blob: 5e6abca56fabc25e285524e61992eb8d29dd954a [file] [log] [blame]
Tom Rini83d290c2018-05-06 17:58:06 -04001// SPDX-License-Identifier: GPL-2.0+
Patrice Chotard4c3aebd2017-09-13 18:00:06 +02002/*
Patrice Chotard3bc599c2017-10-23 09:53:58 +02003 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
4 * Author(s): Patrice Chotard, <patrice.chotard@st.com> for STMicroelectronics.
Patrice Chotard4c3aebd2017-09-13 18:00:06 +02005 */
6
7#include <common.h>
8#include <clk-uclass.h>
9#include <dm.h>
Simon Glassf7ae49f2020-05-10 11:40:05 -060010#include <log.h>
Patrice Chotard4c3aebd2017-09-13 18:00:06 +020011#include <regmap.h>
12#include <syscon.h>
13#include <asm/io.h>
14#include <dm/root.h>
Simon Glasscd93d622020-05-10 11:40:13 -060015#include <linux/bitops.h>
Patrice Chotard4c3aebd2017-09-13 18:00:06 +020016
17#include <dt-bindings/clock/stm32h7-clks.h>
18
Patrice Chotard4c3aebd2017-09-13 18:00:06 +020019/* RCC CR specific definitions */
20#define RCC_CR_HSION BIT(0)
21#define RCC_CR_HSIRDY BIT(2)
22
23#define RCC_CR_HSEON BIT(16)
24#define RCC_CR_HSERDY BIT(17)
25#define RCC_CR_HSEBYP BIT(18)
26#define RCC_CR_PLL1ON BIT(24)
27#define RCC_CR_PLL1RDY BIT(25)
28
29#define RCC_CR_HSIDIV_MASK GENMASK(4, 3)
30#define RCC_CR_HSIDIV_SHIFT 3
31
32#define RCC_CFGR_SW_MASK GENMASK(2, 0)
33#define RCC_CFGR_SW_HSI 0
34#define RCC_CFGR_SW_CSI 1
35#define RCC_CFGR_SW_HSE 2
36#define RCC_CFGR_SW_PLL1 3
Patrice Chotardb4367942018-02-07 10:44:47 +010037#define RCC_CFGR_TIMPRE BIT(15)
Patrice Chotard4c3aebd2017-09-13 18:00:06 +020038
39#define RCC_PLLCKSELR_PLLSRC_HSI 0
40#define RCC_PLLCKSELR_PLLSRC_CSI 1
41#define RCC_PLLCKSELR_PLLSRC_HSE 2
42#define RCC_PLLCKSELR_PLLSRC_NO_CLK 3
43
44#define RCC_PLLCKSELR_PLLSRC_MASK GENMASK(1, 0)
45
46#define RCC_PLLCKSELR_DIVM1_SHIFT 4
47#define RCC_PLLCKSELR_DIVM1_MASK GENMASK(9, 4)
48
49#define RCC_PLL1DIVR_DIVN1_MASK GENMASK(8, 0)
50
51#define RCC_PLL1DIVR_DIVP1_SHIFT 9
52#define RCC_PLL1DIVR_DIVP1_MASK GENMASK(15, 9)
53
54#define RCC_PLL1DIVR_DIVQ1_SHIFT 16
55#define RCC_PLL1DIVR_DIVQ1_MASK GENMASK(22, 16)
56
57#define RCC_PLL1DIVR_DIVR1_SHIFT 24
58#define RCC_PLL1DIVR_DIVR1_MASK GENMASK(30, 24)
59
60#define RCC_PLL1FRACR_FRACN1_SHIFT 3
61#define RCC_PLL1FRACR_FRACN1_MASK GENMASK(15, 3)
62
63#define RCC_PLLCFGR_PLL1RGE_SHIFT 2
64#define PLL1RGE_1_2_MHZ 0
65#define PLL1RGE_2_4_MHZ 1
66#define PLL1RGE_4_8_MHZ 2
67#define PLL1RGE_8_16_MHZ 3
68#define RCC_PLLCFGR_DIVP1EN BIT(16)
69#define RCC_PLLCFGR_DIVQ1EN BIT(17)
70#define RCC_PLLCFGR_DIVR1EN BIT(18)
71
72#define RCC_D1CFGR_HPRE_MASK GENMASK(3, 0)
73#define RCC_D1CFGR_HPRE_DIVIDED BIT(3)
74#define RCC_D1CFGR_HPRE_DIVIDER GENMASK(2, 0)
75
76#define RCC_D1CFGR_HPRE_DIV2 8
77
78#define RCC_D1CFGR_D1PPRE_SHIFT 4
79#define RCC_D1CFGR_D1PPRE_DIVIDED BIT(6)
80#define RCC_D1CFGR_D1PPRE_DIVIDER GENMASK(5, 4)
81
82#define RCC_D1CFGR_D1CPRE_SHIFT 8
83#define RCC_D1CFGR_D1CPRE_DIVIDER GENMASK(10, 8)
84#define RCC_D1CFGR_D1CPRE_DIVIDED BIT(11)
85
86#define RCC_D2CFGR_D2PPRE1_SHIFT 4
87#define RCC_D2CFGR_D2PPRE1_DIVIDED BIT(6)
88#define RCC_D2CFGR_D2PPRE1_DIVIDER GENMASK(5, 4)
89
90#define RCC_D2CFGR_D2PPRE2_SHIFT 8
91#define RCC_D2CFGR_D2PPRE2_DIVIDED BIT(10)
92#define RCC_D2CFGR_D2PPRE2_DIVIDER GENMASK(9, 8)
93
94#define RCC_D3CFGR_D3PPRE_SHIFT 4
95#define RCC_D3CFGR_D3PPRE_DIVIDED BIT(6)
96#define RCC_D3CFGR_D3PPRE_DIVIDER GENMASK(5, 4)
97
98#define RCC_D1CCIPR_FMCSRC_MASK GENMASK(1, 0)
99#define FMCSRC_HCLKD1 0
100#define FMCSRC_PLL1_Q_CK 1
101#define FMCSRC_PLL2_R_CK 2
102#define FMCSRC_PER_CK 3
103
104#define RCC_D1CCIPR_QSPISRC_MASK GENMASK(5, 4)
105#define RCC_D1CCIPR_QSPISRC_SHIFT 4
106#define QSPISRC_HCLKD1 0
107#define QSPISRC_PLL1_Q_CK 1
108#define QSPISRC_PLL2_R_CK 2
109#define QSPISRC_PER_CK 3
110
111#define PWR_CR3 0x0c
Patrice Chotard6c1bf6c2017-10-09 11:41:24 +0200112#define PWR_CR3_SCUEN BIT(2)
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200113#define PWR_D3CR 0x18
114#define PWR_D3CR_VOS_MASK GENMASK(15, 14)
115#define PWR_D3CR_VOS_SHIFT 14
116#define VOS_SCALE_3 1
117#define VOS_SCALE_2 2
118#define VOS_SCALE_1 3
119#define PWR_D3CR_VOSREADY BIT(13)
120
121struct stm32_rcc_regs {
122 u32 cr; /* 0x00 Source Control Register */
123 u32 icscr; /* 0x04 Internal Clock Source Calibration Register */
124 u32 crrcr; /* 0x08 Clock Recovery RC Register */
125 u32 reserved1; /* 0x0c reserved */
126 u32 cfgr; /* 0x10 Clock Configuration Register */
127 u32 reserved2; /* 0x14 reserved */
128 u32 d1cfgr; /* 0x18 Domain 1 Clock Configuration Register */
129 u32 d2cfgr; /* 0x1c Domain 2 Clock Configuration Register */
130 u32 d3cfgr; /* 0x20 Domain 3 Clock Configuration Register */
131 u32 reserved3; /* 0x24 reserved */
132 u32 pllckselr; /* 0x28 PLLs Clock Source Selection Register */
133 u32 pllcfgr; /* 0x2c PLLs Configuration Register */
134 u32 pll1divr; /* 0x30 PLL1 Dividers Configuration Register */
135 u32 pll1fracr; /* 0x34 PLL1 Fractional Divider Register */
136 u32 pll2divr; /* 0x38 PLL2 Dividers Configuration Register */
137 u32 pll2fracr; /* 0x3c PLL2 Fractional Divider Register */
138 u32 pll3divr; /* 0x40 PLL3 Dividers Configuration Register */
139 u32 pll3fracr; /* 0x44 PLL3 Fractional Divider Register */
140 u32 reserved4; /* 0x48 reserved */
141 u32 d1ccipr; /* 0x4c Domain 1 Kernel Clock Configuration Register */
142 u32 d2ccip1r; /* 0x50 Domain 2 Kernel Clock Configuration Register */
143 u32 d2ccip2r; /* 0x54 Domain 2 Kernel Clock Configuration Register */
144 u32 d3ccipr; /* 0x58 Domain 3 Kernel Clock Configuration Register */
145 u32 reserved5; /* 0x5c reserved */
146 u32 cier; /* 0x60 Clock Source Interrupt Enable Register */
147 u32 cifr; /* 0x64 Clock Source Interrupt Flag Register */
148 u32 cicr; /* 0x68 Clock Source Interrupt Clear Register */
149 u32 reserved6; /* 0x6c reserved */
150 u32 bdcr; /* 0x70 Backup Domain Control Register */
151 u32 csr; /* 0x74 Clock Control and Status Register */
152 u32 reserved7; /* 0x78 reserved */
153
154 u32 ahb3rstr; /* 0x7c AHB3 Peripheral Reset Register */
155 u32 ahb1rstr; /* 0x80 AHB1 Peripheral Reset Register */
156 u32 ahb2rstr; /* 0x84 AHB2 Peripheral Reset Register */
157 u32 ahb4rstr; /* 0x88 AHB4 Peripheral Reset Register */
158
159 u32 apb3rstr; /* 0x8c APB3 Peripheral Reset Register */
160 u32 apb1lrstr; /* 0x90 APB1 low Peripheral Reset Register */
161 u32 apb1hrstr; /* 0x94 APB1 high Peripheral Reset Register */
162 u32 apb2rstr; /* 0x98 APB2 Clock Register */
163 u32 apb4rstr; /* 0x9c APB4 Clock Register */
164
165 u32 gcr; /* 0xa0 Global Control Register */
166 u32 reserved8; /* 0xa4 reserved */
167 u32 d3amr; /* 0xa8 D3 Autonomous mode Register */
168 u32 reserved9[9];/* 0xac to 0xcc reserved */
169 u32 rsr; /* 0xd0 Reset Status Register */
170 u32 ahb3enr; /* 0xd4 AHB3 Clock Register */
171 u32 ahb1enr; /* 0xd8 AHB1 Clock Register */
172 u32 ahb2enr; /* 0xdc AHB2 Clock Register */
173 u32 ahb4enr; /* 0xe0 AHB4 Clock Register */
174
175 u32 apb3enr; /* 0xe4 APB3 Clock Register */
176 u32 apb1lenr; /* 0xe8 APB1 low Clock Register */
177 u32 apb1henr; /* 0xec APB1 high Clock Register */
178 u32 apb2enr; /* 0xf0 APB2 Clock Register */
179 u32 apb4enr; /* 0xf4 APB4 Clock Register */
180};
181
182#define RCC_AHB3ENR offsetof(struct stm32_rcc_regs, ahb3enr)
183#define RCC_AHB1ENR offsetof(struct stm32_rcc_regs, ahb1enr)
184#define RCC_AHB2ENR offsetof(struct stm32_rcc_regs, ahb2enr)
185#define RCC_AHB4ENR offsetof(struct stm32_rcc_regs, ahb4enr)
186#define RCC_APB3ENR offsetof(struct stm32_rcc_regs, apb3enr)
187#define RCC_APB1LENR offsetof(struct stm32_rcc_regs, apb1lenr)
188#define RCC_APB1HENR offsetof(struct stm32_rcc_regs, apb1henr)
189#define RCC_APB2ENR offsetof(struct stm32_rcc_regs, apb2enr)
190#define RCC_APB4ENR offsetof(struct stm32_rcc_regs, apb4enr)
191
192struct clk_cfg {
193 u32 gate_offset;
194 u8 gate_bit_idx;
195 const char *name;
196};
197
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200198/*
199 * the way all these entries are sorted in this array could seem
200 * unlogical, but we are dependant of kernel DT_bindings,
201 * where clocks are separate in 2 banks, peripheral clocks and
202 * kernel clocks.
203 */
204
205static const struct clk_cfg clk_map[] = {
Patrice Chotard1b4ce692017-10-09 11:41:23 +0200206 {RCC_AHB3ENR, 31, "d1sram1"}, /* peripheral clocks */
207 {RCC_AHB3ENR, 30, "itcm"},
208 {RCC_AHB3ENR, 29, "dtcm2"},
209 {RCC_AHB3ENR, 28, "dtcm1"},
210 {RCC_AHB3ENR, 8, "flitf"},
211 {RCC_AHB3ENR, 5, "jpgdec"},
212 {RCC_AHB3ENR, 4, "dma2d"},
213 {RCC_AHB3ENR, 0, "mdma"},
214 {RCC_AHB1ENR, 28, "usb2ulpi"},
215 {RCC_AHB1ENR, 17, "eth1rx"},
216 {RCC_AHB1ENR, 16, "eth1tx"},
217 {RCC_AHB1ENR, 15, "eth1mac"},
218 {RCC_AHB1ENR, 14, "art"},
219 {RCC_AHB1ENR, 26, "usb1ulpi"},
220 {RCC_AHB1ENR, 1, "dma2"},
221 {RCC_AHB1ENR, 0, "dma1"},
222 {RCC_AHB2ENR, 31, "d2sram3"},
223 {RCC_AHB2ENR, 30, "d2sram2"},
224 {RCC_AHB2ENR, 29, "d2sram1"},
225 {RCC_AHB2ENR, 5, "hash"},
226 {RCC_AHB2ENR, 4, "crypt"},
227 {RCC_AHB2ENR, 0, "camitf"},
228 {RCC_AHB4ENR, 28, "bkpram"},
229 {RCC_AHB4ENR, 25, "hsem"},
230 {RCC_AHB4ENR, 21, "bdma"},
231 {RCC_AHB4ENR, 19, "crc"},
232 {RCC_AHB4ENR, 10, "gpiok"},
233 {RCC_AHB4ENR, 9, "gpioj"},
234 {RCC_AHB4ENR, 8, "gpioi"},
235 {RCC_AHB4ENR, 7, "gpioh"},
236 {RCC_AHB4ENR, 6, "gpiog"},
237 {RCC_AHB4ENR, 5, "gpiof"},
238 {RCC_AHB4ENR, 4, "gpioe"},
239 {RCC_AHB4ENR, 3, "gpiod"},
240 {RCC_AHB4ENR, 2, "gpioc"},
241 {RCC_AHB4ENR, 1, "gpiob"},
242 {RCC_AHB4ENR, 0, "gpioa"},
243 {RCC_APB3ENR, 6, "wwdg1"},
244 {RCC_APB1LENR, 29, "dac12"},
245 {RCC_APB1LENR, 11, "wwdg2"},
246 {RCC_APB1LENR, 8, "tim14"},
247 {RCC_APB1LENR, 7, "tim13"},
248 {RCC_APB1LENR, 6, "tim12"},
249 {RCC_APB1LENR, 5, "tim7"},
250 {RCC_APB1LENR, 4, "tim6"},
251 {RCC_APB1LENR, 3, "tim5"},
252 {RCC_APB1LENR, 2, "tim4"},
253 {RCC_APB1LENR, 1, "tim3"},
254 {RCC_APB1LENR, 0, "tim2"},
255 {RCC_APB1HENR, 5, "mdios"},
256 {RCC_APB1HENR, 4, "opamp"},
257 {RCC_APB1HENR, 1, "crs"},
258 {RCC_APB2ENR, 18, "tim17"},
259 {RCC_APB2ENR, 17, "tim16"},
260 {RCC_APB2ENR, 16, "tim15"},
261 {RCC_APB2ENR, 1, "tim8"},
262 {RCC_APB2ENR, 0, "tim1"},
263 {RCC_APB4ENR, 26, "tmpsens"},
264 {RCC_APB4ENR, 16, "rtcapb"},
265 {RCC_APB4ENR, 15, "vref"},
266 {RCC_APB4ENR, 14, "comp12"},
267 {RCC_APB4ENR, 1, "syscfg"},
268 {RCC_AHB3ENR, 16, "sdmmc1"}, /* kernel clocks */
269 {RCC_AHB3ENR, 14, "quadspi"},
270 {RCC_AHB3ENR, 12, "fmc"},
271 {RCC_AHB1ENR, 27, "usb2otg"},
272 {RCC_AHB1ENR, 25, "usb1otg"},
273 {RCC_AHB1ENR, 5, "adc12"},
274 {RCC_AHB2ENR, 9, "sdmmc2"},
275 {RCC_AHB2ENR, 6, "rng"},
276 {RCC_AHB4ENR, 24, "adc3"},
277 {RCC_APB3ENR, 4, "dsi"},
278 {RCC_APB3ENR, 3, "ltdc"},
279 {RCC_APB1LENR, 31, "usart8"},
280 {RCC_APB1LENR, 30, "usart7"},
281 {RCC_APB1LENR, 27, "hdmicec"},
282 {RCC_APB1LENR, 23, "i2c3"},
283 {RCC_APB1LENR, 22, "i2c2"},
284 {RCC_APB1LENR, 21, "i2c1"},
285 {RCC_APB1LENR, 20, "uart5"},
286 {RCC_APB1LENR, 19, "uart4"},
287 {RCC_APB1LENR, 18, "usart3"},
288 {RCC_APB1LENR, 17, "usart2"},
289 {RCC_APB1LENR, 16, "spdifrx"},
290 {RCC_APB1LENR, 15, "spi3"},
291 {RCC_APB1LENR, 14, "spi2"},
292 {RCC_APB1LENR, 9, "lptim1"},
293 {RCC_APB1HENR, 8, "fdcan"},
294 {RCC_APB1HENR, 2, "swp"},
295 {RCC_APB2ENR, 29, "hrtim"},
296 {RCC_APB2ENR, 28, "dfsdm1"},
297 {RCC_APB2ENR, 24, "sai3"},
298 {RCC_APB2ENR, 23, "sai2"},
299 {RCC_APB2ENR, 22, "sai1"},
300 {RCC_APB2ENR, 20, "spi5"},
301 {RCC_APB2ENR, 13, "spi4"},
302 {RCC_APB2ENR, 12, "spi1"},
303 {RCC_APB2ENR, 5, "usart6"},
304 {RCC_APB2ENR, 4, "usart1"},
305 {RCC_APB4ENR, 21, "sai4a"},
306 {RCC_APB4ENR, 21, "sai4b"},
307 {RCC_APB4ENR, 12, "lptim5"},
308 {RCC_APB4ENR, 11, "lptim4"},
309 {RCC_APB4ENR, 10, "lptim3"},
310 {RCC_APB4ENR, 9, "lptim2"},
311 {RCC_APB4ENR, 7, "i2c4"},
312 {RCC_APB4ENR, 5, "spi6"},
313 {RCC_APB4ENR, 3, "lpuart1"},
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200314};
315
316struct stm32_clk {
317 struct stm32_rcc_regs *rcc_base;
318 struct regmap *pwr_regmap;
319};
320
321struct pll_psc {
322 u8 divm;
323 u16 divn;
324 u8 divp;
325 u8 divq;
326 u8 divr;
327};
328
329/*
330 * OSC_HSE = 25 MHz
331 * VCO = 500MHz
332 * pll1_p = 250MHz / pll1_q = 250MHz pll1_r = 250Mhz
333 */
334struct pll_psc sys_pll_psc = {
335 .divm = 4,
336 .divn = 80,
337 .divp = 2,
338 .divq = 2,
339 .divr = 2,
340};
341
Patrice Chotardb4367942018-02-07 10:44:47 +0100342enum apb {
343 APB1,
344 APB2,
345};
346
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200347int configure_clocks(struct udevice *dev)
348{
349 struct stm32_clk *priv = dev_get_priv(dev);
350 struct stm32_rcc_regs *regs = priv->rcc_base;
351 uint8_t *pwr_base = (uint8_t *)regmap_get_range(priv->pwr_regmap, 0);
352 uint32_t pllckselr = 0;
353 uint32_t pll1divr = 0;
354 uint32_t pllcfgr = 0;
355
356 /* Switch on HSI */
357 setbits_le32(&regs->cr, RCC_CR_HSION);
358 while (!(readl(&regs->cr) & RCC_CR_HSIRDY))
359 ;
360
361 /* Reset CFGR, now HSI is the default system clock */
362 writel(0, &regs->cfgr);
363
364 /* Set all kernel domain clock registers to reset value*/
365 writel(0x0, &regs->d1ccipr);
366 writel(0x0, &regs->d2ccip1r);
367 writel(0x0, &regs->d2ccip2r);
368
Patrice Chotard6c1bf6c2017-10-09 11:41:24 +0200369 /* Set voltage scaling at scale 1 (1,15 - 1,26 Volts) */
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200370 clrsetbits_le32(pwr_base + PWR_D3CR, PWR_D3CR_VOS_MASK,
371 VOS_SCALE_1 << PWR_D3CR_VOS_SHIFT);
Patrice Chotard6c1bf6c2017-10-09 11:41:24 +0200372 /* Lock supply configuration update */
373 clrbits_le32(pwr_base + PWR_CR3, PWR_CR3_SCUEN);
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200374 while (!(readl(pwr_base + PWR_D3CR) & PWR_D3CR_VOSREADY))
375 ;
376
377 /* disable HSE to configure it */
378 clrbits_le32(&regs->cr, RCC_CR_HSEON);
379 while ((readl(&regs->cr) & RCC_CR_HSERDY))
380 ;
381
382 /* clear HSE bypass and set it ON */
383 clrbits_le32(&regs->cr, RCC_CR_HSEBYP);
384 /* Switch on HSE */
385 setbits_le32(&regs->cr, RCC_CR_HSEON);
386 while (!(readl(&regs->cr) & RCC_CR_HSERDY))
387 ;
388
389 /* pll setup, disable it */
390 clrbits_le32(&regs->cr, RCC_CR_PLL1ON);
391 while ((readl(&regs->cr) & RCC_CR_PLL1RDY))
392 ;
393
394 /* Select HSE as PLL clock source */
395 pllckselr |= RCC_PLLCKSELR_PLLSRC_HSE;
396 pllckselr |= sys_pll_psc.divm << RCC_PLLCKSELR_DIVM1_SHIFT;
397 writel(pllckselr, &regs->pllckselr);
398
399 pll1divr |= (sys_pll_psc.divr - 1) << RCC_PLL1DIVR_DIVR1_SHIFT;
400 pll1divr |= (sys_pll_psc.divq - 1) << RCC_PLL1DIVR_DIVQ1_SHIFT;
401 pll1divr |= (sys_pll_psc.divp - 1) << RCC_PLL1DIVR_DIVP1_SHIFT;
402 pll1divr |= (sys_pll_psc.divn - 1);
403 writel(pll1divr, &regs->pll1divr);
404
405 pllcfgr |= PLL1RGE_4_8_MHZ << RCC_PLLCFGR_PLL1RGE_SHIFT;
406 pllcfgr |= RCC_PLLCFGR_DIVP1EN;
407 pllcfgr |= RCC_PLLCFGR_DIVQ1EN;
408 pllcfgr |= RCC_PLLCFGR_DIVR1EN;
409 writel(pllcfgr, &regs->pllcfgr);
410
411 /* pll setup, enable it */
412 setbits_le32(&regs->cr, RCC_CR_PLL1ON);
413
414 /* set HPRE (/2) DI clk --> 125MHz */
415 clrsetbits_le32(&regs->d1cfgr, RCC_D1CFGR_HPRE_MASK,
416 RCC_D1CFGR_HPRE_DIV2);
417
418 /* select PLL1 as system clock source (sys_ck)*/
419 clrsetbits_le32(&regs->cfgr, RCC_CFGR_SW_MASK, RCC_CFGR_SW_PLL1);
420 while ((readl(&regs->cfgr) & RCC_CFGR_SW_MASK) != RCC_CFGR_SW_PLL1)
421 ;
422
423 /* sdram: use pll1_q as fmc_k clk */
424 clrsetbits_le32(&regs->d1ccipr, RCC_D1CCIPR_FMCSRC_MASK,
425 FMCSRC_PLL1_Q_CK);
426
427 return 0;
428}
429
430static u32 stm32_get_HSI_divider(struct stm32_rcc_regs *regs)
431{
432 u32 divider;
433
434 /* get HSI divider value */
435 divider = readl(&regs->cr) & RCC_CR_HSIDIV_MASK;
436 divider = divider >> RCC_CR_HSIDIV_SHIFT;
437
438 return divider;
439};
440
441enum pllsrc {
442 HSE,
443 LSE,
444 HSI,
445 CSI,
446 I2S,
447 TIMER,
448 PLLSRC_NB,
449};
450
451static const char * const pllsrc_name[PLLSRC_NB] = {
452 [HSE] = "clk-hse",
453 [LSE] = "clk-lse",
454 [HSI] = "clk-hsi",
455 [CSI] = "clk-csi",
456 [I2S] = "clk-i2s",
457 [TIMER] = "timer-clk"
458};
459
460static ulong stm32_get_rate(struct stm32_rcc_regs *regs, enum pllsrc pllsrc)
461{
462 struct clk clk;
463 struct udevice *fixed_clock_dev = NULL;
464 u32 divider;
465 int ret;
466 const char *name = pllsrc_name[pllsrc];
467
468 debug("%s name %s\n", __func__, name);
469
470 clk.id = 0;
471 ret = uclass_get_device_by_name(UCLASS_CLK, name, &fixed_clock_dev);
472 if (ret) {
Masahiro Yamada9b643e32017-09-16 14:10:41 +0900473 pr_err("Can't find clk %s (%d)", name, ret);
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200474 return 0;
475 }
476
477 ret = clk_request(fixed_clock_dev, &clk);
478 if (ret) {
Masahiro Yamada9b643e32017-09-16 14:10:41 +0900479 pr_err("Can't request %s clk (%d)", name, ret);
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200480 return 0;
481 }
482
483 divider = 0;
484 if (pllsrc == HSI)
485 divider = stm32_get_HSI_divider(regs);
486
487 debug("%s divider %d rate %ld\n", __func__,
488 divider, clk_get_rate(&clk));
489
490 return clk_get_rate(&clk) >> divider;
491};
492
493enum pll1_output {
494 PLL1_P_CK,
495 PLL1_Q_CK,
496 PLL1_R_CK,
497};
498
499static u32 stm32_get_PLL1_rate(struct stm32_rcc_regs *regs,
500 enum pll1_output output)
501{
502 ulong pllsrc = 0;
503 u32 divm1, divn1, divp1, divq1, divr1, fracn1;
504 ulong vco, rate;
505
506 /* get the PLLSRC */
507 switch (readl(&regs->pllckselr) & RCC_PLLCKSELR_PLLSRC_MASK) {
508 case RCC_PLLCKSELR_PLLSRC_HSI:
509 pllsrc = stm32_get_rate(regs, HSI);
510 break;
511 case RCC_PLLCKSELR_PLLSRC_CSI:
512 pllsrc = stm32_get_rate(regs, CSI);
513 break;
514 case RCC_PLLCKSELR_PLLSRC_HSE:
515 pllsrc = stm32_get_rate(regs, HSE);
516 break;
517 case RCC_PLLCKSELR_PLLSRC_NO_CLK:
518 /* shouldn't happen */
Masahiro Yamada9b643e32017-09-16 14:10:41 +0900519 pr_err("wrong value for RCC_PLLCKSELR register\n");
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200520 pllsrc = 0;
521 break;
522 }
523
524 /* pllsrc = 0 ? no need to go ahead */
525 if (!pllsrc)
526 return pllsrc;
527
528 /* get divm1, divp1, divn1 and divr1 */
529 divm1 = readl(&regs->pllckselr) & RCC_PLLCKSELR_DIVM1_MASK;
530 divm1 = divm1 >> RCC_PLLCKSELR_DIVM1_SHIFT;
531
532 divn1 = (readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVN1_MASK) + 1;
533
534 divp1 = readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVP1_MASK;
535 divp1 = (divp1 >> RCC_PLL1DIVR_DIVP1_SHIFT) + 1;
536
537 divq1 = readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVQ1_MASK;
538 divq1 = (divq1 >> RCC_PLL1DIVR_DIVQ1_SHIFT) + 1;
539
540 divr1 = readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVR1_MASK;
541 divr1 = (divr1 >> RCC_PLL1DIVR_DIVR1_SHIFT) + 1;
542
543 fracn1 = readl(&regs->pll1fracr) & RCC_PLL1DIVR_DIVR1_MASK;
544 fracn1 = fracn1 & RCC_PLL1DIVR_DIVR1_SHIFT;
545
546 vco = (pllsrc / divm1) * divn1;
547 rate = (pllsrc * fracn1) / (divm1 * 8192);
548
549 debug("%s divm1 = %d divn1 = %d divp1 = %d divq1 = %d divr1 = %d\n",
550 __func__, divm1, divn1, divp1, divq1, divr1);
551 debug("%s fracn1 = %d vco = %ld rate = %ld\n",
552 __func__, fracn1, vco, rate);
553
554 switch (output) {
555 case PLL1_P_CK:
556 return (vco + rate) / divp1;
557 break;
558 case PLL1_Q_CK:
559 return (vco + rate) / divq1;
560 break;
561
562 case PLL1_R_CK:
563 return (vco + rate) / divr1;
564 break;
565 }
566
567 return -EINVAL;
568}
569
Patrice Chotardb4367942018-02-07 10:44:47 +0100570static u32 stm32_get_apb_psc(struct stm32_rcc_regs *regs, enum apb apb)
571{
572 u16 prescaler_table[8] = {2, 4, 8, 16, 64, 128, 256, 512};
573 u32 d2cfgr = readl(&regs->d2cfgr);
574
575 if (apb == APB1) {
576 if (d2cfgr & RCC_D2CFGR_D2PPRE1_DIVIDED)
577 /* get D2 domain APB1 prescaler */
578 return prescaler_table[
579 ((d2cfgr & RCC_D2CFGR_D2PPRE1_DIVIDER)
580 >> RCC_D2CFGR_D2PPRE1_SHIFT)];
581 } else { /* APB2 */
582 if (d2cfgr & RCC_D2CFGR_D2PPRE2_DIVIDED)
583 /* get D2 domain APB2 prescaler */
584 return prescaler_table[
585 ((d2cfgr & RCC_D2CFGR_D2PPRE2_DIVIDER)
586 >> RCC_D2CFGR_D2PPRE2_SHIFT)];
587 }
588
589 return 1;
590};
591
592static u32 stm32_get_timer_rate(struct stm32_clk *priv, u32 sysclk,
593 enum apb apb)
594{
595 struct stm32_rcc_regs *regs = priv->rcc_base;
596u32 psc = stm32_get_apb_psc(regs, apb);
597
598 if (readl(&regs->cfgr) & RCC_CFGR_TIMPRE)
599 /*
600 * if APB prescaler is configured to a
601 * division factor of 1, 2 or 4
602 */
603 switch (psc) {
604 case 1:
605 case 2:
606 case 4:
607 return sysclk;
608 case 8:
609 return sysclk / 2;
610 case 16:
611 return sysclk / 4;
612 default:
613 pr_err("unexpected prescaler value (%d)\n", psc);
614 return 0;
615 }
616 else
617 switch (psc) {
618 case 1:
619 return sysclk;
620 case 2:
621 case 4:
622 case 8:
623 case 16:
624 return sysclk / psc;
625 default:
626 pr_err("unexpected prescaler value (%d)\n", psc);
627 return 0;
628 }
629};
630
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200631static ulong stm32_clk_get_rate(struct clk *clk)
632{
633 struct stm32_clk *priv = dev_get_priv(clk->dev);
634 struct stm32_rcc_regs *regs = priv->rcc_base;
635 ulong sysclk = 0;
636 u32 gate_offset;
Patrice Chotard09b335a2018-02-07 10:44:48 +0100637 u32 d1cfgr, d3cfgr;
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200638 /* prescaler table lookups for clock computation */
639 u16 prescaler_table[8] = {2, 4, 8, 16, 64, 128, 256, 512};
640 u8 source, idx;
641
642 /*
643 * get system clock (sys_ck) source
644 * can be HSI_CK, CSI_CK, HSE_CK or pll1_p_ck
645 */
646 source = readl(&regs->cfgr) & RCC_CFGR_SW_MASK;
647 switch (source) {
648 case RCC_CFGR_SW_PLL1:
649 sysclk = stm32_get_PLL1_rate(regs, PLL1_P_CK);
650 break;
651 case RCC_CFGR_SW_HSE:
652 sysclk = stm32_get_rate(regs, HSE);
653 break;
654
655 case RCC_CFGR_SW_CSI:
656 sysclk = stm32_get_rate(regs, CSI);
657 break;
658
659 case RCC_CFGR_SW_HSI:
660 sysclk = stm32_get_rate(regs, HSI);
661 break;
662 }
663
664 /* sysclk = 0 ? no need to go ahead */
665 if (!sysclk)
666 return sysclk;
667
668 debug("%s system clock: source = %d freq = %ld\n",
669 __func__, source, sysclk);
670
671 d1cfgr = readl(&regs->d1cfgr);
672
673 if (d1cfgr & RCC_D1CFGR_D1CPRE_DIVIDED) {
674 /* get D1 domain Core prescaler */
675 idx = (d1cfgr & RCC_D1CFGR_D1CPRE_DIVIDER) >>
676 RCC_D1CFGR_D1CPRE_SHIFT;
677 sysclk = sysclk / prescaler_table[idx];
678 }
679
680 if (d1cfgr & RCC_D1CFGR_HPRE_DIVIDED) {
681 /* get D1 domain AHB prescaler */
682 idx = d1cfgr & RCC_D1CFGR_HPRE_DIVIDER;
683 sysclk = sysclk / prescaler_table[idx];
684 }
685
686 gate_offset = clk_map[clk->id].gate_offset;
687
688 debug("%s clk->id=%ld gate_offset=0x%x sysclk=%ld\n",
689 __func__, clk->id, gate_offset, sysclk);
690
691 switch (gate_offset) {
692 case RCC_AHB3ENR:
693 case RCC_AHB1ENR:
694 case RCC_AHB2ENR:
695 case RCC_AHB4ENR:
696 return sysclk;
697 break;
698
699 case RCC_APB3ENR:
700 if (d1cfgr & RCC_D1CFGR_D1PPRE_DIVIDED) {
701 /* get D1 domain APB3 prescaler */
702 idx = (d1cfgr & RCC_D1CFGR_D1PPRE_DIVIDER) >>
703 RCC_D1CFGR_D1PPRE_SHIFT;
704 sysclk = sysclk / prescaler_table[idx];
705 }
706
707 debug("%s system clock: freq after APB3 prescaler = %ld\n",
708 __func__, sysclk);
709
710 return sysclk;
711 break;
712
713 case RCC_APB4ENR:
Patrice Chotard09b335a2018-02-07 10:44:48 +0100714 d3cfgr = readl(&regs->d3cfgr);
715 if (d3cfgr & RCC_D3CFGR_D3PPRE_DIVIDED) {
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200716 /* get D3 domain APB4 prescaler */
Patrice Chotard09b335a2018-02-07 10:44:48 +0100717 idx = (d3cfgr & RCC_D3CFGR_D3PPRE_DIVIDER) >>
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200718 RCC_D3CFGR_D3PPRE_SHIFT;
719 sysclk = sysclk / prescaler_table[idx];
720 }
721
722 debug("%s system clock: freq after APB4 prescaler = %ld\n",
723 __func__, sysclk);
724
725 return sysclk;
726 break;
727
728 case RCC_APB1LENR:
729 case RCC_APB1HENR:
Patrice Chotardb4367942018-02-07 10:44:47 +0100730 /* special case for GPT timers */
731 switch (clk->id) {
732 case TIM14_CK:
733 case TIM13_CK:
734 case TIM12_CK:
735 case TIM7_CK:
736 case TIM6_CK:
737 case TIM5_CK:
738 case TIM4_CK:
739 case TIM3_CK:
740 case TIM2_CK:
741 return stm32_get_timer_rate(priv, sysclk, APB1);
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200742 }
743
744 debug("%s system clock: freq after APB1 prescaler = %ld\n",
745 __func__, sysclk);
746
Patrice Chotardb4367942018-02-07 10:44:47 +0100747 return (sysclk / stm32_get_apb_psc(regs, APB1));
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200748 break;
749
750 case RCC_APB2ENR:
Patrice Chotardb4367942018-02-07 10:44:47 +0100751 /* special case for timers */
752 switch (clk->id) {
753 case TIM17_CK:
754 case TIM16_CK:
755 case TIM15_CK:
756 case TIM8_CK:
757 case TIM1_CK:
758 return stm32_get_timer_rate(priv, sysclk, APB2);
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200759 }
760
761 debug("%s system clock: freq after APB2 prescaler = %ld\n",
762 __func__, sysclk);
763
Patrice Chotardb4367942018-02-07 10:44:47 +0100764 return (sysclk / stm32_get_apb_psc(regs, APB2));
765
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200766 break;
767
768 default:
Masahiro Yamada9b643e32017-09-16 14:10:41 +0900769 pr_err("unexpected gate_offset value (0x%x)\n", gate_offset);
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200770 return -EINVAL;
771 break;
772 }
773}
774
775static int stm32_clk_enable(struct clk *clk)
776{
777 struct stm32_clk *priv = dev_get_priv(clk->dev);
778 struct stm32_rcc_regs *regs = priv->rcc_base;
779 u32 gate_offset;
780 u32 gate_bit_index;
781 unsigned long clk_id = clk->id;
782
783 gate_offset = clk_map[clk_id].gate_offset;
784 gate_bit_index = clk_map[clk_id].gate_bit_idx;
785
786 debug("%s: clkid=%ld gate offset=0x%x bit_index=%d name=%s\n",
787 __func__, clk->id, gate_offset, gate_bit_index,
788 clk_map[clk_id].name);
789
790 setbits_le32(&regs->cr + (gate_offset / 4), BIT(gate_bit_index));
791
792 return 0;
793}
794
795static int stm32_clk_probe(struct udevice *dev)
796{
797 struct stm32_clk *priv = dev_get_priv(dev);
798 struct udevice *syscon;
799 fdt_addr_t addr;
800 int err;
801
802 addr = dev_read_addr(dev);
803 if (addr == FDT_ADDR_T_NONE)
804 return -EINVAL;
805
806 priv->rcc_base = (struct stm32_rcc_regs *)addr;
807
808 /* get corresponding syscon phandle */
809 err = uclass_get_device_by_phandle(UCLASS_SYSCON, dev,
810 "st,syscfg", &syscon);
811
812 if (err) {
Masahiro Yamada9b643e32017-09-16 14:10:41 +0900813 pr_err("unable to find syscon device\n");
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200814 return err;
815 }
816
817 priv->pwr_regmap = syscon_get_regmap(syscon);
818 if (!priv->pwr_regmap) {
Masahiro Yamada9b643e32017-09-16 14:10:41 +0900819 pr_err("unable to find regmap\n");
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200820 return -ENODEV;
821 }
822
823 configure_clocks(dev);
824
825 return 0;
826}
827
828static int stm32_clk_of_xlate(struct clk *clk,
829 struct ofnode_phandle_args *args)
830{
831 if (args->args_count != 1) {
832 debug("Invaild args_count: %d\n", args->args_count);
833 return -EINVAL;
834 }
835
836 if (args->args_count) {
837 clk->id = args->args[0];
838 /*
839 * this computation convert DT clock index which is used to
840 * point into 2 separate clock arrays (peripheral and kernel
841 * clocks bank) (see include/dt-bindings/clock/stm32h7-clks.h)
842 * into index to point into only one array where peripheral
843 * and kernel clocks are consecutive
844 */
845 if (clk->id >= KERN_BANK) {
846 clk->id -= KERN_BANK;
847 clk->id += LAST_PERIF_BANK - PERIF_BANK + 1;
848 } else {
849 clk->id -= PERIF_BANK;
850 }
851 } else {
852 clk->id = 0;
853 }
854
855 debug("%s clk->id %ld\n", __func__, clk->id);
856
857 return 0;
858}
859
860static struct clk_ops stm32_clk_ops = {
861 .of_xlate = stm32_clk_of_xlate,
862 .enable = stm32_clk_enable,
863 .get_rate = stm32_clk_get_rate,
864};
865
866U_BOOT_DRIVER(stm32h7_clk) = {
867 .name = "stm32h7_rcc_clock",
868 .id = UCLASS_CLK,
869 .ops = &stm32_clk_ops,
870 .probe = stm32_clk_probe,
871 .priv_auto_alloc_size = sizeof(struct stm32_clk),
872 .flags = DM_FLAG_PRE_RELOC,
873};