blob: f171b2428870f081c641416bc7fbebd02197f9a9 [file] [log] [blame]
Marek BehĂșnd4a704a2017-09-03 17:00:26 +02001/*
2 * From linux/include/uapi/linux/btrfs_tree.h
3 *
4 * SPDX-License-Identifier: GPL-2.0+
5 */
6
7#ifndef __BTRFS_BTRFS_TREE_H__
8#define __BTRFS_BTRFS_TREE_H__
9
10#include <common.h>
11
12#define BTRFS_VOL_NAME_MAX 255
13#define BTRFS_NAME_MAX 255
14#define BTRFS_LABEL_SIZE 256
15#define BTRFS_FSID_SIZE 16
16#define BTRFS_UUID_SIZE 16
17
18/*
19 * This header contains the structure definitions and constants used
20 * by file system objects that can be retrieved using
21 * the BTRFS_IOC_SEARCH_TREE ioctl. That means basically anything that
22 * is needed to describe a leaf node's key or item contents.
23 */
24
25/* holds pointers to all of the tree roots */
26#define BTRFS_ROOT_TREE_OBJECTID 1ULL
27
28/* stores information about which extents are in use, and reference counts */
29#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
30
31/*
32 * chunk tree stores translations from logical -> physical block numbering
33 * the super block points to the chunk tree
34 */
35#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
36
37/*
38 * stores information about which areas of a given device are in use.
39 * one per device. The tree of tree roots points to the device tree
40 */
41#define BTRFS_DEV_TREE_OBJECTID 4ULL
42
43/* one per subvolume, storing files and directories */
44#define BTRFS_FS_TREE_OBJECTID 5ULL
45
46/* directory objectid inside the root tree */
47#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
48
49/* holds checksums of all the data extents */
50#define BTRFS_CSUM_TREE_OBJECTID 7ULL
51
52/* holds quota configuration and tracking */
53#define BTRFS_QUOTA_TREE_OBJECTID 8ULL
54
55/* for storing items that use the BTRFS_UUID_KEY* types */
56#define BTRFS_UUID_TREE_OBJECTID 9ULL
57
58/* tracks free space in block groups. */
59#define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
60
61/* device stats in the device tree */
62#define BTRFS_DEV_STATS_OBJECTID 0ULL
63
64/* for storing balance parameters in the root tree */
65#define BTRFS_BALANCE_OBJECTID -4ULL
66
67/* orhpan objectid for tracking unlinked/truncated files */
68#define BTRFS_ORPHAN_OBJECTID -5ULL
69
70/* does write ahead logging to speed up fsyncs */
71#define BTRFS_TREE_LOG_OBJECTID -6ULL
72#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
73
74/* for space balancing */
75#define BTRFS_TREE_RELOC_OBJECTID -8ULL
76#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
77
78/*
79 * extent checksums all have this objectid
80 * this allows them to share the logging tree
81 * for fsyncs
82 */
83#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
84
85/* For storing free space cache */
86#define BTRFS_FREE_SPACE_OBJECTID -11ULL
87
88/*
89 * The inode number assigned to the special inode for storing
90 * free ino cache
91 */
92#define BTRFS_FREE_INO_OBJECTID -12ULL
93
94/* dummy objectid represents multiple objectids */
95#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
96
97/*
98 * All files have objectids in this range.
99 */
100#define BTRFS_FIRST_FREE_OBJECTID 256ULL
101#define BTRFS_LAST_FREE_OBJECTID -256ULL
102#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
103
104
105/*
106 * the device items go into the chunk tree. The key is in the form
107 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
108 */
109#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
110
111#define BTRFS_BTREE_INODE_OBJECTID 1
112
113#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
114
115#define BTRFS_DEV_REPLACE_DEVID 0ULL
116
117/*
118 * inode items have the data typically returned from stat and store other
119 * info about object characteristics. There is one for every file and dir in
120 * the FS
121 */
122#define BTRFS_INODE_ITEM_KEY 1
123#define BTRFS_INODE_REF_KEY 12
124#define BTRFS_INODE_EXTREF_KEY 13
125#define BTRFS_XATTR_ITEM_KEY 24
126#define BTRFS_ORPHAN_ITEM_KEY 48
127/* reserve 2-15 close to the inode for later flexibility */
128
129/*
130 * dir items are the name -> inode pointers in a directory. There is one
131 * for every name in a directory.
132 */
133#define BTRFS_DIR_LOG_ITEM_KEY 60
134#define BTRFS_DIR_LOG_INDEX_KEY 72
135#define BTRFS_DIR_ITEM_KEY 84
136#define BTRFS_DIR_INDEX_KEY 96
137/*
138 * extent data is for file data
139 */
140#define BTRFS_EXTENT_DATA_KEY 108
141
142/*
143 * extent csums are stored in a separate tree and hold csums for
144 * an entire extent on disk.
145 */
146#define BTRFS_EXTENT_CSUM_KEY 128
147
148/*
149 * root items point to tree roots. They are typically in the root
150 * tree used by the super block to find all the other trees
151 */
152#define BTRFS_ROOT_ITEM_KEY 132
153
154/*
155 * root backrefs tie subvols and snapshots to the directory entries that
156 * reference them
157 */
158#define BTRFS_ROOT_BACKREF_KEY 144
159
160/*
161 * root refs make a fast index for listing all of the snapshots and
162 * subvolumes referenced by a given root. They point directly to the
163 * directory item in the root that references the subvol
164 */
165#define BTRFS_ROOT_REF_KEY 156
166
167/*
168 * extent items are in the extent map tree. These record which blocks
169 * are used, and how many references there are to each block
170 */
171#define BTRFS_EXTENT_ITEM_KEY 168
172
173/*
174 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
175 * the length, so we save the level in key->offset instead of the length.
176 */
177#define BTRFS_METADATA_ITEM_KEY 169
178
179#define BTRFS_TREE_BLOCK_REF_KEY 176
180
181#define BTRFS_EXTENT_DATA_REF_KEY 178
182
183#define BTRFS_EXTENT_REF_V0_KEY 180
184
185#define BTRFS_SHARED_BLOCK_REF_KEY 182
186
187#define BTRFS_SHARED_DATA_REF_KEY 184
188
189/*
190 * block groups give us hints into the extent allocation trees. Which
191 * blocks are free etc etc
192 */
193#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
194
195/*
196 * Every block group is represented in the free space tree by a free space info
197 * item, which stores some accounting information. It is keyed on
198 * (block_group_start, FREE_SPACE_INFO, block_group_length).
199 */
200#define BTRFS_FREE_SPACE_INFO_KEY 198
201
202/*
203 * A free space extent tracks an extent of space that is free in a block group.
204 * It is keyed on (start, FREE_SPACE_EXTENT, length).
205 */
206#define BTRFS_FREE_SPACE_EXTENT_KEY 199
207
208/*
209 * When a block group becomes very fragmented, we convert it to use bitmaps
210 * instead of extents. A free space bitmap is keyed on
211 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
212 * (length / sectorsize) bits.
213 */
214#define BTRFS_FREE_SPACE_BITMAP_KEY 200
215
216#define BTRFS_DEV_EXTENT_KEY 204
217#define BTRFS_DEV_ITEM_KEY 216
218#define BTRFS_CHUNK_ITEM_KEY 228
219
220/*
221 * Records the overall state of the qgroups.
222 * There's only one instance of this key present,
223 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
224 */
225#define BTRFS_QGROUP_STATUS_KEY 240
226/*
227 * Records the currently used space of the qgroup.
228 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
229 */
230#define BTRFS_QGROUP_INFO_KEY 242
231/*
232 * Contains the user configured limits for the qgroup.
233 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
234 */
235#define BTRFS_QGROUP_LIMIT_KEY 244
236/*
237 * Records the child-parent relationship of qgroups. For
238 * each relation, 2 keys are present:
239 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
240 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
241 */
242#define BTRFS_QGROUP_RELATION_KEY 246
243
244/*
245 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
246 */
247#define BTRFS_BALANCE_ITEM_KEY 248
248
249/*
250 * The key type for tree items that are stored persistently, but do not need to
251 * exist for extended period of time. The items can exist in any tree.
252 *
253 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
254 *
255 * Existing items:
256 *
257 * - balance status item
258 * (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
259 */
260#define BTRFS_TEMPORARY_ITEM_KEY 248
261
262/*
263 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
264 */
265#define BTRFS_DEV_STATS_KEY 249
266
267/*
268 * The key type for tree items that are stored persistently and usually exist
269 * for a long period, eg. filesystem lifetime. The item kinds can be status
270 * information, stats or preference values. The item can exist in any tree.
271 *
272 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
273 *
274 * Existing items:
275 *
276 * - device statistics, store IO stats in the device tree, one key for all
277 * stats
278 * (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
279 */
280#define BTRFS_PERSISTENT_ITEM_KEY 249
281
282/*
283 * Persistantly stores the device replace state in the device tree.
284 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
285 */
286#define BTRFS_DEV_REPLACE_KEY 250
287
288/*
289 * Stores items that allow to quickly map UUIDs to something else.
290 * These items are part of the filesystem UUID tree.
291 * The key is built like this:
292 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
293 */
294#if BTRFS_UUID_SIZE != 16
295#error "UUID items require BTRFS_UUID_SIZE == 16!"
296#endif
297#define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */
298#define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to
299 * received subvols */
300
301/*
302 * string items are for debugging. They just store a short string of
303 * data in the FS
304 */
305#define BTRFS_STRING_ITEM_KEY 253
306
307
308
309/* 32 bytes in various csum fields */
310#define BTRFS_CSUM_SIZE 32
311
312/* csum types */
313#define BTRFS_CSUM_TYPE_CRC32 0
314
315/*
316 * flags definitions for directory entry item type
317 *
318 * Used by:
319 * struct btrfs_dir_item.type
320 */
321#define BTRFS_FT_UNKNOWN 0
322#define BTRFS_FT_REG_FILE 1
323#define BTRFS_FT_DIR 2
324#define BTRFS_FT_CHRDEV 3
325#define BTRFS_FT_BLKDEV 4
326#define BTRFS_FT_FIFO 5
327#define BTRFS_FT_SOCK 6
328#define BTRFS_FT_SYMLINK 7
329#define BTRFS_FT_XATTR 8
330#define BTRFS_FT_MAX 9
331
332/*
333 * The key defines the order in the tree, and so it also defines (optimal)
334 * block layout.
335 *
336 * objectid corresponds to the inode number.
337 *
338 * type tells us things about the object, and is a kind of stream selector.
339 * so for a given inode, keys with type of 1 might refer to the inode data,
340 * type of 2 may point to file data in the btree and type == 3 may point to
341 * extents.
342 *
343 * offset is the starting byte offset for this key in the stream.
344 */
345
346struct btrfs_key {
347 __u64 objectid;
348 __u8 type;
349 __u64 offset;
350} __attribute__ ((__packed__));
351
352struct btrfs_dev_item {
353 /* the internal btrfs device id */
354 __u64 devid;
355
356 /* size of the device */
357 __u64 total_bytes;
358
359 /* bytes used */
360 __u64 bytes_used;
361
362 /* optimal io alignment for this device */
363 __u32 io_align;
364
365 /* optimal io width for this device */
366 __u32 io_width;
367
368 /* minimal io size for this device */
369 __u32 sector_size;
370
371 /* type and info about this device */
372 __u64 type;
373
374 /* expected generation for this device */
375 __u64 generation;
376
377 /*
378 * starting byte of this partition on the device,
379 * to allow for stripe alignment in the future
380 */
381 __u64 start_offset;
382
383 /* grouping information for allocation decisions */
384 __u32 dev_group;
385
386 /* seek speed 0-100 where 100 is fastest */
387 __u8 seek_speed;
388
389 /* bandwidth 0-100 where 100 is fastest */
390 __u8 bandwidth;
391
392 /* btrfs generated uuid for this device */
393 __u8 uuid[BTRFS_UUID_SIZE];
394
395 /* uuid of FS who owns this device */
396 __u8 fsid[BTRFS_UUID_SIZE];
397} __attribute__ ((__packed__));
398
399struct btrfs_stripe {
400 __u64 devid;
401 __u64 offset;
402 __u8 dev_uuid[BTRFS_UUID_SIZE];
403} __attribute__ ((__packed__));
404
405struct btrfs_chunk {
406 /* size of this chunk in bytes */
407 __u64 length;
408
409 /* objectid of the root referencing this chunk */
410 __u64 owner;
411
412 __u64 stripe_len;
413 __u64 type;
414
415 /* optimal io alignment for this chunk */
416 __u32 io_align;
417
418 /* optimal io width for this chunk */
419 __u32 io_width;
420
421 /* minimal io size for this chunk */
422 __u32 sector_size;
423
424 /* 2^16 stripes is quite a lot, a second limit is the size of a single
425 * item in the btree
426 */
427 __u16 num_stripes;
428
429 /* sub stripes only matter for raid10 */
430 __u16 sub_stripes;
431 struct btrfs_stripe stripe;
432 /* additional stripes go here */
433} __attribute__ ((__packed__));
434
435#define BTRFS_FREE_SPACE_EXTENT 1
436#define BTRFS_FREE_SPACE_BITMAP 2
437
438struct btrfs_free_space_entry {
439 __u64 offset;
440 __u64 bytes;
441 __u8 type;
442} __attribute__ ((__packed__));
443
444struct btrfs_free_space_header {
445 struct btrfs_key location;
446 __u64 generation;
447 __u64 num_entries;
448 __u64 num_bitmaps;
449} __attribute__ ((__packed__));
450
451#define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0)
452#define BTRFS_HEADER_FLAG_RELOC (1ULL << 1)
453
454/* Super block flags */
455/* Errors detected */
456#define BTRFS_SUPER_FLAG_ERROR (1ULL << 2)
457
458#define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32)
459#define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33)
460
461
462/*
463 * items in the extent btree are used to record the objectid of the
464 * owner of the block and the number of references
465 */
466
467struct btrfs_extent_item {
468 __u64 refs;
469 __u64 generation;
470 __u64 flags;
471} __attribute__ ((__packed__));
472
473
474#define BTRFS_EXTENT_FLAG_DATA (1ULL << 0)
475#define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1)
476
477/* following flags only apply to tree blocks */
478
479/* use full backrefs for extent pointers in the block */
480#define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8)
481
482/*
483 * this flag is only used internally by scrub and may be changed at any time
484 * it is only declared here to avoid collisions
485 */
486#define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48)
487
488struct btrfs_tree_block_info {
489 struct btrfs_key key;
490 __u8 level;
491} __attribute__ ((__packed__));
492
493struct btrfs_extent_data_ref {
494 __u64 root;
495 __u64 objectid;
496 __u64 offset;
497 __u32 count;
498} __attribute__ ((__packed__));
499
500struct btrfs_shared_data_ref {
501 __u32 count;
502} __attribute__ ((__packed__));
503
504struct btrfs_extent_inline_ref {
505 __u8 type;
506 __u64 offset;
507} __attribute__ ((__packed__));
508
509/* dev extents record free space on individual devices. The owner
510 * field points back to the chunk allocation mapping tree that allocated
511 * the extent. The chunk tree uuid field is a way to double check the owner
512 */
513struct btrfs_dev_extent {
514 __u64 chunk_tree;
515 __u64 chunk_objectid;
516 __u64 chunk_offset;
517 __u64 length;
518 __u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
519} __attribute__ ((__packed__));
520
521struct btrfs_inode_ref {
522 __u64 index;
523 __u16 name_len;
524 /* name goes here */
525} __attribute__ ((__packed__));
526
527struct btrfs_inode_extref {
528 __u64 parent_objectid;
529 __u64 index;
530 __u16 name_len;
531 __u8 name[0];
532 /* name goes here */
533} __attribute__ ((__packed__));
534
535struct btrfs_timespec {
536 __u64 sec;
537 __u32 nsec;
538} __attribute__ ((__packed__));
539
540struct btrfs_inode_item {
541 /* nfs style generation number */
542 __u64 generation;
543 /* transid that last touched this inode */
544 __u64 transid;
545 __u64 size;
546 __u64 nbytes;
547 __u64 block_group;
548 __u32 nlink;
549 __u32 uid;
550 __u32 gid;
551 __u32 mode;
552 __u64 rdev;
553 __u64 flags;
554
555 /* modification sequence number for NFS */
556 __u64 sequence;
557
558 /*
559 * a little future expansion, for more than this we can
560 * just grow the inode item and version it
561 */
562 __u64 reserved[4];
563 struct btrfs_timespec atime;
564 struct btrfs_timespec ctime;
565 struct btrfs_timespec mtime;
566 struct btrfs_timespec otime;
567} __attribute__ ((__packed__));
568
569struct btrfs_dir_log_item {
570 __u64 end;
571} __attribute__ ((__packed__));
572
573struct btrfs_dir_item {
574 struct btrfs_key location;
575 __u64 transid;
576 __u16 data_len;
577 __u16 name_len;
578 __u8 type;
579} __attribute__ ((__packed__));
580
581#define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0)
582
583/*
584 * Internal in-memory flag that a subvolume has been marked for deletion but
585 * still visible as a directory
586 */
587#define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48)
588
589struct btrfs_root_item {
590 struct btrfs_inode_item inode;
591 __u64 generation;
592 __u64 root_dirid;
593 __u64 bytenr;
594 __u64 byte_limit;
595 __u64 bytes_used;
596 __u64 last_snapshot;
597 __u64 flags;
598 __u32 refs;
599 struct btrfs_key drop_progress;
600 __u8 drop_level;
601 __u8 level;
602
603 /*
604 * The following fields appear after subvol_uuids+subvol_times
605 * were introduced.
606 */
607
608 /*
609 * This generation number is used to test if the new fields are valid
610 * and up to date while reading the root item. Every time the root item
611 * is written out, the "generation" field is copied into this field. If
612 * anyone ever mounted the fs with an older kernel, we will have
613 * mismatching generation values here and thus must invalidate the
614 * new fields. See btrfs_update_root and btrfs_find_last_root for
615 * details.
616 * the offset of generation_v2 is also used as the start for the memset
617 * when invalidating the fields.
618 */
619 __u64 generation_v2;
620 __u8 uuid[BTRFS_UUID_SIZE];
621 __u8 parent_uuid[BTRFS_UUID_SIZE];
622 __u8 received_uuid[BTRFS_UUID_SIZE];
623 __u64 ctransid; /* updated when an inode changes */
624 __u64 otransid; /* trans when created */
625 __u64 stransid; /* trans when sent. non-zero for received subvol */
626 __u64 rtransid; /* trans when received. non-zero for received subvol */
627 struct btrfs_timespec ctime;
628 struct btrfs_timespec otime;
629 struct btrfs_timespec stime;
630 struct btrfs_timespec rtime;
631 __u64 reserved[8]; /* for future */
632} __attribute__ ((__packed__));
633
634/*
635 * this is used for both forward and backward root refs
636 */
637struct btrfs_root_ref {
638 __u64 dirid;
639 __u64 sequence;
640 __u16 name_len;
641} __attribute__ ((__packed__));
642
643#define BTRFS_FILE_EXTENT_INLINE 0
644#define BTRFS_FILE_EXTENT_REG 1
645#define BTRFS_FILE_EXTENT_PREALLOC 2
646
647enum btrfs_compression_type {
648 BTRFS_COMPRESS_NONE = 0,
649 BTRFS_COMPRESS_ZLIB = 1,
650 BTRFS_COMPRESS_LZO = 2,
651 BTRFS_COMPRESS_TYPES = 2,
652 BTRFS_COMPRESS_LAST = 3,
653};
654
655struct btrfs_file_extent_item {
656 /*
657 * transaction id that created this extent
658 */
659 __u64 generation;
660 /*
661 * max number of bytes to hold this extent in ram
662 * when we split a compressed extent we can't know how big
663 * each of the resulting pieces will be. So, this is
664 * an upper limit on the size of the extent in ram instead of
665 * an exact limit.
666 */
667 __u64 ram_bytes;
668
669 /*
670 * 32 bits for the various ways we might encode the data,
671 * including compression and encryption. If any of these
672 * are set to something a given disk format doesn't understand
673 * it is treated like an incompat flag for reading and writing,
674 * but not for stat.
675 */
676 __u8 compression;
677 __u8 encryption;
678 __u16 other_encoding; /* spare for later use */
679
680 /* are we inline data or a real extent? */
681 __u8 type;
682
683 /*
684 * disk space consumed by the extent, checksum blocks are included
685 * in these numbers
686 *
687 * At this offset in the structure, the inline extent data start.
688 */
689 __u64 disk_bytenr;
690 __u64 disk_num_bytes;
691 /*
692 * the logical offset in file blocks (no csums)
693 * this extent record is for. This allows a file extent to point
694 * into the middle of an existing extent on disk, sharing it
695 * between two snapshots (useful if some bytes in the middle of the
696 * extent have changed
697 */
698 __u64 offset;
699 /*
700 * the logical number of file blocks (no csums included). This
701 * always reflects the size uncompressed and without encoding.
702 */
703 __u64 num_bytes;
704
705} __attribute__ ((__packed__));
706
707struct btrfs_csum_item {
708 __u8 csum;
709} __attribute__ ((__packed__));
710
711/* different types of block groups (and chunks) */
712#define BTRFS_BLOCK_GROUP_DATA (1ULL << 0)
713#define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1)
714#define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2)
715#define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3)
716#define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4)
717#define BTRFS_BLOCK_GROUP_DUP (1ULL << 5)
718#define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6)
719#define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7)
720#define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8)
721#define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
722 BTRFS_SPACE_INFO_GLOBAL_RSV)
723
724enum btrfs_raid_types {
725 BTRFS_RAID_RAID10,
726 BTRFS_RAID_RAID1,
727 BTRFS_RAID_DUP,
728 BTRFS_RAID_RAID0,
729 BTRFS_RAID_SINGLE,
730 BTRFS_RAID_RAID5,
731 BTRFS_RAID_RAID6,
732 BTRFS_NR_RAID_TYPES
733};
734
735#define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \
736 BTRFS_BLOCK_GROUP_SYSTEM | \
737 BTRFS_BLOCK_GROUP_METADATA)
738
739#define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
740 BTRFS_BLOCK_GROUP_RAID1 | \
741 BTRFS_BLOCK_GROUP_RAID5 | \
742 BTRFS_BLOCK_GROUP_RAID6 | \
743 BTRFS_BLOCK_GROUP_DUP | \
744 BTRFS_BLOCK_GROUP_RAID10)
745#define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 | \
746 BTRFS_BLOCK_GROUP_RAID6)
747
748/*
749 * We need a bit for restriper to be able to tell when chunks of type
750 * SINGLE are available. This "extended" profile format is used in
751 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
752 * (on-disk). The corresponding on-disk bit in chunk.type is reserved
753 * to avoid remappings between two formats in future.
754 */
755#define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48)
756
757/*
758 * A fake block group type that is used to communicate global block reserve
759 * size to userspace via the SPACE_INFO ioctl.
760 */
761#define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49)
762
763#define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
764 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
765
766#endif /* __BTRFS_BTRFS_TREE_H__ */