Tom Rini | 897a1d9 | 2018-06-19 11:21:44 -0400 | [diff] [blame] | 1 | // SPDX-License-Identifier: MIT OR BSD-3-Clause |
Igor Opaniuk | d8f9d2a | 2018-06-03 21:56:36 +0300 | [diff] [blame] | 2 | /* |
| 3 | * Copyright (C) 2016 The Android Open Source Project |
Igor Opaniuk | d8f9d2a | 2018-06-03 21:56:36 +0300 | [diff] [blame] | 4 | */ |
| 5 | |
| 6 | /* Implementation of RSA signature verification which uses a pre-processed |
| 7 | * key for computation. The code extends libmincrypt RSA verification code to |
| 8 | * support multiple RSA key lengths and hash digest algorithms. |
| 9 | */ |
| 10 | |
| 11 | #include "avb_rsa.h" |
| 12 | #include "avb_sha.h" |
| 13 | #include "avb_util.h" |
| 14 | #include "avb_vbmeta_image.h" |
Simon Glass | 336d461 | 2020-02-03 07:36:16 -0700 | [diff] [blame] | 15 | #include <malloc.h> |
Igor Opaniuk | d8f9d2a | 2018-06-03 21:56:36 +0300 | [diff] [blame] | 16 | |
| 17 | typedef struct IAvbKey { |
| 18 | unsigned int len; /* Length of n[] in number of uint32_t */ |
| 19 | uint32_t n0inv; /* -1 / n[0] mod 2^32 */ |
| 20 | uint32_t* n; /* modulus as array (host-byte order) */ |
| 21 | uint32_t* rr; /* R^2 as array (host-byte order) */ |
| 22 | } IAvbKey; |
| 23 | |
| 24 | static IAvbKey* iavb_parse_key_data(const uint8_t* data, size_t length) { |
| 25 | AvbRSAPublicKeyHeader h; |
| 26 | IAvbKey* key = NULL; |
| 27 | size_t expected_length; |
| 28 | unsigned int i; |
| 29 | const uint8_t* n; |
| 30 | const uint8_t* rr; |
| 31 | |
| 32 | if (!avb_rsa_public_key_header_validate_and_byteswap( |
| 33 | (const AvbRSAPublicKeyHeader*)data, &h)) { |
| 34 | avb_error("Invalid key.\n"); |
| 35 | goto fail; |
| 36 | } |
| 37 | |
| 38 | if (!(h.key_num_bits == 2048 || h.key_num_bits == 4096 || |
| 39 | h.key_num_bits == 8192)) { |
| 40 | avb_error("Unexpected key length.\n"); |
| 41 | goto fail; |
| 42 | } |
| 43 | |
| 44 | expected_length = sizeof(AvbRSAPublicKeyHeader) + 2 * h.key_num_bits / 8; |
| 45 | if (length != expected_length) { |
| 46 | avb_error("Key does not match expected length.\n"); |
| 47 | goto fail; |
| 48 | } |
| 49 | |
| 50 | n = data + sizeof(AvbRSAPublicKeyHeader); |
| 51 | rr = data + sizeof(AvbRSAPublicKeyHeader) + h.key_num_bits / 8; |
| 52 | |
| 53 | /* Store n and rr following the key header so we only have to do one |
| 54 | * allocation. |
| 55 | */ |
| 56 | key = (IAvbKey*)(avb_malloc(sizeof(IAvbKey) + 2 * h.key_num_bits / 8)); |
| 57 | if (key == NULL) { |
| 58 | goto fail; |
| 59 | } |
| 60 | |
| 61 | key->len = h.key_num_bits / 32; |
| 62 | key->n0inv = h.n0inv; |
| 63 | key->n = (uint32_t*)(key + 1); /* Skip ahead sizeof(IAvbKey) bytes. */ |
| 64 | key->rr = key->n + key->len; |
| 65 | |
| 66 | /* Crypto-code below (modpowF4() and friends) expects the key in |
| 67 | * little-endian format (rather than the format we're storing the |
| 68 | * key in), so convert it. |
| 69 | */ |
| 70 | for (i = 0; i < key->len; i++) { |
| 71 | key->n[i] = avb_be32toh(((uint32_t*)n)[key->len - i - 1]); |
| 72 | key->rr[i] = avb_be32toh(((uint32_t*)rr)[key->len - i - 1]); |
| 73 | } |
| 74 | return key; |
| 75 | |
| 76 | fail: |
| 77 | if (key != NULL) { |
| 78 | avb_free(key); |
| 79 | } |
| 80 | return NULL; |
| 81 | } |
| 82 | |
| 83 | static void iavb_free_parsed_key(IAvbKey* key) { |
| 84 | avb_free(key); |
| 85 | } |
| 86 | |
| 87 | /* a[] -= mod */ |
| 88 | static void subM(const IAvbKey* key, uint32_t* a) { |
| 89 | int64_t A = 0; |
| 90 | uint32_t i; |
| 91 | for (i = 0; i < key->len; ++i) { |
| 92 | A += (uint64_t)a[i] - key->n[i]; |
| 93 | a[i] = (uint32_t)A; |
| 94 | A >>= 32; |
| 95 | } |
| 96 | } |
| 97 | |
| 98 | /* return a[] >= mod */ |
| 99 | static int geM(const IAvbKey* key, uint32_t* a) { |
| 100 | uint32_t i; |
| 101 | for (i = key->len; i;) { |
| 102 | --i; |
| 103 | if (a[i] < key->n[i]) { |
| 104 | return 0; |
| 105 | } |
| 106 | if (a[i] > key->n[i]) { |
| 107 | return 1; |
| 108 | } |
| 109 | } |
| 110 | return 1; /* equal */ |
| 111 | } |
| 112 | |
| 113 | /* montgomery c[] += a * b[] / R % mod */ |
| 114 | static void montMulAdd(const IAvbKey* key, |
| 115 | uint32_t* c, |
| 116 | const uint32_t a, |
| 117 | const uint32_t* b) { |
| 118 | uint64_t A = (uint64_t)a * b[0] + c[0]; |
| 119 | uint32_t d0 = (uint32_t)A * key->n0inv; |
| 120 | uint64_t B = (uint64_t)d0 * key->n[0] + (uint32_t)A; |
| 121 | uint32_t i; |
| 122 | |
| 123 | for (i = 1; i < key->len; ++i) { |
| 124 | A = (A >> 32) + (uint64_t)a * b[i] + c[i]; |
| 125 | B = (B >> 32) + (uint64_t)d0 * key->n[i] + (uint32_t)A; |
| 126 | c[i - 1] = (uint32_t)B; |
| 127 | } |
| 128 | |
| 129 | A = (A >> 32) + (B >> 32); |
| 130 | |
| 131 | c[i - 1] = (uint32_t)A; |
| 132 | |
| 133 | if (A >> 32) { |
| 134 | subM(key, c); |
| 135 | } |
| 136 | } |
| 137 | |
| 138 | /* montgomery c[] = a[] * b[] / R % mod */ |
| 139 | static void montMul(const IAvbKey* key, uint32_t* c, uint32_t* a, uint32_t* b) { |
| 140 | uint32_t i; |
| 141 | for (i = 0; i < key->len; ++i) { |
| 142 | c[i] = 0; |
| 143 | } |
| 144 | for (i = 0; i < key->len; ++i) { |
| 145 | montMulAdd(key, c, a[i], b); |
| 146 | } |
| 147 | } |
| 148 | |
| 149 | /* In-place public exponentiation. (65537} |
| 150 | * Input and output big-endian byte array in inout. |
| 151 | */ |
| 152 | static void modpowF4(const IAvbKey* key, uint8_t* inout) { |
| 153 | uint32_t* a = (uint32_t*)avb_malloc(key->len * sizeof(uint32_t)); |
| 154 | uint32_t* aR = (uint32_t*)avb_malloc(key->len * sizeof(uint32_t)); |
| 155 | uint32_t* aaR = (uint32_t*)avb_malloc(key->len * sizeof(uint32_t)); |
| 156 | if (a == NULL || aR == NULL || aaR == NULL) { |
| 157 | goto out; |
| 158 | } |
| 159 | |
| 160 | uint32_t* aaa = aaR; /* Re-use location. */ |
| 161 | int i; |
| 162 | |
| 163 | /* Convert from big endian byte array to little endian word array. */ |
| 164 | for (i = 0; i < (int)key->len; ++i) { |
| 165 | uint32_t tmp = (inout[((key->len - 1 - i) * 4) + 0] << 24) | |
| 166 | (inout[((key->len - 1 - i) * 4) + 1] << 16) | |
| 167 | (inout[((key->len - 1 - i) * 4) + 2] << 8) | |
| 168 | (inout[((key->len - 1 - i) * 4) + 3] << 0); |
| 169 | a[i] = tmp; |
| 170 | } |
| 171 | |
| 172 | montMul(key, aR, a, key->rr); /* aR = a * RR / R mod M */ |
| 173 | for (i = 0; i < 16; i += 2) { |
| 174 | montMul(key, aaR, aR, aR); /* aaR = aR * aR / R mod M */ |
| 175 | montMul(key, aR, aaR, aaR); /* aR = aaR * aaR / R mod M */ |
| 176 | } |
| 177 | montMul(key, aaa, aR, a); /* aaa = aR * a / R mod M */ |
| 178 | |
| 179 | /* Make sure aaa < mod; aaa is at most 1x mod too large. */ |
| 180 | if (geM(key, aaa)) { |
| 181 | subM(key, aaa); |
| 182 | } |
| 183 | |
| 184 | /* Convert to bigendian byte array */ |
| 185 | for (i = (int)key->len - 1; i >= 0; --i) { |
| 186 | uint32_t tmp = aaa[i]; |
| 187 | *inout++ = (uint8_t)(tmp >> 24); |
| 188 | *inout++ = (uint8_t)(tmp >> 16); |
| 189 | *inout++ = (uint8_t)(tmp >> 8); |
| 190 | *inout++ = (uint8_t)(tmp >> 0); |
| 191 | } |
| 192 | |
| 193 | out: |
| 194 | if (a != NULL) { |
| 195 | avb_free(a); |
| 196 | } |
| 197 | if (aR != NULL) { |
| 198 | avb_free(aR); |
| 199 | } |
| 200 | if (aaR != NULL) { |
| 201 | avb_free(aaR); |
| 202 | } |
| 203 | } |
| 204 | |
| 205 | /* Verify a RSA PKCS1.5 signature against an expected hash. |
| 206 | * Returns false on failure, true on success. |
| 207 | */ |
| 208 | bool avb_rsa_verify(const uint8_t* key, |
| 209 | size_t key_num_bytes, |
| 210 | const uint8_t* sig, |
| 211 | size_t sig_num_bytes, |
| 212 | const uint8_t* hash, |
| 213 | size_t hash_num_bytes, |
| 214 | const uint8_t* padding, |
| 215 | size_t padding_num_bytes) { |
| 216 | uint8_t* buf = NULL; |
| 217 | IAvbKey* parsed_key = NULL; |
| 218 | bool success = false; |
| 219 | |
| 220 | if (key == NULL || sig == NULL || hash == NULL || padding == NULL) { |
| 221 | avb_error("Invalid input.\n"); |
| 222 | goto out; |
| 223 | } |
| 224 | |
| 225 | parsed_key = iavb_parse_key_data(key, key_num_bytes); |
| 226 | if (parsed_key == NULL) { |
| 227 | avb_error("Error parsing key.\n"); |
| 228 | goto out; |
| 229 | } |
| 230 | |
| 231 | if (sig_num_bytes != (parsed_key->len * sizeof(uint32_t))) { |
| 232 | avb_error("Signature length does not match key length.\n"); |
| 233 | goto out; |
| 234 | } |
| 235 | |
| 236 | if (padding_num_bytes != sig_num_bytes - hash_num_bytes) { |
| 237 | avb_error("Padding length does not match hash and signature lengths.\n"); |
| 238 | goto out; |
| 239 | } |
| 240 | |
| 241 | buf = (uint8_t*)avb_malloc(sig_num_bytes); |
| 242 | if (buf == NULL) { |
| 243 | avb_error("Error allocating memory.\n"); |
| 244 | goto out; |
| 245 | } |
| 246 | avb_memcpy(buf, sig, sig_num_bytes); |
| 247 | |
| 248 | modpowF4(parsed_key, buf); |
| 249 | |
| 250 | /* Check padding bytes. |
| 251 | * |
| 252 | * Even though there are probably no timing issues here, we use |
| 253 | * avb_safe_memcmp() just to be on the safe side. |
| 254 | */ |
| 255 | if (avb_safe_memcmp(buf, padding, padding_num_bytes)) { |
| 256 | avb_error("Padding check failed.\n"); |
| 257 | goto out; |
| 258 | } |
| 259 | |
| 260 | /* Check hash. */ |
| 261 | if (avb_safe_memcmp(buf + padding_num_bytes, hash, hash_num_bytes)) { |
| 262 | avb_error("Hash check failed.\n"); |
| 263 | goto out; |
| 264 | } |
| 265 | |
| 266 | success = true; |
| 267 | |
| 268 | out: |
| 269 | if (parsed_key != NULL) { |
| 270 | iavb_free_parsed_key(parsed_key); |
| 271 | } |
| 272 | if (buf != NULL) { |
| 273 | avb_free(buf); |
| 274 | } |
| 275 | return success; |
| 276 | } |