREEABLE:
706 s = "freeable";
707 break;
708 default:
709 s = NULL;
710 break;
711 }
712 }
713 pr_cont("%s", s);
714 }
715
716 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
717 bud = rb_entry(rb, struct ubifs_bud, rb);
718 if (bud->lnum == lp->lnum) {
719 int head = 0;
720 for (i = 0; i < c->jhead_cnt; i++) {
721 /*
722 * Note, if we are in R/O mode or in the middle
723 * of mounting/re-mounting, the write-buffers do
724 * not exist.
725 */
726 if (c->jheads &&
727 lp->lnum == c->jheads[i].wbuf.lnum) {
728 pr_cont(", jhead %s", dbg_jhead(i));
729 head = 1;
730 }
731 }
732 if (!head)
733 pr_cont(", bud of jhead %s",
734 dbg_jhead(bud->jhead));
735 }
736 }
737 if (lp->lnum == c->gc_lnum)
738 pr_cont(", GC LEB");
739 pr_cont(")\n");
740}
741
742void ubifs_dump_lprops(struct ubifs_info *c)
743{
744 int lnum, err;
745 struct ubifs_lprops lp;
746 struct ubifs_lp_stats lst;
747
748 pr_err("(pid %d) start dumping LEB properties\n", current->pid);
749 ubifs_get_lp_stats(c, &lst);
750 ubifs_dump_lstats(&lst);
751
752 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
753 err = ubifs_read_one_lp(c, lnum, &lp);
754 if (err)
755 ubifs_err("cannot read lprops for LEB %d", lnum);
756
757 ubifs_dump_lprop(c, &lp);
758 }
759 pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
760}
761
762void ubifs_dump_lpt_info(struct ubifs_info *c)
763{
764 int i;
765
766 spin_lock(&dbg_lock);
767 pr_err("(pid %d) dumping LPT information\n", current->pid);
768 pr_err("\tlpt_sz: %lld\n", c->lpt_sz);
769 pr_err("\tpnode_sz: %d\n", c->pnode_sz);
770 pr_err("\tnnode_sz: %d\n", c->nnode_sz);
771 pr_err("\tltab_sz: %d\n", c->ltab_sz);
772 pr_err("\tlsave_sz: %d\n", c->lsave_sz);
773 pr_err("\tbig_lpt: %d\n", c->big_lpt);
774 pr_err("\tlpt_hght: %d\n", c->lpt_hght);
775 pr_err("\tpnode_cnt: %d\n", c->pnode_cnt);
776 pr_err("\tnnode_cnt: %d\n", c->nnode_cnt);
777 pr_err("\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
778 pr_err("\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
779 pr_err("\tlsave_cnt: %d\n", c->lsave_cnt);
780 pr_err("\tspace_bits: %d\n", c->space_bits);
781 pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
782 pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
783 pr_err("\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
784 pr_err("\tpcnt_bits: %d\n", c->pcnt_bits);
785 pr_err("\tlnum_bits: %d\n", c->lnum_bits);
786 pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
787 pr_err("\tLPT head is at %d:%d\n",
788 c->nhead_lnum, c->nhead_offs);
789 pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
790 if (c->big_lpt)
791 pr_err("\tLPT lsave is at %d:%d\n",
792 c->lsave_lnum, c->lsave_offs);
793 for (i = 0; i < c->lpt_lebs; i++)
794 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
795 i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
796 c->ltab[i].tgc, c->ltab[i].cmt);
797 spin_unlock(&dbg_lock);
798}
799
800void ubifs_dump_sleb(const struct ubifs_info *c,
801 const struct ubifs_scan_leb *sleb, int offs)
802{
803 struct ubifs_scan_node *snod;
804
805 pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
806 current->pid, sleb->lnum, offs);
807
808 list_for_each_entry(snod, &sleb->nodes, list) {
809 cond_resched();
810 pr_err("Dumping node at LEB %d:%d len %d\n",
811 sleb->lnum, snod->offs, snod->len);
812 ubifs_dump_node(c, snod->node);
813 }
814}
815
816void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
817{
818 struct ubifs_scan_leb *sleb;
819 struct ubifs_scan_node *snod;
820 void *buf;
821
822 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
823
824 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
825 if (!buf) {
826 ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
827 return;
828 }
829
830 sleb = ubifs_scan(c, lnum, 0, buf, 0);
831 if (IS_ERR(sleb)) {
832 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
833 goto out;
834 }
835
836 pr_err("LEB %d has %d nodes ending at %d\n", lnum,
837 sleb->nodes_cnt, sleb->endpt);
838
839 list_for_each_entry(snod, &sleb->nodes, list) {
840 cond_resched();
841 pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
842 snod->offs, snod->len);
843 ubifs_dump_node(c, snod->node);
844 }
845
846 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
847 ubifs_scan_destroy(sleb);
848
849out:
850 vfree(buf);
851 return;
852}
853
854void ubifs_dump_znode(const struct ubifs_info *c,
855 const struct ubifs_znode *znode)
856{
857 int n;
858 const struct ubifs_zbranch *zbr;
859 char key_buf[DBG_KEY_BUF_LEN];
860
861 spin_lock(&dbg_lock);
862 if (znode->parent)
863 zbr = &znode->parent->zbranch[znode->iip];
864 else
865 zbr = &c->zroot;
866
867 pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
868 znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
869 znode->level, znode->child_cnt, znode->flags);
870
871 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
872 spin_unlock(&dbg_lock);
873 return;
874 }
875
876 pr_err("zbranches:\n");
877 for (n = 0; n < znode->child_cnt; n++) {
878 zbr = &znode->zbranch[n];
879 if (znode->level > 0)
880 pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
881 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
882 dbg_snprintf_key(c, &zbr->key, key_buf,
883 DBG_KEY_BUF_LEN));
884 else
885 pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
886 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
887 dbg_snprintf_key(c, &zbr->key, key_buf,
888 DBG_KEY_BUF_LEN));
889 }
890 spin_unlock(&dbg_lock);
891}
892
893void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
894{
895 int i;
896
897 pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
898 current->pid, cat, heap->cnt);
899 for (i = 0; i < heap->cnt; i++) {
900 struct ubifs_lprops *lprops = heap->arr[i];
901
902 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
903 i, lprops->lnum, lprops->hpos, lprops->free,
904 lprops->dirty, lprops->flags);
905 }
906 pr_err("(pid %d) finish dumping heap\n", current->pid);
907}
908
909void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
910 struct ubifs_nnode *parent, int iip)
911{
912 int i;
913
914 pr_err("(pid %d) dumping pnode:\n", current->pid);
915 pr_err("\taddress %zx parent %zx cnext %zx\n",
916 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
917 pr_err("\tflags %lu iip %d level %d num %d\n",
918 pnode->flags, iip, pnode->level, pnode->num);
919 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
920 struct ubifs_lprops *lp = &pnode->lprops[i];
921
922 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
923 i, lp->free, lp->dirty, lp->flags, lp->lnum);
924 }
925}
926
927void ubifs_dump_tnc(struct ubifs_info *c)
928{
929 struct ubifs_znode *znode;
930 int level;
931
932 pr_err("\n");
933 pr_err("(pid %d) start dumping TNC tree\n", current->pid);
934 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
935 level = znode->level;
936 pr_err("== Level %d ==\n", level);
937 while (znode) {
938 if (level != znode->level) {
939 level = znode->level;
940 pr_err("== Level %d ==\n", level);
941 }
942 ubifs_dump_znode(c, znode);
943 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
944 }
945 pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
946}
947
948static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
949 void *priv)
950{
951 ubifs_dump_znode(c, znode);
952 return 0;
953}
954
955/**
956 * ubifs_dump_index - dump the on-flash index.
957 * @c: UBIFS file-system description object
958 *
959 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
960 * which dumps only in-memory znodes and does not read znodes which from flash.
961 */
962void ubifs_dump_index(struct ubifs_info *c)
963{
964 dbg_walk_index(c, NULL, dump_znode, NULL);
965}
966
967#ifndef __UBOOT__
968/**
969 * dbg_save_space_info - save information about flash space.
970 * @c: UBIFS file-system description object
971 *
972 * This function saves information about UBIFS free space, dirty space, etc, in
973 * order to check it later.
974 */
975void dbg_save_space_info(struct ubifs_info *c)
976{
977 struct ubifs_debug_info *d = c->dbg;
978 int freeable_cnt;
979
980 spin_lock(&c->space_lock);
981 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
982 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
983 d->saved_idx_gc_cnt = c->idx_gc_cnt;
984
985 /*
986 * We use a dirty hack here and zero out @c->freeable_cnt, because it
987 * affects the free space calculations, and UBIFS might not know about
988 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
989 * only when we read their lprops, and we do this only lazily, upon the
990 * need. So at any given point of time @c->freeable_cnt might be not
991 * exactly accurate.
992 *
993 * Just one example about the issue we hit when we did not zero
994 * @c->freeable_cnt.
995 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
996 * amount of free space in @d->saved_free
997 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
998 * information from flash, where we cache LEBs from various
999 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1000 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1001 * -> 'ubifs_get_pnode()' -> 'update_cats()'
1002 * -> 'ubifs_add_to_cat()').
1003 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1004 * becomes %1.
1005 * 4. We calculate the amount of free space when the re-mount is
1006 * finished in 'dbg_check_space_info()' and it does not match
1007 * @d->saved_free.
1008 */
1009 freeable_cnt = c->freeable_cnt;
1010 c->freeable_cnt = 0;
1011 d->saved_free = ubifs_get_free_space_nolock(c);
1012 c->freeable_cnt = freeable_cnt;
1013 spin_unlock(&c->space_lock);
1014}
1015
1016/**
1017 * dbg_check_space_info - check flash space information.
1018 * @c: UBIFS file-system description object
1019 *
1020 * This function compares current flash space information with the information
1021 * which was saved when the 'dbg_save_space_info()' function was called.
1022 * Returns zero if the information has not changed, and %-EINVAL it it has
1023 * changed.
1024 */
1025int dbg_check_space_info(struct ubifs_info *c)
1026{
1027 struct ubifs_debug_info *d = c->dbg;
1028 struct ubifs_lp_stats lst;
1029 long long free;
1030 int freeable_cnt;
1031
1032 spin_lock(&c->space_lock);
1033 freeable_cnt = c->freeable_cnt;
1034 c->freeable_cnt = 0;
1035 free = ubifs_get_free_space_nolock(c);
1036 c->freeable_cnt = freeable_cnt;
1037 spin_unlock(&c->space_lock);
1038
1039 if (free != d->saved_free) {
1040 ubifs_err("free space changed from %lld to %lld",
1041 d->saved_free, free);
1042 goto out;
1043 }
1044
1045 return 0;
1046
1047out:
1048 ubifs_msg("saved lprops statistics dump");
1049 ubifs_dump_lstats(&d->saved_lst);
1050 ubifs_msg("saved budgeting info dump");
1051 ubifs_dump_budg(c, &d->saved_bi);
1052 ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1053 ubifs_msg("current lprops statistics dump");
1054 ubifs_get_lp_stats(c, &lst);
1055 ubifs_dump_lstats(&lst);
1056 ubifs_msg("current budgeting info dump");
1057 ubifs_dump_budg(c, &c->bi);
1058 dump_stack();
1059 return -EINVAL;
1060}
1061
1062/**
1063 * dbg_check_synced_i_size - check synchronized inode size.
1064 * @c: UBIFS file-system description object
1065 * @inode: inode to check
1066 *
1067 * If inode is clean, synchronized inode size has to be equivalent to current
1068 * inode size. This function has to be called only for locked inodes (@i_mutex
1069 * has to be locked). Returns %0 if synchronized inode size if correct, and
1070 * %-EINVAL if not.
1071 */
1072int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1073{
1074 int err = 0;
1075 struct ubifs_inode *ui = ubifs_inode(inode);
1076
1077 if (!dbg_is_chk_gen(c))
1078 return 0;
1079 if (!S_ISREG(inode->i_mode))
1080 return 0;
1081
1082 mutex_lock(&ui->ui_mutex);
1083 spin_lock(&ui->ui_lock);
1084 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1085 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode is clean",
1086 ui->ui_size, ui->synced_i_size);
1087 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1088 inode->i_mode, i_size_read(inode));
1089 dump_stack();
1090 err = -EINVAL;
1091 }
1092 spin_unlock(&ui->ui_lock);
1093 mutex_unlock(&ui->ui_mutex);
1094 return err;
1095}
1096
1097/*
1098 * dbg_check_dir - check directory inode size and link count.
1099 * @c: UBIFS file-system description object
1100 * @dir: the directory to calculate size for
1101 * @size: the result is returned here
1102 *
1103 * This function makes sure that directory size and link count are correct.
1104 * Returns zero in case of success and a negative error code in case of
1105 * failure.
1106 *
1107 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1108 * calling this function.
1109 */
1110int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1111{
1112 unsigned int nlink = 2;
1113 union ubifs_key key;
1114 struct ubifs_dent_node *dent, *pdent = NULL;
1115 struct qstr nm = { .name = NULL };
1116 loff_t size = UBIFS_INO_NODE_SZ;
1117
1118 if (!dbg_is_chk_gen(c))
1119 return 0;
1120
1121 if (!S_ISDIR(dir->i_mode))
1122 return 0;
1123
1124 lowest_dent_key(c, &key, dir->i_ino);
1125 while (1) {
1126 int err;
1127
1128 dent = ubifs_tnc_next_ent(c, &key, &nm);
1129 if (IS_ERR(dent)) {
1130 err = PTR_ERR(dent);
1131 if (err == -ENOENT)
1132 break;
1133 return err;
1134 }
1135
1136 nm.name = dent->name;
1137 nm.len = le16_to_cpu(dent->nlen);
1138 size += CALC_DENT_SIZE(nm.len);
1139 if (dent->type == UBIFS_ITYPE_DIR)
1140 nlink += 1;
1141 kfree(pdent);
1142 pdent = dent;
1143 key_read(c, &dent->key, &key);
1144 }
1145 kfree(pdent);
1146
1147 if (i_size_read(dir) != size) {
1148 ubifs_err("directory inode %lu has size %llu, but calculated size is %llu",
1149 dir->i_ino, (unsigned long long)i_size_read(dir),
1150 (unsigned long long)size);
1151 ubifs_dump_inode(c, dir);
1152 dump_stack();
1153 return -EINVAL;
1154 }
1155 if (dir->i_nlink != nlink) {
1156 ubifs_err("directory inode %lu has nlink %u, but calculated nlink is %u",
1157 dir->i_ino, dir->i_nlink, nlink);
1158 ubifs_dump_inode(c, dir);
1159 dump_stack();
1160 return -EINVAL;
1161 }
1162
1163 return 0;
1164}
1165
1166/**
1167 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1168 * @c: UBIFS file-system description object
1169 * @zbr1: first zbranch
1170 * @zbr2: following zbranch
1171 *
1172 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1173 * names of the direntries/xentries which are referred by the keys. This
1174 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1175 * sure the name of direntry/xentry referred by @zbr1 is less than
1176 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1177 * and a negative error code in case of failure.
1178 */
1179static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1180 struct ubifs_zbranch *zbr2)
1181{
1182 int err, nlen1, nlen2, cmp;
1183 struct ubifs_dent_node *dent1, *dent2;
1184 union ubifs_key key;
1185 char key_buf[DBG_KEY_BUF_LEN];
1186
1187 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1188 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1189 if (!dent1)
1190 return -ENOMEM;
1191 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1192 if (!dent2) {
1193 err = -ENOMEM;
1194 goto out_free;
1195 }
1196
1197 err = ubifs_tnc_read_node(c, zbr1, dent1);
1198 if (err)
1199 goto out_free;
1200 err = ubifs_validate_entry(c, dent1);
1201 if (err)
1202 goto out_free;
1203
1204 err = ubifs_tnc_read_node(c, zbr2, dent2);
1205 if (err)
1206 goto out_free;
1207 err = ubifs_validate_entry(c, dent2);
1208 if (err)
1209 goto out_free;
1210
1211 /* Make sure node keys are the same as in zbranch */
1212 err = 1;
1213 key_read(c, &dent1->key, &key);
1214 if (keys_cmp(c, &zbr1->key, &key)) {
1215 ubifs_err("1st entry at %d:%d has key %s", zbr1->lnum,
1216 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1217 DBG_KEY_BUF_LEN));
1218 ubifs_err("but it should have key %s according to tnc",
1219 dbg_snprintf_key(c, &zbr1->key, key_buf,
1220 DBG_KEY_BUF_LEN));
1221 ubifs_dump_node(c, dent1);
1222 goto out_free;
1223 }
1224
1225 key_read(c, &dent2->key, &key);
1226 if (keys_cmp(c, &zbr2->key, &key)) {
1227 ubifs_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1228 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1229 DBG_KEY_BUF_LEN));
1230 ubifs_err("but it should have key %s according to tnc",
1231 dbg_snprintf_key(c, &zbr2->key, key_buf,
1232 DBG_KEY_BUF_LEN));
1233 ubifs_dump_node(c, dent2);
1234 goto out_free;
1235 }
1236
1237 nlen1 = le16_to_cpu(dent1->nlen);
1238 nlen2 = le16_to_cpu(dent2->nlen);
1239
1240 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1241 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1242 err = 0;
1243 goto out_free;
1244 }
1245 if (cmp == 0 && nlen1 == nlen2)
1246 ubifs_err("2 xent/dent nodes with the same name");
1247 else
1248 ubifs_err("bad order of colliding key %s",
1249 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1250
1251 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1252 ubifs_dump_node(c, dent1);
1253 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1254 ubifs_dump_node(c, dent2);
1255
1256out_free:
1257 kfree(dent2);
1258 kfree(dent1);
1259 return err;
1260}
1261
1262/**
1263 * dbg_check_znode - check if znode is all right.
1264 * @c: UBIFS file-system description object
1265 * @zbr: zbranch which points to this znode
1266 *
1267 * This function makes sure that znode referred to by @zbr is all right.
1268 * Returns zero if it is, and %-EINVAL if it is not.
1269 */
1270static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1271{
1272 struct ubifs_znode *znode = zbr->znode;
1273 struct ubifs_znode *zp = znode->parent;
1274 int n, err, cmp;
1275
1276 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1277 err = 1;
1278 goto out;
1279 }
1280 if (znode->level < 0) {
1281 err = 2;
1282 goto out;
1283 }
1284 if (znode->iip < 0 || znode->iip >= c->fanout) {
1285 err = 3;
1286 goto out;
1287 }
1288
1289 if (zbr->len == 0)
1290 /* Only dirty zbranch may have no on-flash nodes */
1291 if (!ubifs_zn_dirty(znode)) {
1292 err = 4;
1293 goto out;
1294 }
1295
1296 if (ubifs_zn_dirty(znode)) {
1297 /*
1298 * If znode is dirty, its parent has to be dirty as well. The
1299 * order of the operation is important, so we have to have
1300 * memory barriers.
1301 */
1302 smp_mb();
1303 if (zp && !ubifs_zn_dirty(zp)) {
1304 /*
1305 * The dirty flag is atomic and is cleared outside the
1306 * TNC mutex, so znode's dirty flag may now have
1307 * been cleared. The child is always cleared before the
1308 * parent, so we just need to check again.
1309 */
1310 smp_mb();
1311 if (ubifs_zn_dirty(znode)) {
1312 err = 5;
1313 goto out;
1314 }
1315 }
1316 }
1317
1318 if (zp) {
1319 const union ubifs_key *min, *max;
1320
1321 if (znode->level != zp->level - 1) {
1322 err = 6;
1323 goto out;
1324 }
1325
1326 /* Make sure the 'parent' pointer in our znode is correct */
1327 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1328 if (!err) {
1329 /* This zbranch does not exist in the parent */
1330 err = 7;
1331 goto out;
1332 }
1333
1334 if (znode->iip >= zp->child_cnt) {
1335 err = 8;
1336 goto out;
1337 }
1338
1339 if (znode->iip != n) {
1340 /* This may happen only in case of collisions */
1341 if (keys_cmp(c, &zp->zbranch[n].key,
1342 &zp->zbranch[znode->iip].key)) {
1343 err = 9;
1344 goto out;
1345 }
1346 n = znode->iip;
1347 }
1348
1349 /*
1350 * Make sure that the first key in our znode is greater than or
1351 * equal to the key in the pointing zbranch.
1352 */
1353 min = &zbr->key;
1354 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1355 if (cmp == 1) {
1356 err = 10;
1357 goto out;
1358 }
1359
1360 if (n + 1 < zp->child_cnt) {
1361 max = &zp->zbranch[n + 1].key;
1362
1363 /*
1364 * Make sure the last key in our znode is less or
1365 * equivalent than the key in the zbranch which goes
1366 * after our pointing zbranch.
1367 */
1368 cmp = keys_cmp(c, max,
1369 &znode->zbranch[znode->child_cnt - 1].key);
1370 if (cmp == -1) {
1371 err = 11;
1372 goto out;
1373 }
1374 }
1375 } else {
1376 /* This may only be root znode */
1377 if (zbr != &c->zroot) {
1378 err = 12;
1379 goto out;
1380 }
1381 }
1382
1383 /*
1384 * Make sure that next key is greater or equivalent then the previous
1385 * one.
1386 */
1387 for (n = 1; n < znode->child_cnt; n++) {
1388 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1389 &znode->zbranch[n].key);
1390 if (cmp > 0) {
1391 err = 13;
1392 goto out;
1393 }
1394 if (cmp == 0) {
1395 /* This can only be keys with colliding hash */
1396 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1397 err = 14;
1398 goto out;
1399 }
1400
1401 if (znode->level != 0 || c->replaying)
1402 continue;
1403
1404 /*
1405 * Colliding keys should follow binary order of
1406 * corresponding xentry/dentry names.
1407 */
1408 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1409 &znode->zbranch[n]);
1410 if (err < 0)
1411 return err;
1412 if (err) {
1413 err = 15;
1414 goto out;
1415 }
1416 }
1417 }
1418
1419 for (n = 0; n < znode->child_cnt; n++) {
1420 if (!znode->zbranch[n].znode &&
1421 (znode->zbranch[n].lnum == 0 ||
1422 znode->zbranch[n].len == 0)) {
1423 err = 16;
1424 goto out;
1425 }
1426
1427 if (znode->zbranch[n].lnum != 0 &&
1428 znode->zbranch[n].len == 0) {
1429 err = 17;
1430 goto out;
1431 }
1432
1433 if (znode->zbranch[n].lnum == 0 &&
1434 znode->zbranch[n].len != 0) {
1435 err = 18;
1436 goto out;
1437 }
1438
1439 if (znode->zbranch[n].lnum == 0 &&
1440 znode->zbranch[n].offs != 0) {
1441 err = 19;
1442 goto out;
1443 }
1444
1445 if (znode->level != 0 && znode->zbranch[n].znode)
1446 if (znode->zbranch[n].znode->parent != znode) {
1447 err = 20;
1448 goto out;
1449 }
1450 }
1451
1452 return 0;
1453
1454out:
1455 ubifs_err("failed, error %d", err);
1456 ubifs_msg("dump of the znode");
1457 ubifs_dump_znode(c, znode);
1458 if (zp) {
1459 ubifs_msg("dump of the parent znode");
1460 ubifs_dump_znode(c, zp);
1461 }
1462 dump_stack();
1463 return -EINVAL;
1464}
1465#else
1466
1467int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1468{
1469 return 0;
1470}
1471
1472void dbg_debugfs_exit_fs(struct ubifs_info *c)
1473{
1474 return;
1475}
1476
1477int ubifs_debugging_init(struct ubifs_info *c)
1478{
1479 return 0;
1480}
1481void ubifs_debugging_exit(struct ubifs_info *c)
1482{
1483}
1484int dbg_check_filesystem(struct ubifs_info *c)
1485{
1486 return 0;
1487}
1488int dbg_debugfs_init_fs(struct ubifs_info *c)
1489{
1490 return 0;
1491}
1492#endif
1493
1494#ifndef __UBOOT__
1495/**
1496 * dbg_check_tnc - check TNC tree.
1497 * @c: UBIFS file-system description object
1498 * @extra: do extra checks that are possible at start commit
1499 *
1500 * This function traverses whole TNC tree and checks every znode. Returns zero
1501 * if everything is all right and %-EINVAL if something is wrong with TNC.
1502 */
1503int dbg_check_tnc(struct ubifs_info *c, int extra)
1504{
1505 struct ubifs_znode *znode;
1506 long clean_cnt = 0, dirty_cnt = 0;
1507 int err, last;
1508
1509 if (!dbg_is_chk_index(c))
1510 return 0;
1511
1512 ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1513 if (!c->zroot.znode)
1514 return 0;
1515
1516 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1517 while (1) {
1518 struct ubifs_znode *prev;
1519 struct ubifs_zbranch *zbr;
1520
1521 if (!znode->parent)
1522 zbr = &c->zroot;
1523 else
1524 zbr = &znode->parent->zbranch[znode->iip];
1525
1526 err = dbg_check_znode(c, zbr);
1527 if (err)
1528 return err;
1529
1530 if (extra) {
1531 if (ubifs_zn_dirty(znode))
1532 dirty_cnt += 1;
1533 else
1534 clean_cnt += 1;
1535 }
1536
1537 prev = znode;
1538 znode = ubifs_tnc_postorder_next(znode);
1539 if (!znode)
1540 break;
1541
1542 /*
1543 * If the last key of this znode is equivalent to the first key
1544 * of the next znode (collision), then check order of the keys.
1545 */
1546 last = prev->child_cnt - 1;
1547 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1548 !keys_cmp(c, &prev->zbranch[last].key,
1549 &znode->zbranch[0].key)) {
1550 err = dbg_check_key_order(c, &prev->zbranch[last],
1551 &znode->zbranch[0]);
1552 if (err < 0)
1553 return err;
1554 if (err) {
1555 ubifs_msg("first znode");
1556 ubifs_dump_znode(c, prev);
1557 ubifs_msg("second znode");
1558 ubifs_dump_znode(c, znode);
1559 return -EINVAL;
1560 }
1561 }
1562 }
1563
1564 if (extra) {
1565 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1566 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1567 atomic_long_read(&c->clean_zn_cnt),
1568 clean_cnt);
1569 return -EINVAL;
1570 }
1571 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1572 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1573 atomic_long_read(&c->dirty_zn_cnt),
1574 dirty_cnt);
1575 return -EINVAL;
1576 }
1577 }
1578
1579 return 0;
1580}
1581#else
1582int dbg_check_tnc(struct ubifs_info *c, int extra)
1583{
1584 return 0;
1585}
1586#endif
1587
1588/**
1589 * dbg_walk_index - walk the on-flash index.
1590 * @c: UBIFS file-system description object
1591 * @leaf_cb: called for each leaf node
1592 * @znode_cb: called for each indexing node
1593 * @priv: private data which is passed to callbacks
1594 *
1595 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1596 * node and @znode_cb for each indexing node. Returns zero in case of success
1597 * and a negative error code in case of failure.
1598 *
1599 * It would be better if this function removed every znode it pulled to into
1600 * the TNC, so that the behavior more closely matched the non-debugging
1601 * behavior.
1602 */
1603int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1604 dbg_znode_callback znode_cb, void *priv)
1605{
1606 int err;
1607 struct ubifs_zbranch *zbr;
1608 struct ubifs_znode *znode, *child;
1609
1610 mutex_lock(&c->tnc_mutex);
1611 /* If the root indexing node is not in TNC - pull it */
1612 if (!c->zroot.znode) {
1613 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1614 if (IS_ERR(c->zroot.znode)) {
1615 err = PTR_ERR(c->zroot.znode);
1616 c->zroot.znode = NULL;
1617 goto out_unlock;
1618 }
1619 }
1620
1621 /*
1622 * We are going to traverse the indexing tree in the postorder manner.
1623 * Go down and find the leftmost indexing node where we are going to
1624 * start from.
1625 */
1626 znode = c->zroot.znode;
1627 while (znode->level > 0) {
1628 zbr = &znode->zbranch[0];
1629 child = zbr->znode;
1630 if (!child) {
1631 child = ubifs_load_znode(c, zbr, znode, 0);
1632 if (IS_ERR(child)) {
1633 err = PTR_ERR(child);
1634 goto out_unlock;
1635 }
1636 zbr->znode = child;
1637 }
1638
1639 znode = child;
1640 }
1641
1642 /* Iterate over all indexing nodes */
1643 while (1) {
1644 int idx;
1645
1646 cond_resched();
1647
1648 if (znode_cb) {
1649 err = znode_cb(c, znode, priv);
1650 if (err) {
1651 ubifs_err("znode checking function returned error %d",
1652 err);
1653 ubifs_dump_znode(c, znode);
1654 goto out_dump;
1655 }
1656 }
1657 if (leaf_cb && znode->level == 0) {
1658 for (idx = 0; idx < znode->child_cnt; idx++) {
1659 zbr = &znode->zbranch[idx];
1660 err = leaf_cb(c, zbr, priv);
1661 if (err) {
1662 ubifs_err("leaf checking function returned error %d, for leaf at LEB %d:%d",
1663 err, zbr->lnum, zbr->offs);
1664 goto out_dump;
1665 }
1666 }
1667 }
1668
1669 if (!znode->parent)
1670 break;
1671
1672 idx = znode->iip + 1;
1673 znode = znode->parent;
1674 if (idx < znode->child_cnt) {
1675 /* Switch to the next index in the parent */
1676 zbr = &znode->zbranch[idx];
1677 child = zbr->znode;
1678 if (!child) {
1679 child = ubifs_load_znode(c, zbr, znode, idx);
1680 if (IS_ERR(child)) {
1681 err = PTR_ERR(child);
1682 goto out_unlock;
1683 }
1684 zbr->znode = child;
1685 }
1686 znode = child;
1687 } else
1688 /*
1689 * This is the last child, switch to the parent and
1690 * continue.
1691 */
1692 continue;
1693
1694 /* Go to the lowest leftmost znode in the new sub-tree */
1695 while (znode->level > 0) {
1696 zbr = &znode->zbranch[0];
1697 child = zbr->znode;
1698 if (!child) {
1699 child = ubifs_load_znode(c, zbr, znode, 0);
1700 if (IS_ERR(child)) {
1701 err = PTR_ERR(child);
1702 goto out_unlock;
1703 }
1704 zbr->znode = child;
1705 }
1706 znode = child;
1707 }
1708 }
1709
1710 mutex_unlock(&c->tnc_mutex);
1711 return 0;
1712
1713out_dump:
1714 if (znode->parent)
1715 zbr = &znode->parent->zbranch[znode->iip];
1716 else
1717 zbr = &c->zroot;
1718 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1719 ubifs_dump_znode(c, znode);
1720out_unlock:
1721 mutex_unlock(&c->tnc_mutex);
1722 return err;
1723}
1724
1725/**
1726 * add_size - add znode size to partially calculated index size.
1727 * @c: UBIFS file-system description object
1728 * @znode: znode to add size for
1729 * @priv: partially calculated index size
1730 *
1731 * This is a helper function for 'dbg_check_idx_size()' which is called for
1732 * every indexing node and adds its size to the 'long long' variable pointed to
1733 * by @priv.
1734 */
1735static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1736{
1737 long long *idx_size = priv;
1738 int add;
1739
1740 add = ubifs_idx_node_sz(c, znode->child_cnt);
1741 add = ALIGN(add, 8);
1742 *idx_size += add;
1743 return 0;
1744}
1745
1746/**
1747 * dbg_check_idx_size - check index size.
1748 * @c: UBIFS file-system description object
1749 * @idx_size: size to check
1750 *
1751 * This function walks the UBIFS index, calculates its size and checks that the
1752 * size is equivalent to @idx_size. Returns zero in case of success and a
1753 * negative error code in case of failure.
1754 */
1755int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1756{
1757 int err;
1758 long long calc = 0;
1759
1760 if (!dbg_is_chk_index(c))
1761 return 0;
1762
1763 err = dbg_walk_index(c, NULL, add_size, &calc);
1764 if (err) {
1765 ubifs_err("error %d while walking the index", err);
1766 return err;
1767 }
1768
1769 if (calc != idx_size) {
1770 ubifs_err("index size check failed: calculated size is %lld, should be %lld",
1771 calc, idx_size);
1772 dump_stack();
1773 return -EINVAL;
1774 }
1775
1776 return 0;
1777}
1778
1779#ifndef __UBOOT__
1780/**
1781 * struct fsck_inode - information about an inode used when checking the file-system.
1782 * @rb: link in the RB-tree of inodes
1783 * @inum: inode number
1784 * @mode: inode type, permissions, etc
1785 * @nlink: inode link count
1786 * @xattr_cnt: count of extended attributes
1787 * @references: how many directory/xattr entries refer this inode (calculated
1788 * while walking the index)
1789 * @calc_cnt: for directory inode count of child directories
1790 * @size: inode size (read from on-flash inode)
1791 * @xattr_sz: summary size of all extended attributes (read from on-flash
1792 * inode)
1793 * @calc_sz: for directories calculated directory size
1794 * @calc_xcnt: count of extended attributes
1795 * @calc_xsz: calculated summary size of all extended attributes
1796 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1797 * inode (read from on-flash inode)
1798 * @calc_xnms: calculated sum of lengths of all extended attribute names
1799 */
1800struct fsck_inode {
1801 struct rb_node rb;
1802 ino_t inum;
1803 umode_t mode;
1804 unsigned int nlink;
1805 unsigned int xattr_cnt;
1806 int references;
1807 int calc_cnt;
1808 long long size;
1809 unsigned int xattr_sz;
1810 long long calc_sz;
1811 long long calc_xcnt;
1812 long long calc_xsz;
1813 unsigned int xattr_nms;
1814 long long calc_xnms;
1815};
1816
1817/**
1818 * struct fsck_data - private FS checking information.
1819 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1820 */
1821struct fsck_data {
1822 struct rb_root inodes;
1823};
1824
1825/**
1826 * add_inode - add inode information to RB-tree of inodes.
1827 * @c: UBIFS file-system description object
1828 * @fsckd: FS checking information
1829 * @ino: raw UBIFS inode to add
1830 *
1831 * This is a helper function for 'check_leaf()' which adds information about
1832 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1833 * case of success and a negative error code in case of failure.
1834 */
1835static struct fsck_inode *add_inode(struct ubifs_info *c,
1836 struct fsck_data *fsckd,
1837 struct ubifs_ino_node *ino)
1838{
1839 struct rb_node **p, *parent = NULL;
1840 struct fsck_inode *fscki;
1841 ino_t inum = key_inum_flash(c, &ino->key);
1842 struct inode *inode;
1843 struct ubifs_inode *ui;
1844
1845 p = &fsckd->inodes.rb_node;
1846 while (*p) {
1847 parent = *p;
1848 fscki = rb_entry(parent, struct fsck_inode, rb);
1849 if (inum < fscki->inum)
1850 p = &(*p)->rb_left;
1851 else if (inum > fscki->inum)
1852 p = &(*p)->rb_right;
1853 else
1854 return fscki;
1855 }
1856
1857 if (inum > c->highest_inum) {
1858 ubifs_err("too high inode number, max. is %lu",
1859 (unsigned long)c->highest_inum);
1860 return ERR_PTR(-EINVAL);
1861 }
1862
1863 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1864 if (!fscki)
1865 return ERR_PTR(-ENOMEM);
1866
1867 inode = ilookup(c->vfs_sb, inum);
1868
1869 fscki->inum = inum;
1870 /*
1871 * If the inode is present in the VFS inode cache, use it instead of
1872 * the on-flash inode which might be out-of-date. E.g., the size might
1873 * be out-of-date. If we do not do this, the following may happen, for
1874 * example:
1875 * 1. A power cut happens
1876 * 2. We mount the file-system R/O, the replay process fixes up the
1877 * inode size in the VFS cache, but on on-flash.
1878 * 3. 'check_leaf()' fails because it hits a data node beyond inode
1879 * size.
1880 */
1881 if (!inode) {
1882 fscki->nlink = le32_to_cpu(ino->nlink);
1883 fscki->size = le64_to_cpu(ino->size);
1884 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1885 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1886 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1887 fscki->mode = le32_to_cpu(ino->mode);
1888 } else {
1889 ui = ubifs_inode(inode);
1890 fscki->nlink = inode->i_nlink;
1891 fscki->size = inode->i_size;
1892 fscki->xattr_cnt = ui->xattr_cnt;
1893 fscki->xattr_sz = ui->xattr_size;
1894 fscki->xattr_nms = ui->xattr_names;
1895 fscki->mode = inode->i_mode;
1896 iput(inode);
1897 }
1898
1899 if (S_ISDIR(fscki->mode)) {
1900 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1901 fscki->calc_cnt = 2;
1902 }
1903
1904 rb_link_node(&fscki->rb, parent, p);
1905 rb_insert_color(&fscki->rb, &fsckd->inodes);
1906
1907 return fscki;
1908}
1909
1910/**
1911 * search_inode - search inode in the RB-tree of inodes.
1912 * @fsckd: FS checking information
1913 * @inum: inode number to search
1914 *
1915 * This is a helper function for 'check_leaf()' which searches inode @inum in
1916 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1917 * the inode was not found.
1918 */
1919static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1920{
1921 struct rb_node *p;
1922 struct fsck_inode *fscki;
1923
1924 p = fsckd->inodes.rb_node;
1925 while (p) {
1926 fscki = rb_entry(p, struct fsck_inode, rb);
1927 if (inum < fscki->inum)
1928 p = p->rb_left;
1929 else if (inum > fscki->inum)
1930 p = p->rb_right;
1931 else
1932 return fscki;
1933 }
1934 return NULL;
1935}
1936
1937/**
1938 * read_add_inode - read inode node and add it to RB-tree of inodes.
1939 * @c: UBIFS file-system description object
1940 * @fsckd: FS checking information
1941 * @inum: inode number to read
1942 *
1943 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1944 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1945 * information pointer in case of success and a negative error code in case of
1946 * failure.
1947 */
1948static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1949 struct fsck_data *fsckd, ino_t inum)
1950{
1951 int n, err;
1952 union ubifs_key key;
1953 struct ubifs_znode *znode;
1954 struct ubifs_zbranch *zbr;
1955 struct ubifs_ino_node *ino;
1956 struct fsck_inode *fscki;
1957
1958 fscki = search_inode(fsckd, inum);
1959 if (fscki)
1960 return fscki;
1961
1962 ino_key_init(c, &key, inum);
1963 err = ubifs_lookup_level0(c, &key, &znode, &n);
1964 if (!err) {
1965 ubifs_err("inode %lu not found in index", (unsigned long)inum);
1966 return ERR_PTR(-ENOENT);
1967 } else if (err < 0) {
1968 ubifs_err("error %d while looking up inode %lu",
1969 err, (unsigned long)inum);
1970 return ERR_PTR(err);
1971 }
1972
1973 zbr = &znode->zbranch[n];
1974 if (zbr->len < UBIFS_INO_NODE_SZ) {
1975 ubifs_err("bad node %lu node length %d",
1976 (unsigned long)inum, zbr->len);
1977 return ERR_PTR(-EINVAL);
1978 }
1979
1980 ino = kmalloc(zbr->len, GFP_NOFS);
1981 if (!ino)
1982 return ERR_PTR(-ENOMEM);
1983
1984 err = ubifs_tnc_read_node(c, zbr, ino);
1985 if (err) {
1986 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1987 zbr->lnum, zbr->offs, err);
1988 kfree(ino);
1989 return ERR_PTR(err);
1990 }
1991
1992 fscki = add_inode(c, fsckd, ino);
1993 kfree(ino);
1994 if (IS_ERR(fscki)) {
1995 ubifs_err("error %ld while adding inode %lu node",
1996 PTR_ERR(fscki), (unsigned long)inum);
1997 return fscki;
1998 }
1999
2000 return fscki;
2001}
2002
2003/**
2004 * check_leaf - check leaf node.
2005 * @c: UBIFS file-system description object
2006 * @zbr: zbranch of the leaf node to check
2007 * @priv: FS checking information
2008 *
2009 * This is a helper function for 'dbg_check_filesystem()' which is called for
2010 * every single leaf node while walking the indexing tree. It checks that the
2011 * leaf node referred from the indexing tree exists, has correct CRC, and does
2012 * some other basic validation. This function is also responsible for building
2013 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2014 * calculates reference count, size, etc for each inode in order to later
2015 * compare them to the information stored inside the inodes and detect possible
2016 * inconsistencies. Returns zero in case of success and a negative error code
2017 * in case of failure.
2018 */
2019static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2020 void *priv)
2021{
2022 ino_t inum;
2023 void *node;
2024 struct ubifs_ch *ch;
2025 int err, type = key_type(c, &zbr->key);
2026 struct fsck_inode *fscki;
2027
2028 if (zbr->len < UBIFS_CH_SZ) {
2029 ubifs_err("bad leaf length %d (LEB %d:%d)",
2030 zbr->len, zbr->lnum, zbr->offs);
2031 return -EINVAL;
2032 }
2033
2034 node = kmalloc(zbr->len, GFP_NOFS);
2035 if (!node)
2036 return -ENOMEM;
2037
2038 err = ubifs_tnc_read_node(c, zbr, node);
2039 if (err) {
2040 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
2041 zbr->lnum, zbr->offs, err);
2042 goto out_free;
2043 }
2044
2045 /* If this is an inode node, add it to RB-tree of inodes */
2046 if (type == UBIFS_INO_KEY) {
2047 fscki = add_inode(c, priv, node);
2048 if (IS_ERR(fscki)) {
2049 err = PTR_ERR(fscki);
2050 ubifs_err("error %d while adding inode node", err);
2051 goto out_dump;
2052 }
2053 goto out;
2054 }
2055
2056 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2057 type != UBIFS_DATA_KEY) {
2058 ubifs_err("unexpected node type %d at LEB %d:%d",
2059 type, zbr->lnum, zbr->offs);
2060 err = -EINVAL;
2061 goto out_free;
2062 }
2063
2064 ch = node;
2065 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2066 ubifs_err("too high sequence number, max. is %llu",
2067 c->max_sqnum);
2068 err = -EINVAL;
2069 goto out_dump;
2070 }
2071
2072 if (type == UBIFS_DATA_KEY) {
2073 long long blk_offs;
2074 struct ubifs_data_node *dn = node;
2075
2076 /*
2077 * Search the inode node this data node belongs to and insert
2078 * it to the RB-tree of inodes.
2079 */
2080 inum = key_inum_flash(c, &dn->key);
2081 fscki = read_add_inode(c, priv, inum);
2082 if (IS_ERR(fscki)) {
2083 err = PTR_ERR(fscki);
2084 ubifs_err("error %d while processing data node and trying to find inode node %lu",
2085 err, (unsigned long)inum);
2086 goto out_dump;
2087 }
2088
2089 /* Make sure the data node is within inode size */
2090 blk_offs = key_block_flash(c, &dn->key);
2091 blk_offs <<= UBIFS_BLOCK_SHIFT;
2092 blk_offs += le32_to_cpu(dn->size);
2093 if (blk_offs > fscki->size) {
2094 ubifs_err("data node at LEB %d:%d is not within inode size %lld",
2095 zbr->lnum, zbr->offs, fscki->size);
2096 err = -EINVAL;
2097 goto out_dump;
2098 }
2099 } else {
2100 int nlen;
2101 struct ubifs_dent_node *dent = node;
2102 struct fsck_inode *fscki1;
2103
2104 err = ubifs_validate_entry(c, dent);
2105 if (err)
2106 goto out_dump;
2107
2108 /*
2109 * Search the inode node this entry refers to and the parent
2110 * inode node and insert them to the RB-tree of inodes.
2111 */
2112 inum = le64_to_cpu(dent->inum);
2113 fscki = read_add_inode(c, priv, inum);
2114 if (IS_ERR(fscki)) {
2115 err = PTR_ERR(fscki);
2116 ubifs_err("error %d while processing entry node and trying to find inode node %lu",
2117 err, (unsigned long)inum);
2118 goto out_dump;
2119 }
2120
2121 /* Count how many direntries or xentries refers this inode */
2122 fscki->references += 1;
2123
2124 inum = key_inum_flash(c, &dent->key);
2125 fscki1 = read_add_inode(c, priv, inum);
2126 if (IS_ERR(fscki1)) {
2127 err = PTR_ERR(fscki1);
2128 ubifs_err("error %d while processing entry node and trying to find parent inode node %lu",
2129 err, (unsigned long)inum);
2130 goto out_dump;
2131 }
2132
2133 nlen = le16_to_cpu(dent->nlen);
2134 if (type == UBIFS_XENT_KEY) {
2135 fscki1->calc_xcnt += 1;
2136 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2137 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2138 fscki1->calc_xnms += nlen;
2139 } else {
2140 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2141 if (dent->type == UBIFS_ITYPE_DIR)
2142 fscki1->calc_cnt += 1;
2143 }
2144 }
2145
2146out:
2147 kfree(node);
2148 return 0;
2149
2150out_dump:
2151 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2152 ubifs_dump_node(c, node);
2153out_free:
2154 kfree(node);
2155 return err;
2156}
2157
2158/**
2159 * free_inodes - free RB-tree of inodes.
2160 * @fsckd: FS checking information
2161 */
2162static void free_inodes(struct fsck_data *fsckd)
2163{
2164 struct fsck_inode *fscki, *n;
2165
2166 rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2167 kfree(fscki);
2168}
2169
2170/**
2171 * check_inodes - checks all inodes.
2172 * @c: UBIFS file-system description object
2173 * @fsckd: FS checking information
2174 *
2175 * This is a helper function for 'dbg_check_filesystem()' which walks the
2176 * RB-tree of inodes after the index scan has been finished, and checks that
2177 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2178 * %-EINVAL if not, and a negative error code in case of failure.
2179 */
2180static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2181{
2182 int n, err;
2183 union ubifs_key key;
2184 struct ubifs_znode *znode;
2185 struct ubifs_zbranch *zbr;
2186 struct ubifs_ino_node *ino;
2187 struct fsck_inode *fscki;
2188 struct rb_node *this = rb_first(&fsckd->inodes);
2189
2190 while (this) {
2191 fscki = rb_entry(this, struct fsck_inode, rb);
2192 this = rb_next(this);
2193
2194 if (S_ISDIR(fscki->mode)) {
2195 /*
2196 * Directories have to have exactly one reference (they
2197 * cannot have hardlinks), although root inode is an
2198 * exception.
2199 */
2200 if (fscki->inum != UBIFS_ROOT_INO &&
2201 fscki->references != 1) {
2202 ubifs_err("directory inode %lu has %d direntries which refer it, but should be 1",
2203 (unsigned long)fscki->inum,
2204 fscki->references);
2205 goto out_dump;
2206 }
2207 if (fscki->inum == UBIFS_ROOT_INO &&
2208 fscki->references != 0) {
2209 ubifs_err("root inode %lu has non-zero (%d) direntries which refer it",
2210 (unsigned long)fscki->inum,
2211 fscki->references);
2212 goto out_dump;
2213 }
2214 if (fscki->calc_sz != fscki->size) {
2215 ubifs_err("directory inode %lu size is %lld, but calculated size is %lld",
2216 (unsigned long)fscki->inum,
2217 fscki->size, fscki->calc_sz);
2218 goto out_dump;
2219 }
2220 if (fscki->calc_cnt != fscki->nlink) {
2221 ubifs_err("directory inode %lu nlink is %d, but calculated nlink is %d",
2222 (unsigned long)fscki->inum,
2223 fscki->nlink, fscki->calc_cnt);
2224 goto out_dump;
2225 }
2226 } else {
2227 if (fscki->references != fscki->nlink) {
2228 ubifs_err("inode %lu nlink is %d, but calculated nlink is %d",
2229 (unsigned long)fscki->inum,
2230 fscki->nlink, fscki->references);
2231 goto out_dump;
2232 }
2233 }
2234 if (fscki->xattr_sz != fscki->calc_xsz) {
2235 ubifs_err("inode %lu has xattr size %u, but calculated size is %lld",
2236 (unsigned long)fscki->inum, fscki->xattr_sz,
2237 fscki->calc_xsz);
2238 goto out_dump;
2239 }
2240 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2241 ubifs_err("inode %lu has %u xattrs, but calculated count is %lld",
2242 (unsigned long)fscki->inum,
2243 fscki->xattr_cnt, fscki->calc_xcnt);
2244 goto out_dump;
2245 }
2246 if (fscki->xattr_nms != fscki->calc_xnms) {
2247 ubifs_err("inode %lu has xattr names' size %u, but calculated names' size is %lld",
2248 (unsigned long)fscki->inum, fscki->xattr_nms,
2249 fscki->calc_xnms);
2250 goto out_dump;
2251 }
2252 }
2253
2254 return 0;
2255
2256out_dump:
2257 /* Read the bad inode and dump it */
2258 ino_key_init(c, &key, fscki->inum);
2259 err = ubifs_lookup_level0(c, &key, &znode, &n);
2260 if (!err) {
2261 ubifs_err("inode %lu not found in index",
2262 (unsigned long)fscki->inum);
2263 return -ENOENT;
2264 } else if (err < 0) {
2265 ubifs_err("error %d while looking up inode %lu",
2266 err, (unsigned long)fscki->inum);
2267 return err;
2268 }
2269
2270 zbr = &znode->zbranch[n];
2271 ino = kmalloc(zbr->len, GFP_NOFS);
2272 if (!ino)
2273 return -ENOMEM;
2274
2275 err = ubifs_tnc_read_node(c, zbr, ino);
2276 if (err) {
2277 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2278 zbr->lnum, zbr->offs, err);
2279 kfree(ino);
2280 return err;
2281 }
2282
2283 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2284 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2285 ubifs_dump_node(c, ino);
2286 kfree(ino);
2287 return -EINVAL;
2288}
2289
2290/**
2291 * dbg_check_filesystem - check the file-system.
2292 * @c: UBIFS file-system description object
2293 *
2294 * This function checks the file system, namely:
2295 * o makes sure that all leaf nodes exist and their CRCs are correct;
2296 * o makes sure inode nlink, size, xattr size/count are correct (for all
2297 * inodes).
2298 *
2299 * The function reads whole indexing tree and all nodes, so it is pretty
2300 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2301 * not, and a negative error code in case of failure.
2302 */
2303int dbg_check_filesystem(struct ubifs_info *c)
2304{
2305 int err;
2306 struct fsck_data fsckd;
2307
2308 if (!dbg_is_chk_fs(c))
2309 return 0;
2310
2311 fsckd.inodes = RB_ROOT;
2312 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2313 if (err)
2314 goto out_free;
2315
2316 err = check_inodes(c, &fsckd);
2317 if (err)
2318 goto out_free;
2319
2320 free_inodes(&fsckd);
2321 return 0;
2322
2323out_free:
2324 ubifs_err("file-system check failed with error %d", err);
2325 dump_stack();
2326 free_inodes(&fsckd);
2327 return err;
2328}
2329
2330/**
2331 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2332 * @c: UBIFS file-system description object
2333 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2334 *
2335 * This function returns zero if the list of data nodes is sorted correctly,
2336 * and %-EINVAL if not.
2337 */
2338int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2339{
2340 struct list_head *cur;
2341 struct ubifs_scan_node *sa, *sb;
2342
2343 if (!dbg_is_chk_gen(c))
2344 return 0;
2345
2346 for (cur = head->next; cur->next != head; cur = cur->next) {
2347 ino_t inuma, inumb;
2348 uint32_t blka, blkb;
2349
2350 cond_resched();
2351 sa = container_of(cur, struct ubifs_scan_node, list);
2352 sb = container_of(cur->next, struct ubifs_scan_node, list);
2353
2354 if (sa->type != UBIFS_DATA_NODE) {
2355 ubifs_err("bad node type %d", sa->type);
2356 ubifs_dump_node(c, sa->node);
2357 return -EINVAL;
2358 }
2359 if (sb->type != UBIFS_DATA_NODE) {
2360 ubifs_err("bad node type %d", sb->type);
2361 ubifs_dump_node(c, sb->node);
2362 return -EINVAL;
2363 }
2364
2365 inuma = key_inum(c, &sa->key);
2366 inumb = key_inum(c, &sb->key);
2367
2368 if (inuma < inumb)
2369 continue;
2370 if (inuma > inumb) {
2371 ubifs_err("larger inum %lu goes before inum %lu",
2372 (unsigned long)inuma, (unsigned long)inumb);
2373 goto error_dump;
2374 }
2375
2376 blka = key_block(c, &sa->key);
2377 blkb = key_block(c, &sb->key);
2378
2379 if (blka > blkb) {
2380 ubifs_err("larger block %u goes before %u", blka, blkb);
2381 goto error_dump;
2382 }
2383 if (blka == blkb) {
2384 ubifs_err("two data nodes for the same block");
2385 goto error_dump;
2386 }
2387 }
2388
2389 return 0;
2390
2391error_dump:
2392 ubifs_dump_node(c, sa->node);
2393 ubifs_dump_node(c, sb->node);
2394 return -EINVAL;
2395}
2396
2397/**
2398 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2399 * @c: UBIFS file-system description object
2400 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2401 *
2402 * This function returns zero if the list of non-data nodes is sorted correctly,
2403 * and %-EINVAL if not.
2404 */
2405int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2406{
2407 struct list_head *cur;
2408 struct ubifs_scan_node *sa, *sb;
2409
2410 if (!dbg_is_chk_gen(c))
2411 return 0;
2412
2413 for (cur = head->next; cur->next != head; cur = cur->next) {
2414 ino_t inuma, inumb;
2415 uint32_t hasha, hashb;
2416
2417 cond_resched();
2418 sa = container_of(cur, struct ubifs_scan_node, list);
2419 sb = container_of(cur->next, struct ubifs_scan_node, list);
2420
2421 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2422 sa->type != UBIFS_XENT_NODE) {
2423 ubifs_err("bad node type %d", sa->type);
2424 ubifs_dump_node(c, sa->node);
2425 return -EINVAL;
2426 }
2427 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2428 sa->type != UBIFS_XENT_NODE) {
2429 ubifs_err("bad node type %d", sb->type);
2430 ubifs_dump_node(c, sb->node);
2431 return -EINVAL;
2432 }
2433
2434 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2435 ubifs_err("non-inode node goes before inode node");
2436 goto error_dump;
2437 }
2438
2439 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2440 continue;
2441
2442 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2443 /* Inode nodes are sorted in descending size order */
2444 if (sa->len < sb->len) {
2445 ubifs_err("smaller inode node goes first");
2446 goto error_dump;
2447 }
2448 continue;
2449 }
2450
2451 /*
2452 * This is either a dentry or xentry, which should be sorted in
2453 * ascending (parent ino, hash) order.
2454 */
2455 inuma = key_inum(c, &sa->key);
2456 inumb = key_inum(c, &sb->key);
2457
2458 if (inuma < inumb)
2459 continue;
2460 if (inuma > inumb) {
2461 ubifs_err("larger inum %lu goes before inum %lu",
2462 (unsigned long)inuma, (unsigned long)inumb);
2463 goto error_dump;
2464 }
2465
2466 hasha = key_block(c, &sa->key);
2467 hashb = key_block(c, &sb->key);
2468
2469 if (hasha > hashb) {
2470 ubifs_err("larger hash %u goes before %u",
2471 hasha, hashb);
2472 goto error_dump;
2473 }
2474 }
2475
2476 return 0;
2477
2478error_dump:
2479 ubifs_msg("dumping first node");
2480 ubifs_dump_node(c, sa->node);
2481 ubifs_msg("dumping second node");
2482 ubifs_dump_node(c, sb->node);
2483 return -EINVAL;
2484 return 0;
2485}
2486
2487static inline int chance(unsigned int n, unsigned int out_of)
2488{
2489 return !!((prandom_u32() % out_of) + 1 <= n);
2490
2491}
2492
2493static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2494{
2495 struct ubifs_debug_info *d = c->dbg;
2496
2497 ubifs_assert(dbg_is_tst_rcvry(c));
2498
2499 if (!d->pc_cnt) {
2500 /* First call - decide delay to the power cut */
2501 if (chance(1, 2)) {
2502 unsigned long delay;
2503
2504 if (chance(1, 2)) {
2505 d->pc_delay = 1;
2506 /* Fail withing 1 minute */
2507 delay = prandom_u32() % 60000;
2508 d->pc_timeout = jiffies;
2509 d->pc_timeout += msecs_to_jiffies(delay);
2510 ubifs_warn("failing after %lums", delay);
2511 } else {
2512 d->pc_delay = 2;
2513 delay = prandom_u32() % 10000;
2514 /* Fail within 10000 operations */
2515 d->pc_cnt_max = delay;
2516 ubifs_warn("failing after %lu calls", delay);
2517 }
2518 }
2519
2520 d->pc_cnt += 1;
2521 }
2522
2523 /* Determine if failure delay has expired */
2524 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2525 return 0;
2526 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2527 return 0;
2528
2529 if (lnum == UBIFS_SB_LNUM) {
2530 if (write && chance(1, 2))
2531 return 0;
2532 if (chance(19, 20))
2533 return 0;
2534 ubifs_warn("failing in super block LEB %d", lnum);
2535 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2536 if (chance(19, 20))
2537 return 0;
2538 ubifs_warn("failing in master LEB %d", lnum);
2539 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2540 if (write && chance(99, 100))
2541 return 0;
2542 if (chance(399, 400))
2543 return 0;
2544 ubifs_warn("failing in log LEB %d", lnum);
2545 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2546 if (write && chance(7, 8))
2547 return 0;
2548 if (chance(19, 20))
2549 return 0;
2550 ubifs_warn("failing in LPT LEB %d", lnum);
2551 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2552 if (write && chance(1, 2))
2553 return 0;
2554 if (chance(9, 10))
2555 return 0;
2556 ubifs_warn("failing in orphan LEB %d", lnum);
2557 } else if (lnum == c->ihead_lnum) {
2558 if (chance(99, 100))
2559 return 0;
2560 ubifs_warn("failing in index head LEB %d", lnum);
2561 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2562 if (chance(9, 10))
2563 return 0;
2564 ubifs_warn("failing in GC head LEB %d", lnum);
2565 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2566 !ubifs_search_bud(c, lnum)) {
2567 if (chance(19, 20))
2568 return 0;
2569 ubifs_warn("failing in non-bud LEB %d", lnum);
2570 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2571 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2572 if (chance(999, 1000))
2573 return 0;
2574 ubifs_warn("failing in bud LEB %d commit running", lnum);
2575 } else {
2576 if (chance(9999, 10000))
2577 return 0;
2578 ubifs_warn("failing in bud LEB %d commit not running", lnum);
2579 }
2580
2581 d->pc_happened = 1;
2582 ubifs_warn("========== Power cut emulated ==========");
2583 dump_stack();
2584 return 1;
2585}
2586
2587static int corrupt_data(const struct ubifs_info *c, const void *buf,
2588 unsigned int len)
2589{
2590 unsigned int from, to, ffs = chance(1, 2);
2591 unsigned char *p = (void *)buf;
2592
2593 from = prandom_u32() % len;
2594 /* Corruption span max to end of write unit */
2595 to = min(len, ALIGN(from + 1, c->max_write_size));
2596
2597 ubifs_warn("filled bytes %u-%u with %s", from, to - 1,
2598 ffs ? "0xFFs" : "random data");
2599
2600 if (ffs)
2601 memset(p + from, 0xFF, to - from);
2602 else
2603 prandom_bytes(p + from, to - from);
2604
2605 return to;
2606}
2607
2608int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2609 int offs, int len)
2610{
2611 int err, failing;
2612
2613 if (c->dbg->pc_happened)
2614 return -EROFS;
2615
2616 failing = power_cut_emulated(c, lnum, 1);
2617 if (failing) {
2618 len = corrupt_data(c, buf, len);
2619 ubifs_warn("actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2620 len, lnum, offs);
2621 }
2622 err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2623 if (err)
2624 return err;
2625 if (failing)
2626 return -EROFS;
2627 return 0;
2628}
2629
2630int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2631 int len)
2632{
2633 int err;
2634
2635 if (c->dbg->pc_happened)
2636 return -EROFS;
2637 if (power_cut_emulated(c, lnum, 1))
2638 return -EROFS;
2639 err = ubi_leb_change(c->ubi, lnum, buf, len);
2640 if (err)
2641 return err;
2642 if (power_cut_emulated(c, lnum, 1))
2643 return -EROFS;
2644 return 0;
2645}
2646
2647int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2648{
2649 int err;
2650
2651 if (c->dbg->pc_happened)
2652 return -EROFS;
2653 if (power_cut_emulated(c, lnum, 0))
2654 return -EROFS;
2655 err = ubi_leb_unmap(c->ubi, lnum);
2656 if (err)
2657 return err;
2658 if (power_cut_emulated(c, lnum, 0))
2659 return -EROFS;
2660 return 0;
2661}
2662
2663int dbg_leb_map(struct ubifs_info *c, int lnum)
2664{
2665 int err;
2666
2667 if (c->dbg->pc_happened)
2668 return -EROFS;
2669 if (power_cut_emulated(c, lnum, 0))
2670 return -EROFS;
2671 err = ubi_leb_map(c->ubi, lnum);
2672 if (err)
2673 return err;
2674 if (power_cut_emulated(c, lnum, 0))
2675 return -EROFS;
2676 return 0;
2677}
2678
2679/*
2680 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2681 * contain the stuff specific to particular file-system mounts.
2682 */
2683static struct dentry *dfs_rootdir;
2684
2685static int dfs_file_open(struct inode *inode, struct file *file)
2686{
2687 file->private_data = inode->i_private;
2688 return nonseekable_open(inode, file);
2689}
2690
2691/**
2692 * provide_user_output - provide output to the user reading a debugfs file.
2693 * @val: boolean value for the answer
2694 * @u: the buffer to store the answer at
2695 * @count: size of the buffer
2696 * @ppos: position in the @u output buffer
2697 *
2698 * This is a simple helper function which stores @val boolean value in the user
2699 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2700 * bytes written to @u in case of success and a negative error code in case of
2701 * failure.
2702 */
2703static int provide_user_output(int val, char __user *u, size_t count,
2704 loff_t *ppos)
2705{
2706 char buf[3];
2707
2708 if (val)
2709 buf[0] = '1';
2710 else
2711 buf[0] = '0';
2712 buf[1] = '\n';
2713 buf[2] = 0x00;
2714
2715 return simple_read_from_buffer(u, count, ppos, buf, 2);
2716}
2717
2718static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2719 loff_t *ppos)
2720{
2721 struct dentry *dent = file->f_path.dentry;
2722 struct ubifs_info *c = file->private_data;
2723 struct ubifs_debug_info *d = c->dbg;
2724 int val;
2725
2726 if (dent == d->dfs_chk_gen)
2727 val = d->chk_gen;
2728 else if (dent == d->dfs_chk_index)
2729 val = d->chk_index;
2730 else if (dent == d->dfs_chk_orph)
2731 val = d->chk_orph;
2732 else if (dent == d->dfs_chk_lprops)
2733 val = d->chk_lprops;
2734 else if (dent == d->dfs_chk_fs)
2735 val = d->chk_fs;
2736 else if (dent == d->dfs_tst_rcvry)
2737 val = d->tst_rcvry;
2738 else if (dent == d->dfs_ro_error)
2739 val = c->ro_error;
2740 else
2741 return -EINVAL;
2742
2743 return provide_user_output(val, u, count, ppos);
2744}
2745
2746/**
2747 * interpret_user_input - interpret user debugfs file input.
2748 * @u: user-provided buffer with the input
2749 * @count: buffer size
2750 *
2751 * This is a helper function which interpret user input to a boolean UBIFS
2752 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2753 * in case of failure.
2754 */
2755static int interpret_user_input(const char __user *u, size_t count)
2756{
2757 size_t buf_size;
2758 char buf[8];
2759
2760 buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2761 if (copy_from_user(buf, u, buf_size))
2762 return -EFAULT;
2763
2764 if (buf[0] == '1')
2765 return 1;
2766 else if (buf[0] == '0')
2767 return 0;
2768
2769 return -EINVAL;
2770}
2771
2772static ssize_t dfs_file_write(struct file *file, const char __user *u,
2773 size_t count, loff_t *ppos)
2774{
2775 struct ubifs_info *c = file->private_data;
2776 struct ubifs_debug_info *d = c->dbg;
2777 struct dentry *dent = file->f_path.dentry;
2778 int val;
2779
2780 /*
2781 * TODO: this is racy - the file-system might have already been
2782 * unmounted and we'd oops in this case. The plan is to fix it with
2783 * help of 'iterate_supers_type()' which we should have in v3.0: when
2784 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2785 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2786 * superblocks and fine the one with the same UUID, and take the
2787 * locking right.
2788 *
2789 * The other way to go suggested by Al Viro is to create a separate
2790 * 'ubifs-debug' file-system instead.
2791 */
2792 if (file->f_path.dentry == d->dfs_dump_lprops) {
2793 ubifs_dump_lprops(c);
2794 return count;
2795 }
2796 if (file->f_path.dentry == d->dfs_dump_budg) {
2797 ubifs_dump_budg(c, &c->bi);
2798 return count;
2799 }
2800 if (file->f_path.dentry == d->dfs_dump_tnc) {
2801 mutex_lock(&c->tnc_mutex);
2802 ubifs_dump_tnc(c);
2803 mutex_unlock(&c->tnc_mutex);
2804 return count;
2805 }
2806
2807 val = interpret_user_input(u, count);
2808 if (val < 0)
2809 return val;
2810
2811 if (dent == d->dfs_chk_gen)
2812 d->chk_gen = val;
2813 else if (dent == d->dfs_chk_index)
2814 d->chk_index = val;
2815 else if (dent == d->dfs_chk_orph)
2816 d->chk_orph = val;
2817 else if (dent == d->dfs_chk_lprops)
2818 d->chk_lprops = val;
2819 else if (dent == d->dfs_chk_fs)
2820 d->chk_fs = val;
2821 else if (dent == d->dfs_tst_rcvry)
2822 d->tst_rcvry = val;
2823 else if (dent == d->dfs_ro_error)
2824 c->ro_error = !!val;
2825 else
2826 return -EINVAL;
2827
2828 return count;
2829}
2830
2831static const struct file_operations dfs_fops = {
2832 .open = dfs_file_open,
2833 .read = dfs_file_read,
2834 .write = dfs_file_write,
2835 .owner = THIS_MODULE,
2836 .llseek = no_llseek,
2837};
2838
2839/**
2840 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2841 * @c: UBIFS file-system description object
2842 *
2843 * This function creates all debugfs files for this instance of UBIFS. Returns
2844 * zero in case of success and a negative error code in case of failure.
2845 *
2846 * Note, the only reason we have not merged this function with the
2847 * 'ubifs_debugging_init()' function is because it is better to initialize
2848 * debugfs interfaces at the very end of the mount process, and remove them at
2849 * the very beginning of the mount process.
2850 */
2851int dbg_debugfs_init_fs(struct ubifs_info *c)
2852{
2853 int err, n;
2854 const char *fname;
2855 struct dentry *dent;
2856 struct ubifs_debug_info *d = c->dbg;
2857
2858 if (!IS_ENABLED(CONFIG_DEBUG_FS))
2859 return 0;
2860
2861 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2862 c->vi.ubi_num, c->vi.vol_id);
2863 if (n == UBIFS_DFS_DIR_LEN) {
2864 /* The array size is too small */
2865 fname = UBIFS_DFS_DIR_NAME;
2866 dent = ERR_PTR(-EINVAL);
2867 goto out;
2868 }
2869
2870 fname = d->dfs_dir_name;
2871 dent = debugfs_create_dir(fname, dfs_rootdir);
2872 if (IS_ERR_OR_NULL(dent))
2873 goto out;
2874 d->dfs_dir = dent;
2875
2876 fname = "dump_lprops";
2877 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2878 if (IS_ERR_OR_NULL(dent))
2879 goto out_remove;
2880 d->dfs_dump_lprops = dent;
2881
2882 fname = "dump_budg";
2883 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2884 if (IS_ERR_OR_NULL(dent))
2885 goto out_remove;
2886 d->dfs_dump_budg = dent;
2887
2888 fname = "dump_tnc";
2889 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2890 if (IS_ERR_OR_NULL(dent))
2891 goto out_remove;
2892 d->dfs_dump_tnc = dent;
2893
2894 fname = "chk_general";
2895 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2896 &dfs_fops);
2897 if (IS_ERR_OR_NULL(dent))
2898 goto out_remove;
2899 d->dfs_chk_gen = dent;
2900
2901 fname = "chk_index";
2902 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2903 &dfs_fops);
2904 if (IS_ERR_OR_NULL(dent))
2905 goto out_remove;
2906 d->dfs_chk_index = dent;
2907
2908 fname = "chk_orphans";
2909 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2910 &dfs_fops);
2911 if (IS_ERR_OR_NULL(dent))
2912 goto out_remove;
2913 d->dfs_chk_orph = dent;
2914
2915 fname = "chk_lprops";
2916 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2917 &dfs_fops);
2918 if (IS_ERR_OR_NULL(dent))
2919 goto out_remove;
2920 d->dfs_chk_lprops = dent;
2921
2922 fname = "chk_fs";
2923 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2924 &dfs_fops);
2925 if (IS_ERR_OR_NULL(dent))
2926 goto out_remove;
2927 d->dfs_chk_fs = dent;
2928
2929 fname = "tst_recovery";
2930 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2931 &dfs_fops);
2932 if (IS_ERR_OR_NULL(dent))
2933 goto out_remove;
2934 d->dfs_tst_rcvry = dent;
2935
2936 fname = "ro_error";
2937 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2938 &dfs_fops);
2939 if (IS_ERR_OR_NULL(dent))
2940 goto out_remove;
2941 d->dfs_ro_error = dent;
2942
2943 return 0;
2944
2945out_remove:
2946 debugfs_remove_recursive(d->dfs_dir);
2947out:
2948 err = dent ? PTR_ERR(dent) : -ENODEV;
2949 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
2950 fname, err);
2951 return err;
2952}
2953
2954/**
2955 * dbg_debugfs_exit_fs - remove all debugfs files.
2956 * @c: UBIFS file-system description object
2957 */
2958void dbg_debugfs_exit_fs(struct ubifs_info *c)
2959{
2960 if (IS_ENABLED(CONFIG_DEBUG_FS))
2961 debugfs_remove_recursive(c->dbg->dfs_dir);
2962}
2963
2964struct ubifs_global_debug_info ubifs_dbg;
2965
2966static struct dentry *dfs_chk_gen;
2967static struct dentry *dfs_chk_index;
2968static struct dentry *dfs_chk_orph;
2969static struct dentry *dfs_chk_lprops;
2970static struct dentry *dfs_chk_fs;
2971static struct dentry *dfs_tst_rcvry;
2972
2973static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2974 size_t count, loff_t *ppos)
2975{
2976 struct dentry *dent = file->f_path.dentry;
2977 int val;
2978
2979 if (dent == dfs_chk_gen)
2980 val = ubifs_dbg.chk_gen;
2981 else if (dent == dfs_chk_index)
2982 val = ubifs_dbg.chk_index;
2983 else if (dent == dfs_chk_orph)
2984 val = ubifs_dbg.chk_orph;
2985 else if (dent == dfs_chk_lprops)
2986 val = ubifs_dbg.chk_lprops;
2987 else if (dent == dfs_chk_fs)
2988 val = ubifs_dbg.chk_fs;
2989 else if (dent == dfs_tst_rcvry)
2990 val = ubifs_dbg.tst_rcvry;
2991 else
2992 return -EINVAL;
2993
2994 return provide_user_output(val, u, count, ppos);
2995}
2996
2997static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2998 size_t count, loff_t *ppos)
2999{
3000 struct dentry *dent = file->f_path.dentry;
3001 int val;
3002
3003 val = interpret_user_input(u, count);
3004 if (val < 0)
3005 return val;
3006
3007 if (dent == dfs_chk_gen)
3008 ubifs_dbg.chk_gen = val;
3009 else if (dent == dfs_chk_index)
3010 ubifs_dbg.chk_index = val;
3011 else if (dent == dfs_chk_orph)
3012 ubifs_dbg.chk_orph = val;
3013 else if (dent == dfs_chk_lprops)
3014 ubifs_dbg.chk_lprops = val;
3015 else if (dent == dfs_chk_fs)
3016 ubifs_dbg.chk_fs = val;
3017 else if (dent == dfs_tst_rcvry)
3018 ubifs_dbg.tst_rcvry = val;
3019 else
3020 return -EINVAL;
3021
3022 return count;
3023}
3024
3025static const struct file_operations dfs_global_fops = {
3026 .read = dfs_global_file_read,
3027 .write = dfs_global_file_write,
3028 .owner = THIS_MODULE,
3029 .llseek = no_llseek,
3030};
3031
3032/**
3033 * dbg_debugfs_init - initialize debugfs file-system.
3034 *
3035 * UBIFS uses debugfs file-system to expose various debugging knobs to
3036 * user-space. This function creates "ubifs" directory in the debugfs
3037 * file-system. Returns zero in case of success and a negative error code in
3038 * case of failure.
3039 */
3040int dbg_debugfs_init(void)
3041{
3042 int err;
3043 const char *fname;
3044 struct dentry *dent;
3045
3046 if (!IS_ENABLED(CONFIG_DEBUG_FS))
3047 return 0;
3048
3049 fname = "ubifs";
3050 dent = debugfs_create_dir(fname, NULL);
3051 if (IS_ERR_OR_NULL(dent))
3052 goto out;
3053 dfs_rootdir = dent;
3054
3055 fname = "chk_general";
3056 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3057 &dfs_global_fops);
3058 if (IS_ERR_OR_NULL(dent))
3059 goto out_remove;
3060 dfs_chk_gen = dent;
3061
3062 fname = "chk_index";
3063 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3064 &dfs_global_fops);
3065 if (IS_ERR_OR_NULL(dent))
3066 goto out_remove;
3067 dfs_chk_index = dent;
3068
3069 fname = "chk_orphans";
3070 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3071 &dfs_global_fops);
3072 if (IS_ERR_OR_NULL(dent))
3073 goto out_remove;
3074 dfs_chk_orph = dent;
3075
3076 fname = "chk_lprops";
3077 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3078 &dfs_global_fops);
3079 if (IS_ERR_OR_NULL(dent))
3080 goto out_remove;
3081 dfs_chk_lprops = dent;
3082
3083 fname = "chk_fs";
3084 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3085 &dfs_global_fops);
3086 if (IS_ERR_OR_NULL(dent))
3087 goto out_remove;
3088 dfs_chk_fs = dent;
3089
3090 fname = "tst_recovery";
3091 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3092 &dfs_global_fops);
3093 if (IS_ERR_OR_NULL(dent))
3094 goto out_remove;
3095 dfs_tst_rcvry = dent;
3096
3097 return 0;
3098
3099out_remove:
3100 debugfs_remove_recursive(dfs_rootdir);
3101out:
3102 err = dent ? PTR_ERR(dent) : -ENODEV;
3103 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3104 fname, err);
3105 return err;
3106}
3107
3108/**
3109 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3110 */
3111void dbg_debugfs_exit(void)
3112{
3113 if (IS_ENABLED(CONFIG_DEBUG_FS))
3114 debugfs_remove_recursive(dfs_rootdir);
Stefan Roese9eefe2a2009-03-19 15:35:05 +01003115}
3116
3117/**
3118 * ubifs_debugging_init - initialize UBIFS debugging.
3119 * @c: UBIFS file-system description object
3120 *
3121 * This function initializes debugging-related data for the file system.
3122 * Returns zero in case of success and a negative error code in case of
3123 * failure.
3124 */
3125int ubifs_debugging_init(struct ubifs_info *c)
3126{
3127 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3128 if (!c->dbg)
3129 return -ENOMEM;
3130
Stefan Roese9eefe2a2009-03-19 15:35:05 +01003131 return 0;
Stefan Roese9eefe2a2009-03-19 15:35:05 +01003132}
3133
3134/**
3135 * ubifs_debugging_exit - free debugging data.
3136 * @c: UBIFS file-system description object
3137 */
3138void ubifs_debugging_exit(struct ubifs_info *c)
3139{
Stefan Roese9eefe2a2009-03-19 15:35:05 +01003140 kfree(c->dbg);
3141}
Heiko Schocherff94bc42014-06-24 10:10:04 +02003142#endif