Stefan Roese | 9eefe2a | 2009-03-19 15:35:05 +0100 | [diff] [blame] | 1 | /* |
| 2 | * This file is part of UBIFS. |
| 3 | * |
| 4 | * Copyright (C) 2006-2008 Nokia Corporation. |
| 5 | * Copyright (C) 2006, 2007 University of Szeged, Hungary |
| 6 | * |
Heiko Schocher | ff94bc4 | 2014-06-24 10:10:04 +0200 | [diff] [blame] | 7 | * SPDX-License-Identifier: GPL-2.0+ |
Stefan Roese | 9eefe2a | 2009-03-19 15:35:05 +0100 | [diff] [blame] | 8 | * |
| 9 | * Authors: Artem Bityutskiy (Битюцкий Артём) |
| 10 | * Adrian Hunter |
| 11 | * Zoltan Sogor |
| 12 | */ |
| 13 | |
| 14 | /* |
| 15 | * This file implements UBIFS I/O subsystem which provides various I/O-related |
| 16 | * helper functions (reading/writing/checking/validating nodes) and implements |
| 17 | * write-buffering support. Write buffers help to save space which otherwise |
| 18 | * would have been wasted for padding to the nearest minimal I/O unit boundary. |
| 19 | * Instead, data first goes to the write-buffer and is flushed when the |
| 20 | * buffer is full or when it is not used for some time (by timer). This is |
| 21 | * similar to the mechanism is used by JFFS2. |
| 22 | * |
Heiko Schocher | ff94bc4 | 2014-06-24 10:10:04 +0200 | [diff] [blame] | 23 | * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum |
| 24 | * write size (@c->max_write_size). The latter is the maximum amount of bytes |
| 25 | * the underlying flash is able to program at a time, and writing in |
| 26 | * @c->max_write_size units should presumably be faster. Obviously, |
| 27 | * @c->min_io_size <= @c->max_write_size. Write-buffers are of |
| 28 | * @c->max_write_size bytes in size for maximum performance. However, when a |
| 29 | * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size |
| 30 | * boundary) which contains data is written, not the whole write-buffer, |
| 31 | * because this is more space-efficient. |
| 32 | * |
| 33 | * This optimization adds few complications to the code. Indeed, on the one |
| 34 | * hand, we want to write in optimal @c->max_write_size bytes chunks, which |
| 35 | * also means aligning writes at the @c->max_write_size bytes offsets. On the |
| 36 | * other hand, we do not want to waste space when synchronizing the write |
| 37 | * buffer, so during synchronization we writes in smaller chunks. And this makes |
| 38 | * the next write offset to be not aligned to @c->max_write_size bytes. So the |
| 39 | * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned |
| 40 | * to @c->max_write_size bytes again. We do this by temporarily shrinking |
| 41 | * write-buffer size (@wbuf->size). |
| 42 | * |
Stefan Roese | 9eefe2a | 2009-03-19 15:35:05 +0100 | [diff] [blame] | 43 | * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by |
| 44 | * mutexes defined inside these objects. Since sometimes upper-level code |
| 45 | * has to lock the write-buffer (e.g. journal space reservation code), many |
| 46 | * functions related to write-buffers have "nolock" suffix which means that the |
| 47 | * caller has to lock the write-buffer before calling this function. |
| 48 | * |
| 49 | * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not |
| 50 | * aligned, UBIFS starts the next node from the aligned address, and the padded |
| 51 | * bytes may contain any rubbish. In other words, UBIFS does not put padding |
| 52 | * bytes in those small gaps. Common headers of nodes store real node lengths, |
| 53 | * not aligned lengths. Indexing nodes also store real lengths in branches. |
| 54 | * |
| 55 | * UBIFS uses padding when it pads to the next min. I/O unit. In this case it |
| 56 | * uses padding nodes or padding bytes, if the padding node does not fit. |
| 57 | * |
Heiko Schocher | ff94bc4 | 2014-06-24 10:10:04 +0200 | [diff] [blame] | 58 | * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when |
| 59 | * they are read from the flash media. |
Stefan Roese | 9eefe2a | 2009-03-19 15:35:05 +0100 | [diff] [blame] | 60 | */ |
| 61 | |
Heiko Schocher | ff94bc4 | 2014-06-24 10:10:04 +0200 | [diff] [blame] | 62 | #ifndef __UBOOT__ |
| 63 | #include <linux/crc32.h> |
| 64 | #include <linux/slab.h> |
| 65 | #else |
| 66 | #include <linux/compat.h> |
| 67 | #include <linux/err.h> |
| 68 | #endif |
Stefan Roese | 9eefe2a | 2009-03-19 15:35:05 +0100 | [diff] [blame] | 69 | #include "ubifs.h" |
| 70 | |
| 71 | /** |
| 72 | * ubifs_ro_mode - switch UBIFS to read read-only mode. |
| 73 | * @c: UBIFS file-system description object |
| 74 | * @err: error code which is the reason of switching to R/O mode |
| 75 | */ |
| 76 | void ubifs_ro_mode(struct ubifs_info *c, int err) |
| 77 | { |
Heiko Schocher | ff94bc4 | 2014-06-24 10:10:04 +0200 | [diff] [blame] | 78 | if (!c->ro_error) { |
| 79 | c->ro_error = 1; |
Stefan Roese | 9eefe2a | 2009-03-19 15:35:05 +0100 | [diff] [blame] | 80 | c->no_chk_data_crc = 0; |
Heiko Schocher | ff94bc4 | 2014-06-24 10:10:04 +0200 | [diff] [blame] | 81 | c->vfs_sb->s_flags |= MS_RDONLY; |
Stefan Roese | 9eefe2a | 2009-03-19 15:35:05 +0100 | [diff] [blame] | 82 | ubifs_warn("switched to read-only mode, error %d", err); |
Heiko Schocher | ff94bc4 | 2014-06-24 10:10:04 +0200 | [diff] [blame] | 83 | dump_stack(); |
Stefan Roese | 9eefe2a | 2009-03-19 15:35:05 +0100 | [diff] [blame] | 84 | } |
| 85 | } |
| 86 | |
Heiko Schocher | ff94bc4 | 2014-06-24 10:10:04 +0200 | [diff] [blame] | 87 | /* |
| 88 | * Below are simple wrappers over UBI I/O functions which include some |
| 89 | * additional checks and UBIFS debugging stuff. See corresponding UBI function |
| 90 | * for more information. |
| 91 | */ |
| 92 | |
| 93 | int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs, |
| 94 | int len, int even_ebadmsg) |
| 95 | { |
| 96 | int err; |
| 97 | |
| 98 | err = ubi_read(c->ubi, lnum, buf, offs, len); |
| 99 | /* |
| 100 | * In case of %-EBADMSG print the error message only if the |
| 101 | * @even_ebadmsg is true. |
| 102 | */ |
| 103 | if (err && (err != -EBADMSG || even_ebadmsg)) { |
| 104 | ubifs_err("reading %d bytes from LEB %d:%d failed, error %d", |
| 105 | len, lnum, offs, err); |
| 106 | dump_stack(); |
| 107 | } |
| 108 | return err; |
| 109 | } |
| 110 | |
| 111 | int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs, |
| 112 | int len) |
| 113 | { |
| 114 | int err; |
| 115 | |
| 116 | ubifs_assert(!c->ro_media && !c->ro_mount); |
| 117 | if (c->ro_error) |
| 118 | return -EROFS; |
| 119 | if (!dbg_is_tst_rcvry(c)) |
| 120 | err = ubi_leb_write(c->ubi, lnum, buf, offs, len); |
| 121 | else |
| 122 | err = dbg_leb_write(c, lnum, buf, offs, len); |
| 123 | if (err) { |
| 124 | ubifs_err("writing %d bytes to LEB %d:%d failed, error %d", |
| 125 | len, lnum, offs, err); |
| 126 | ubifs_ro_mode(c, err); |
| 127 | dump_stack(); |
| 128 | } |
| 129 | return err; |
| 130 | } |
| 131 | |
| 132 | int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len) |
| 133 | { |
| 134 | int err; |
| 135 | |
| 136 | ubifs_assert(!c->ro_media && !c->ro_mount); |
| 137 | if (c->ro_error) |
| 138 | return -EROFS; |
| 139 | if (!dbg_is_tst_rcvry(c)) |
| 140 | err = ubi_leb_change(c->ubi, lnum, buf, len); |
| 141 | else |
| 142 | err = dbg_leb_change(c, lnum, buf, len); |
| 143 | if (err) { |
| 144 | ubifs_err("changing %d bytes in LEB %d failed, error %d", |
| 145 | len, lnum, err); |
| 146 | ubifs_ro_mode(c, err); |
| 147 | dump_stack(); |
| 148 | } |
| 149 | return err; |
| 150 | } |
| 151 | |
| 152 | int ubifs_leb_unmap(struct ubifs_info *c, int lnum) |
| 153 | { |
| 154 | int err; |
| 155 | |
| 156 | ubifs_assert(!c->ro_media && !c->ro_mount); |
| 157 | if (c->ro_error) |
| 158 | return -EROFS; |
| 159 | if (!dbg_is_tst_rcvry(c)) |
| 160 | err = ubi_leb_unmap(c->ubi, lnum); |
| 161 | else |
| 162 | err = dbg_leb_unmap(c, lnum); |
| 163 | if (err) { |
| 164 | ubifs_err("unmap LEB %d failed, error %d", lnum, err); |
| 165 | ubifs_ro_mode(c, err); |
| 166 | dump_stack(); |
| 167 | } |
| 168 | return err; |
| 169 | } |
| 170 | |
| 171 | int ubifs_leb_map(struct ubifs_info *c, int lnum) |
| 172 | { |
| 173 | int err; |
| 174 | |
| 175 | ubifs_assert(!c->ro_media && !c->ro_mount); |
| 176 | if (c->ro_error) |
| 177 | return -EROFS; |
| 178 | if (!dbg_is_tst_rcvry(c)) |
| 179 | err = ubi_leb_map(c->ubi, lnum); |
| 180 | else |
| 181 | err = dbg_leb_map(c, lnum); |
| 182 | if (err) { |
| 183 | ubifs_err("mapping LEB %d failed, error %d", lnum, err); |
| 184 | ubifs_ro_mode(c, err); |
| 185 | dump_stack(); |
| 186 | } |
| 187 | return err; |
| 188 | } |
| 189 | |
| 190 | int ubifs_is_mapped(const struct ubifs_info *c, int lnum) |
| 191 | { |
| 192 | int err; |
| 193 | |
| 194 | err = ubi_is_mapped(c->ubi, lnum); |
| 195 | if (err < 0) { |
| 196 | ubifs_err("ubi_is_mapped failed for LEB %d, error %d", |
| 197 | lnum, err); |
| 198 | dump_stack(); |
| 199 | } |
| 200 | return err; |
| 201 | } |
| 202 | |
Stefan Roese | 9eefe2a | 2009-03-19 15:35:05 +0100 | [diff] [blame] | 203 | /** |
| 204 | * ubifs_check_node - check node. |
| 205 | * @c: UBIFS file-system description object |
| 206 | * @buf: node to check |
| 207 | * @lnum: logical eraseblock number |
| 208 | * @offs: offset within the logical eraseblock |
| 209 | * @quiet: print no messages |
| 210 | * @must_chk_crc: indicates whether to always check the CRC |
| 211 | * |
| 212 | * This function checks node magic number and CRC checksum. This function also |
| 213 | * validates node length to prevent UBIFS from becoming crazy when an attacker |
| 214 | * feeds it a file-system image with incorrect nodes. For example, too large |
| 215 | * node length in the common header could cause UBIFS to read memory outside of |
| 216 | * allocated buffer when checking the CRC checksum. |
| 217 | * |
| 218 | * This function may skip data nodes CRC checking if @c->no_chk_data_crc is |
| 219 | * true, which is controlled by corresponding UBIFS mount option. However, if |
| 220 | * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is |
Heiko Schocher | ff94bc4 | 2014-06-24 10:10:04 +0200 | [diff] [blame] | 221 | * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are |
| 222 | * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC |
| 223 | * is checked. This is because during mounting or re-mounting from R/O mode to |
| 224 | * R/W mode we may read journal nodes (when replying the journal or doing the |
| 225 | * recovery) and the journal nodes may potentially be corrupted, so checking is |
| 226 | * required. |
Stefan Roese | 9eefe2a | 2009-03-19 15:35:05 +0100 | [diff] [blame] | 227 | * |
| 228 | * This function returns zero in case of success and %-EUCLEAN in case of bad |
| 229 | * CRC or magic. |
| 230 | */ |
| 231 | int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum, |
| 232 | int offs, int quiet, int must_chk_crc) |
| 233 | { |
| 234 | int err = -EINVAL, type, node_len; |
| 235 | uint32_t crc, node_crc, magic; |
| 236 | const struct ubifs_ch *ch = buf; |
| 237 | |
| 238 | ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); |
| 239 | ubifs_assert(!(offs & 7) && offs < c->leb_size); |
| 240 | |
| 241 | magic = le32_to_cpu(ch->magic); |
| 242 | if (magic != UBIFS_NODE_MAGIC) { |
| 243 | if (!quiet) |
| 244 | ubifs_err("bad magic %#08x, expected %#08x", |
| 245 | magic, UBIFS_NODE_MAGIC); |
| 246 | err = -EUCLEAN; |
| 247 | goto out; |
| 248 | } |
| 249 | |
| 250 | type = ch->node_type; |
| 251 | if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) { |
| 252 | if (!quiet) |
| 253 | ubifs_err("bad node type %d", type); |
| 254 | goto out; |
| 255 | } |
| 256 | |
| 257 | node_len = le32_to_cpu(ch->len); |
| 258 | if (node_len + offs > c->leb_size) |
| 259 | goto out_len; |
| 260 | |
| 261 | if (c->ranges[type].max_len == 0) { |
| 262 | if (node_len != c->ranges[type].len) |
| 263 | goto out_len; |
| 264 | } else if (node_len < c->ranges[type].min_len || |
| 265 | node_len > c->ranges[type].max_len) |
| 266 | goto out_len; |
| 267 | |
Heiko Schocher | ff94bc4 | 2014-06-24 10:10:04 +0200 | [diff] [blame] | 268 | if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting && |
| 269 | !c->remounting_rw && c->no_chk_data_crc) |
Stefan Roese | 9eefe2a | 2009-03-19 15:35:05 +0100 | [diff] [blame] | 270 | return 0; |
| 271 | |
| 272 | crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); |
| 273 | node_crc = le32_to_cpu(ch->crc); |
| 274 | if (crc != node_crc) { |
| 275 | if (!quiet) |
| 276 | ubifs_err("bad CRC: calculated %#08x, read %#08x", |
| 277 | crc, node_crc); |
| 278 | err = -EUCLEAN; |
| 279 | goto out; |
| 280 | } |
| 281 | |
| 282 | return 0; |
| 283 | |
| 284 | out_len: |
| 285 | if (!quiet) |
| 286 | ubifs_err("bad node length %d", node_len); |
| 287 | out: |
| 288 | if (!quiet) { |
| 289 | ubifs_err("bad node at LEB %d:%d", lnum, offs); |
Heiko Schocher | ff94bc4 | 2014-06-24 10:10:04 +0200 | [diff] [blame] | 290 | ubifs_dump_node(c, buf); |
| 291 | dump_stack(); |
Stefan Roese | 9eefe2a | 2009-03-19 15:35:05 +0100 | [diff] [blame] | 292 | } |
| 293 | return err; |
| 294 | } |
| 295 | |
| 296 | /** |
| 297 | * ubifs_pad - pad flash space. |
| 298 | * @c: UBIFS file-system description object |
| 299 | * @buf: buffer to put padding to |
| 300 | * @pad: how many bytes to pad |
| 301 | * |
| 302 | * The flash media obliges us to write only in chunks of %c->min_io_size and |
| 303 | * when we have to write less data we add padding node to the write-buffer and |
| 304 | * pad it to the next minimal I/O unit's boundary. Padding nodes help when the |
| 305 | * media is being scanned. If the amount of wasted space is not enough to fit a |
| 306 | * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes |
| 307 | * pattern (%UBIFS_PADDING_BYTE). |
| 308 | * |
| 309 | * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is |
| 310 | * used. |
| 311 | */ |
| 312 | void ubifs_pad(const struct ubifs_info *c, void *buf, int pad) |
| 313 | { |
| 314 | uint32_t crc; |
| 315 | |
| 316 | ubifs_assert(pad >= 0 && !(pad & 7)); |
| 317 | |
| 318 | if (pad >= UBIFS_PAD_NODE_SZ) { |
| 319 | struct ubifs_ch *ch = buf; |
| 320 | struct ubifs_pad_node *pad_node = buf; |
| 321 | |
| 322 | ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); |
| 323 | ch->node_type = UBIFS_PAD_NODE; |
| 324 | ch->group_type = UBIFS_NO_NODE_GROUP; |
| 325 | ch->padding[0] = ch->padding[1] = 0; |
| 326 | ch->sqnum = 0; |
| 327 | ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ); |
| 328 | pad -= UBIFS_PAD_NODE_SZ; |
| 329 | pad_node->pad_len = cpu_to_le32(pad); |
| 330 | crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8); |
| 331 | ch->crc = cpu_to_le32(crc); |
| 332 | memset(buf + UBIFS_PAD_NODE_SZ, 0, pad); |
| 333 | } else if (pad > 0) |
| 334 | /* Too little space, padding node won't fit */ |
| 335 | memset(buf, UBIFS_PADDING_BYTE, pad); |
| 336 | } |
| 337 | |
| 338 | /** |
| 339 | * next_sqnum - get next sequence number. |
| 340 | * @c: UBIFS file-system description object |
| 341 | */ |
| 342 | static unsigned long long next_sqnum(struct ubifs_info *c) |
| 343 | { |
| 344 | unsigned long long sqnum; |
| 345 | |
| 346 | spin_lock(&c->cnt_lock); |
| 347 | sqnum = ++c->max_sqnum; |
| 348 | spin_unlock(&c->cnt_lock); |
| 349 | |
| 350 | if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) { |
| 351 | if (sqnum >= SQNUM_WATERMARK) { |
| 352 | ubifs_err("sequence number overflow %llu, end of life", |
| 353 | sqnum); |
| 354 | ubifs_ro_mode(c, -EINVAL); |
| 355 | } |
| 356 | ubifs_warn("running out of sequence numbers, end of life soon"); |
| 357 | } |
| 358 | |
| 359 | return sqnum; |
| 360 | } |
| 361 | |
| 362 | /** |
| 363 | * ubifs_prepare_node - prepare node to be written to flash. |
| 364 | * @c: UBIFS file-system description object |
| 365 | * @node: the node to pad |
| 366 | * @len: node length |
| 367 | * @pad: if the buffer has to be padded |
| 368 | * |
| 369 | * This function prepares node at @node to be written to the media - it |
| 370 | * calculates node CRC, fills the common header, and adds proper padding up to |
| 371 | * the next minimum I/O unit if @pad is not zero. |
| 372 | */ |
| 373 | void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad) |
| 374 | { |
| 375 | uint32_t crc; |
| 376 | struct ubifs_ch *ch = node; |
| 377 | unsigned long long sqnum = next_sqnum(c); |
| 378 | |
| 379 | ubifs_assert(len >= UBIFS_CH_SZ); |
| 380 | |
| 381 | ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); |
| 382 | ch->len = cpu_to_le32(len); |
| 383 | ch->group_type = UBIFS_NO_NODE_GROUP; |
| 384 | ch->sqnum = cpu_to_le64(sqnum); |
| 385 | ch->padding[0] = ch->padding[1] = 0; |
| 386 | crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); |
| 387 | ch->crc = cpu_to_le32(crc); |
| 388 | |
| 389 | if (pad) { |
| 390 | len = ALIGN(len, 8); |
| 391 | pad = ALIGN(len, c->min_io_size) - len; |
| 392 | ubifs_pad(c, node + len, pad); |
| 393 | } |
| 394 | } |
| 395 | |
| 396 | /** |
Heiko Schocher | ff94bc4 | 2014-06-24 10:10:04 +0200 | [diff] [blame] | 397 | * ubifs_prep_grp_node - prepare node of a group to be written to flash. |
| 398 | * @c: UBIFS file-system description object |
| 399 | * @node: the node to pad |
| 400 | * @len: node length |
| 401 | * @last: indicates the last node of the group |
| 402 | * |
| 403 | * This function prepares node at @node to be written to the media - it |
| 404 | * calculates node CRC and fills the common header. |
| 405 | */ |
| 406 | void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last) |
| 407 | { |
| 408 | uint32_t crc; |
| 409 | struct ubifs_ch *ch = node; |
| 410 | unsigned long long sqnum = next_sqnum(c); |
| 411 | |
| 412 | ubifs_assert(len >= UBIFS_CH_SZ); |
| 413 | |
| 414 | ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); |
| 415 | ch->len = cpu_to_le32(len); |
| 416 | if (last) |
| 417 | ch->group_type = UBIFS_LAST_OF_NODE_GROUP; |
| 418 | else |
| 419 | ch->group_type = UBIFS_IN_NODE_GROUP; |
| 420 | ch->sqnum = cpu_to_le64(sqnum); |
| 421 | ch->padding[0] = ch->padding[1] = 0; |
| 422 | crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); |
| 423 | ch->crc = cpu_to_le32(crc); |
| 424 | } |
| 425 | |
| 426 | #ifndef __UBOOT__ |
| 427 | /** |
| 428 | * wbuf_timer_callback - write-buffer timer callback function. |
| 429 | * @data: timer data (write-buffer descriptor) |
| 430 | * |
| 431 | * This function is called when the write-buffer timer expires. |
| 432 | */ |
| 433 | static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer) |
| 434 | { |
| 435 | struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer); |
| 436 | |
| 437 | dbg_io("jhead %s", dbg_jhead(wbuf->jhead)); |
| 438 | wbuf->need_sync = 1; |
| 439 | wbuf->c->need_wbuf_sync = 1; |
| 440 | ubifs_wake_up_bgt(wbuf->c); |
| 441 | return HRTIMER_NORESTART; |
| 442 | } |
| 443 | |
| 444 | /** |
| 445 | * new_wbuf_timer - start new write-buffer timer. |
| 446 | * @wbuf: write-buffer descriptor |
| 447 | */ |
| 448 | static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) |
| 449 | { |
| 450 | ubifs_assert(!hrtimer_active(&wbuf->timer)); |
| 451 | |
| 452 | if (wbuf->no_timer) |
| 453 | return; |
| 454 | dbg_io("set timer for jhead %s, %llu-%llu millisecs", |
| 455 | dbg_jhead(wbuf->jhead), |
| 456 | div_u64(ktime_to_ns(wbuf->softlimit), USEC_PER_SEC), |
| 457 | div_u64(ktime_to_ns(wbuf->softlimit) + wbuf->delta, |
| 458 | USEC_PER_SEC)); |
| 459 | hrtimer_start_range_ns(&wbuf->timer, wbuf->softlimit, wbuf->delta, |
| 460 | HRTIMER_MODE_REL); |
| 461 | } |
| 462 | #endif |
| 463 | |
| 464 | /** |
| 465 | * cancel_wbuf_timer - cancel write-buffer timer. |
| 466 | * @wbuf: write-buffer descriptor |
| 467 | */ |
| 468 | static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) |
| 469 | { |
| 470 | if (wbuf->no_timer) |
| 471 | return; |
| 472 | wbuf->need_sync = 0; |
| 473 | #ifndef __UBOOT__ |
| 474 | hrtimer_cancel(&wbuf->timer); |
| 475 | #endif |
| 476 | } |
| 477 | |
| 478 | /** |
| 479 | * ubifs_wbuf_sync_nolock - synchronize write-buffer. |
| 480 | * @wbuf: write-buffer to synchronize |
| 481 | * |
| 482 | * This function synchronizes write-buffer @buf and returns zero in case of |
| 483 | * success or a negative error code in case of failure. |
| 484 | * |
| 485 | * Note, although write-buffers are of @c->max_write_size, this function does |
| 486 | * not necessarily writes all @c->max_write_size bytes to the flash. Instead, |
| 487 | * if the write-buffer is only partially filled with data, only the used part |
| 488 | * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized. |
| 489 | * This way we waste less space. |
| 490 | */ |
| 491 | int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf) |
| 492 | { |
| 493 | struct ubifs_info *c = wbuf->c; |
| 494 | int err, dirt, sync_len; |
| 495 | |
| 496 | cancel_wbuf_timer_nolock(wbuf); |
| 497 | if (!wbuf->used || wbuf->lnum == -1) |
| 498 | /* Write-buffer is empty or not seeked */ |
| 499 | return 0; |
| 500 | |
| 501 | dbg_io("LEB %d:%d, %d bytes, jhead %s", |
| 502 | wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead)); |
| 503 | ubifs_assert(!(wbuf->avail & 7)); |
| 504 | ubifs_assert(wbuf->offs + wbuf->size <= c->leb_size); |
| 505 | ubifs_assert(wbuf->size >= c->min_io_size); |
| 506 | ubifs_assert(wbuf->size <= c->max_write_size); |
| 507 | ubifs_assert(wbuf->size % c->min_io_size == 0); |
| 508 | ubifs_assert(!c->ro_media && !c->ro_mount); |
| 509 | if (c->leb_size - wbuf->offs >= c->max_write_size) |
| 510 | ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size)); |
| 511 | |
| 512 | if (c->ro_error) |
| 513 | return -EROFS; |
| 514 | |
| 515 | /* |
| 516 | * Do not write whole write buffer but write only the minimum necessary |
| 517 | * amount of min. I/O units. |
| 518 | */ |
| 519 | sync_len = ALIGN(wbuf->used, c->min_io_size); |
| 520 | dirt = sync_len - wbuf->used; |
| 521 | if (dirt) |
| 522 | ubifs_pad(c, wbuf->buf + wbuf->used, dirt); |
| 523 | err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len); |
| 524 | if (err) |
| 525 | return err; |
| 526 | |
| 527 | spin_lock(&wbuf->lock); |
| 528 | wbuf->offs += sync_len; |
| 529 | /* |
| 530 | * Now @wbuf->offs is not necessarily aligned to @c->max_write_size. |
| 531 | * But our goal is to optimize writes and make sure we write in |
| 532 | * @c->max_write_size chunks and to @c->max_write_size-aligned offset. |
| 533 | * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make |
| 534 | * sure that @wbuf->offs + @wbuf->size is aligned to |
| 535 | * @c->max_write_size. This way we make sure that after next |
| 536 | * write-buffer flush we are again at the optimal offset (aligned to |
| 537 | * @c->max_write_size). |
| 538 | */ |
| 539 | if (c->leb_size - wbuf->offs < c->max_write_size) |
| 540 | wbuf->size = c->leb_size - wbuf->offs; |
| 541 | else if (wbuf->offs & (c->max_write_size - 1)) |
| 542 | wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs; |
| 543 | else |
| 544 | wbuf->size = c->max_write_size; |
| 545 | wbuf->avail = wbuf->size; |
| 546 | wbuf->used = 0; |
| 547 | wbuf->next_ino = 0; |
| 548 | spin_unlock(&wbuf->lock); |
| 549 | |
| 550 | if (wbuf->sync_callback) |
| 551 | err = wbuf->sync_callback(c, wbuf->lnum, |
| 552 | c->leb_size - wbuf->offs, dirt); |
| 553 | return err; |
| 554 | } |
| 555 | |
| 556 | /** |
| 557 | * ubifs_wbuf_seek_nolock - seek write-buffer. |
| 558 | * @wbuf: write-buffer |
| 559 | * @lnum: logical eraseblock number to seek to |
| 560 | * @offs: logical eraseblock offset to seek to |
| 561 | * |
| 562 | * This function targets the write-buffer to logical eraseblock @lnum:@offs. |
| 563 | * The write-buffer has to be empty. Returns zero in case of success and a |
| 564 | * negative error code in case of failure. |
| 565 | */ |
| 566 | int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs) |
| 567 | { |
| 568 | const struct ubifs_info *c = wbuf->c; |
| 569 | |
| 570 | dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead)); |
| 571 | ubifs_assert(lnum >= 0 && lnum < c->leb_cnt); |
| 572 | ubifs_assert(offs >= 0 && offs <= c->leb_size); |
| 573 | ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7)); |
| 574 | ubifs_assert(lnum != wbuf->lnum); |
| 575 | ubifs_assert(wbuf->used == 0); |
| 576 | |
| 577 | spin_lock(&wbuf->lock); |
| 578 | wbuf->lnum = lnum; |
| 579 | wbuf->offs = offs; |
| 580 | if (c->leb_size - wbuf->offs < c->max_write_size) |
| 581 | wbuf->size = c->leb_size - wbuf->offs; |
| 582 | else if (wbuf->offs & (c->max_write_size - 1)) |
| 583 | wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs; |
| 584 | else |
| 585 | wbuf->size = c->max_write_size; |
| 586 | wbuf->avail = wbuf->size; |
| 587 | wbuf->used = 0; |
| 588 | spin_unlock(&wbuf->lock); |
| 589 | |
| 590 | return 0; |
| 591 | } |
| 592 | |
| 593 | #ifndef __UBOOT__ |
| 594 | /** |
| 595 | * ubifs_bg_wbufs_sync - synchronize write-buffers. |
| 596 | * @c: UBIFS file-system description object |
| 597 | * |
| 598 | * This function is called by background thread to synchronize write-buffers. |
| 599 | * Returns zero in case of success and a negative error code in case of |
| 600 | * failure. |
| 601 | */ |
| 602 | int ubifs_bg_wbufs_sync(struct ubifs_info *c) |
| 603 | { |
| 604 | int err, i; |
| 605 | |
| 606 | ubifs_assert(!c->ro_media && !c->ro_mount); |
| 607 | if (!c->need_wbuf_sync) |
| 608 | return 0; |
| 609 | c->need_wbuf_sync = 0; |
| 610 | |
| 611 | if (c->ro_error) { |
| 612 | err = -EROFS; |
| 613 | goto out_timers; |
| 614 | } |
| 615 | |
| 616 | dbg_io("synchronize"); |
| 617 | for (i = 0; i < c->jhead_cnt; i++) { |
| 618 | struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; |
| 619 | |
| 620 | cond_resched(); |
| 621 | |
| 622 | /* |
| 623 | * If the mutex is locked then wbuf is being changed, so |
| 624 | * synchronization is not necessary. |
| 625 | */ |
| 626 | if (mutex_is_locked(&wbuf->io_mutex)) |
| 627 | continue; |
| 628 | |
| 629 | mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); |
| 630 | if (!wbuf->need_sync) { |
| 631 | mutex_unlock(&wbuf->io_mutex); |
| 632 | continue; |
| 633 | } |
| 634 | |
| 635 | err = ubifs_wbuf_sync_nolock(wbuf); |
| 636 | mutex_unlock(&wbuf->io_mutex); |
| 637 | if (err) { |
| 638 | ubifs_err("cannot sync write-buffer, error %d", err); |
| 639 | ubifs_ro_mode(c, err); |
| 640 | goto out_timers; |
| 641 | } |
| 642 | } |
| 643 | |
| 644 | return 0; |
| 645 | |
| 646 | out_timers: |
| 647 | /* Cancel all timers to prevent repeated errors */ |
| 648 | for (i = 0; i < c->jhead_cnt; i++) { |
| 649 | struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; |
| 650 | |
| 651 | mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); |
| 652 | cancel_wbuf_timer_nolock(wbuf); |
| 653 | mutex_unlock(&wbuf->io_mutex); |
| 654 | } |
| 655 | return err; |
| 656 | } |
| 657 | |
| 658 | /** |
| 659 | * ubifs_wbuf_write_nolock - write data to flash via write-buffer. |
| 660 | * @wbuf: write-buffer |
| 661 | * @buf: node to write |
| 662 | * @len: node length |
| 663 | * |
| 664 | * This function writes data to flash via write-buffer @wbuf. This means that |
| 665 | * the last piece of the node won't reach the flash media immediately if it |
| 666 | * does not take whole max. write unit (@c->max_write_size). Instead, the node |
| 667 | * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or |
| 668 | * because more data are appended to the write-buffer). |
| 669 | * |
| 670 | * This function returns zero in case of success and a negative error code in |
| 671 | * case of failure. If the node cannot be written because there is no more |
| 672 | * space in this logical eraseblock, %-ENOSPC is returned. |
| 673 | */ |
| 674 | int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len) |
| 675 | { |
| 676 | struct ubifs_info *c = wbuf->c; |
| 677 | int err, written, n, aligned_len = ALIGN(len, 8); |
| 678 | |
| 679 | dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len, |
| 680 | dbg_ntype(((struct ubifs_ch *)buf)->node_type), |
| 681 | dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used); |
| 682 | ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt); |
| 683 | ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0); |
| 684 | ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size); |
| 685 | ubifs_assert(wbuf->avail > 0 && wbuf->avail <= wbuf->size); |
| 686 | ubifs_assert(wbuf->size >= c->min_io_size); |
| 687 | ubifs_assert(wbuf->size <= c->max_write_size); |
| 688 | ubifs_assert(wbuf->size % c->min_io_size == 0); |
| 689 | ubifs_assert(mutex_is_locked(&wbuf->io_mutex)); |
| 690 | ubifs_assert(!c->ro_media && !c->ro_mount); |
| 691 | ubifs_assert(!c->space_fixup); |
| 692 | if (c->leb_size - wbuf->offs >= c->max_write_size) |
| 693 | ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size)); |
| 694 | |
| 695 | if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) { |
| 696 | err = -ENOSPC; |
| 697 | goto out; |
| 698 | } |
| 699 | |
| 700 | cancel_wbuf_timer_nolock(wbuf); |
| 701 | |
| 702 | if (c->ro_error) |
| 703 | return -EROFS; |
| 704 | |
| 705 | if (aligned_len <= wbuf->avail) { |
| 706 | /* |
| 707 | * The node is not very large and fits entirely within |
| 708 | * write-buffer. |
| 709 | */ |
| 710 | memcpy(wbuf->buf + wbuf->used, buf, len); |
| 711 | |
| 712 | if (aligned_len == wbuf->avail) { |
| 713 | dbg_io("flush jhead %s wbuf to LEB %d:%d", |
| 714 | dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs); |
| 715 | err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, |
| 716 | wbuf->offs, wbuf->size); |
| 717 | if (err) |
| 718 | goto out; |
| 719 | |
| 720 | spin_lock(&wbuf->lock); |
| 721 | wbuf->offs += wbuf->size; |
| 722 | if (c->leb_size - wbuf->offs >= c->max_write_size) |
| 723 | wbuf->size = c->max_write_size; |
| 724 | else |
| 725 | wbuf->size = c->leb_size - wbuf->offs; |
| 726 | wbuf->avail = wbuf->size; |
| 727 | wbuf->used = 0; |
| 728 | wbuf->next_ino = 0; |
| 729 | spin_unlock(&wbuf->lock); |
| 730 | } else { |
| 731 | spin_lock(&wbuf->lock); |
| 732 | wbuf->avail -= aligned_len; |
| 733 | wbuf->used += aligned_len; |
| 734 | spin_unlock(&wbuf->lock); |
| 735 | } |
| 736 | |
| 737 | goto exit; |
| 738 | } |
| 739 | |
| 740 | written = 0; |
| 741 | |
| 742 | if (wbuf->used) { |
| 743 | /* |
| 744 | * The node is large enough and does not fit entirely within |
| 745 | * current available space. We have to fill and flush |
| 746 | * write-buffer and switch to the next max. write unit. |
| 747 | */ |
| 748 | dbg_io("flush jhead %s wbuf to LEB %d:%d", |
| 749 | dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs); |
| 750 | memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail); |
| 751 | err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, |
| 752 | wbuf->size); |
| 753 | if (err) |
| 754 | goto out; |
| 755 | |
| 756 | wbuf->offs += wbuf->size; |
| 757 | len -= wbuf->avail; |
| 758 | aligned_len -= wbuf->avail; |
| 759 | written += wbuf->avail; |
| 760 | } else if (wbuf->offs & (c->max_write_size - 1)) { |
| 761 | /* |
| 762 | * The write-buffer offset is not aligned to |
| 763 | * @c->max_write_size and @wbuf->size is less than |
| 764 | * @c->max_write_size. Write @wbuf->size bytes to make sure the |
| 765 | * following writes are done in optimal @c->max_write_size |
| 766 | * chunks. |
| 767 | */ |
| 768 | dbg_io("write %d bytes to LEB %d:%d", |
| 769 | wbuf->size, wbuf->lnum, wbuf->offs); |
| 770 | err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs, |
| 771 | wbuf->size); |
| 772 | if (err) |
| 773 | goto out; |
| 774 | |
| 775 | wbuf->offs += wbuf->size; |
| 776 | len -= wbuf->size; |
| 777 | aligned_len -= wbuf->size; |
| 778 | written += wbuf->size; |
| 779 | } |
| 780 | |
| 781 | /* |
| 782 | * The remaining data may take more whole max. write units, so write the |
| 783 | * remains multiple to max. write unit size directly to the flash media. |
| 784 | * We align node length to 8-byte boundary because we anyway flash wbuf |
| 785 | * if the remaining space is less than 8 bytes. |
| 786 | */ |
| 787 | n = aligned_len >> c->max_write_shift; |
| 788 | if (n) { |
| 789 | n <<= c->max_write_shift; |
| 790 | dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum, |
| 791 | wbuf->offs); |
| 792 | err = ubifs_leb_write(c, wbuf->lnum, buf + written, |
| 793 | wbuf->offs, n); |
| 794 | if (err) |
| 795 | goto out; |
| 796 | wbuf->offs += n; |
| 797 | aligned_len -= n; |
| 798 | len -= n; |
| 799 | written += n; |
| 800 | } |
| 801 | |
| 802 | spin_lock(&wbuf->lock); |
| 803 | if (aligned_len) |
| 804 | /* |
| 805 | * And now we have what's left and what does not take whole |
| 806 | * max. write unit, so write it to the write-buffer and we are |
| 807 | * done. |
| 808 | */ |
| 809 | memcpy(wbuf->buf, buf + written, len); |
| 810 | |
| 811 | if (c->leb_size - wbuf->offs >= c->max_write_size) |
| 812 | wbuf->size = c->max_write_size; |
| 813 | else |
| 814 | wbuf->size = c->leb_size - wbuf->offs; |
| 815 | wbuf->avail = wbuf->size - aligned_len; |
| 816 | wbuf->used = aligned_len; |
| 817 | wbuf->next_ino = 0; |
| 818 | spin_unlock(&wbuf->lock); |
| 819 | |
| 820 | exit: |
| 821 | if (wbuf->sync_callback) { |
| 822 | int free = c->leb_size - wbuf->offs - wbuf->used; |
| 823 | |
| 824 | err = wbuf->sync_callback(c, wbuf->lnum, free, 0); |
| 825 | if (err) |
| 826 | goto out; |
| 827 | } |
| 828 | |
| 829 | if (wbuf->used) |
| 830 | new_wbuf_timer_nolock(wbuf); |
| 831 | |
| 832 | return 0; |
| 833 | |
| 834 | out: |
| 835 | ubifs_err("cannot write %d bytes to LEB %d:%d, error %d", |
| 836 | len, wbuf->lnum, wbuf->offs, err); |
| 837 | ubifs_dump_node(c, buf); |
| 838 | dump_stack(); |
| 839 | ubifs_dump_leb(c, wbuf->lnum); |
| 840 | return err; |
| 841 | } |
| 842 | |
| 843 | /** |
| 844 | * ubifs_write_node - write node to the media. |
| 845 | * @c: UBIFS file-system description object |
| 846 | * @buf: the node to write |
| 847 | * @len: node length |
| 848 | * @lnum: logical eraseblock number |
| 849 | * @offs: offset within the logical eraseblock |
| 850 | * |
| 851 | * This function automatically fills node magic number, assigns sequence |
| 852 | * number, and calculates node CRC checksum. The length of the @buf buffer has |
| 853 | * to be aligned to the minimal I/O unit size. This function automatically |
| 854 | * appends padding node and padding bytes if needed. Returns zero in case of |
| 855 | * success and a negative error code in case of failure. |
| 856 | */ |
| 857 | int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum, |
| 858 | int offs) |
| 859 | { |
| 860 | int err, buf_len = ALIGN(len, c->min_io_size); |
| 861 | |
| 862 | dbg_io("LEB %d:%d, %s, length %d (aligned %d)", |
| 863 | lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len, |
| 864 | buf_len); |
| 865 | ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); |
| 866 | ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size); |
| 867 | ubifs_assert(!c->ro_media && !c->ro_mount); |
| 868 | ubifs_assert(!c->space_fixup); |
| 869 | |
| 870 | if (c->ro_error) |
| 871 | return -EROFS; |
| 872 | |
| 873 | ubifs_prepare_node(c, buf, len, 1); |
| 874 | err = ubifs_leb_write(c, lnum, buf, offs, buf_len); |
| 875 | if (err) |
| 876 | ubifs_dump_node(c, buf); |
| 877 | |
| 878 | return err; |
| 879 | } |
| 880 | #endif |
| 881 | |
| 882 | /** |
| 883 | * ubifs_read_node_wbuf - read node from the media or write-buffer. |
| 884 | * @wbuf: wbuf to check for un-written data |
| 885 | * @buf: buffer to read to |
| 886 | * @type: node type |
| 887 | * @len: node length |
| 888 | * @lnum: logical eraseblock number |
| 889 | * @offs: offset within the logical eraseblock |
| 890 | * |
| 891 | * This function reads a node of known type and length, checks it and stores |
| 892 | * in @buf. If the node partially or fully sits in the write-buffer, this |
| 893 | * function takes data from the buffer, otherwise it reads the flash media. |
| 894 | * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative |
| 895 | * error code in case of failure. |
| 896 | */ |
| 897 | int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len, |
| 898 | int lnum, int offs) |
| 899 | { |
| 900 | const struct ubifs_info *c = wbuf->c; |
| 901 | int err, rlen, overlap; |
| 902 | struct ubifs_ch *ch = buf; |
| 903 | |
| 904 | dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs, |
| 905 | dbg_ntype(type), len, dbg_jhead(wbuf->jhead)); |
| 906 | ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); |
| 907 | ubifs_assert(!(offs & 7) && offs < c->leb_size); |
| 908 | ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT); |
| 909 | |
| 910 | spin_lock(&wbuf->lock); |
| 911 | overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); |
| 912 | if (!overlap) { |
| 913 | /* We may safely unlock the write-buffer and read the data */ |
| 914 | spin_unlock(&wbuf->lock); |
| 915 | return ubifs_read_node(c, buf, type, len, lnum, offs); |
| 916 | } |
| 917 | |
| 918 | /* Don't read under wbuf */ |
| 919 | rlen = wbuf->offs - offs; |
| 920 | if (rlen < 0) |
| 921 | rlen = 0; |
| 922 | |
| 923 | /* Copy the rest from the write-buffer */ |
| 924 | memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); |
| 925 | spin_unlock(&wbuf->lock); |
| 926 | |
| 927 | if (rlen > 0) { |
| 928 | /* Read everything that goes before write-buffer */ |
| 929 | err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0); |
| 930 | if (err && err != -EBADMSG) |
| 931 | return err; |
| 932 | } |
| 933 | |
| 934 | if (type != ch->node_type) { |
| 935 | ubifs_err("bad node type (%d but expected %d)", |
| 936 | ch->node_type, type); |
| 937 | goto out; |
| 938 | } |
| 939 | |
| 940 | err = ubifs_check_node(c, buf, lnum, offs, 0, 0); |
| 941 | if (err) { |
| 942 | ubifs_err("expected node type %d", type); |
| 943 | return err; |
| 944 | } |
| 945 | |
| 946 | rlen = le32_to_cpu(ch->len); |
| 947 | if (rlen != len) { |
| 948 | ubifs_err("bad node length %d, expected %d", rlen, len); |
| 949 | goto out; |
| 950 | } |
| 951 | |
| 952 | return 0; |
| 953 | |
| 954 | out: |
| 955 | ubifs_err("bad node at LEB %d:%d", lnum, offs); |
| 956 | ubifs_dump_node(c, buf); |
| 957 | dump_stack(); |
| 958 | return -EINVAL; |
| 959 | } |
| 960 | |
| 961 | /** |
Stefan Roese | 9eefe2a | 2009-03-19 15:35:05 +0100 | [diff] [blame] | 962 | * ubifs_read_node - read node. |
| 963 | * @c: UBIFS file-system description object |
| 964 | * @buf: buffer to read to |
| 965 | * @type: node type |
| 966 | * @len: node length (not aligned) |
| 967 | * @lnum: logical eraseblock number |
| 968 | * @offs: offset within the logical eraseblock |
| 969 | * |
| 970 | * This function reads a node of known type and and length, checks it and |
| 971 | * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched |
| 972 | * and a negative error code in case of failure. |
| 973 | */ |
| 974 | int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len, |
| 975 | int lnum, int offs) |
| 976 | { |
| 977 | int err, l; |
| 978 | struct ubifs_ch *ch = buf; |
| 979 | |
| 980 | dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); |
| 981 | ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); |
| 982 | ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size); |
| 983 | ubifs_assert(!(offs & 7) && offs < c->leb_size); |
| 984 | ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT); |
| 985 | |
Heiko Schocher | ff94bc4 | 2014-06-24 10:10:04 +0200 | [diff] [blame] | 986 | err = ubifs_leb_read(c, lnum, buf, offs, len, 0); |
| 987 | if (err && err != -EBADMSG) |
Stefan Roese | 9eefe2a | 2009-03-19 15:35:05 +0100 | [diff] [blame] | 988 | return err; |
Stefan Roese | 9eefe2a | 2009-03-19 15:35:05 +0100 | [diff] [blame] | 989 | |
| 990 | if (type != ch->node_type) { |
| 991 | ubifs_err("bad node type (%d but expected %d)", |
| 992 | ch->node_type, type); |
| 993 | goto out; |
| 994 | } |
| 995 | |
| 996 | err = ubifs_check_node(c, buf, lnum, offs, 0, 0); |
| 997 | if (err) { |
| 998 | ubifs_err("expected node type %d", type); |
| 999 | return err; |
| 1000 | } |
| 1001 | |
| 1002 | l = le32_to_cpu(ch->len); |
| 1003 | if (l != len) { |
| 1004 | ubifs_err("bad node length %d, expected %d", l, len); |
| 1005 | goto out; |
| 1006 | } |
| 1007 | |
| 1008 | return 0; |
| 1009 | |
| 1010 | out: |
Heiko Schocher | ff94bc4 | 2014-06-24 10:10:04 +0200 | [diff] [blame] | 1011 | ubifs_err("bad node at LEB %d:%d, LEB mapping status %d", lnum, offs, |
| 1012 | ubi_is_mapped(c->ubi, lnum)); |
| 1013 | ubifs_dump_node(c, buf); |
| 1014 | dump_stack(); |
Stefan Roese | 9eefe2a | 2009-03-19 15:35:05 +0100 | [diff] [blame] | 1015 | return -EINVAL; |
| 1016 | } |
Heiko Schocher | ff94bc4 | 2014-06-24 10:10:04 +0200 | [diff] [blame] | 1017 | |
| 1018 | /** |
| 1019 | * ubifs_wbuf_init - initialize write-buffer. |
| 1020 | * @c: UBIFS file-system description object |
| 1021 | * @wbuf: write-buffer to initialize |
| 1022 | * |
| 1023 | * This function initializes write-buffer. Returns zero in case of success |
| 1024 | * %-ENOMEM in case of failure. |
| 1025 | */ |
| 1026 | int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf) |
| 1027 | { |
| 1028 | size_t size; |
| 1029 | |
| 1030 | wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL); |
| 1031 | if (!wbuf->buf) |
| 1032 | return -ENOMEM; |
| 1033 | |
| 1034 | size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t); |
| 1035 | wbuf->inodes = kmalloc(size, GFP_KERNEL); |
| 1036 | if (!wbuf->inodes) { |
| 1037 | kfree(wbuf->buf); |
| 1038 | wbuf->buf = NULL; |
| 1039 | return -ENOMEM; |
| 1040 | } |
| 1041 | |
| 1042 | wbuf->used = 0; |
| 1043 | wbuf->lnum = wbuf->offs = -1; |
| 1044 | /* |
| 1045 | * If the LEB starts at the max. write size aligned address, then |
| 1046 | * write-buffer size has to be set to @c->max_write_size. Otherwise, |
| 1047 | * set it to something smaller so that it ends at the closest max. |
| 1048 | * write size boundary. |
| 1049 | */ |
| 1050 | size = c->max_write_size - (c->leb_start % c->max_write_size); |
| 1051 | wbuf->avail = wbuf->size = size; |
| 1052 | wbuf->sync_callback = NULL; |
| 1053 | mutex_init(&wbuf->io_mutex); |
| 1054 | spin_lock_init(&wbuf->lock); |
| 1055 | wbuf->c = c; |
| 1056 | wbuf->next_ino = 0; |
| 1057 | |
| 1058 | #ifndef __UBOOT__ |
| 1059 | hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
| 1060 | wbuf->timer.function = wbuf_timer_callback_nolock; |
| 1061 | wbuf->softlimit = ktime_set(WBUF_TIMEOUT_SOFTLIMIT, 0); |
| 1062 | wbuf->delta = WBUF_TIMEOUT_HARDLIMIT - WBUF_TIMEOUT_SOFTLIMIT; |
| 1063 | wbuf->delta *= 1000000000ULL; |
| 1064 | ubifs_assert(wbuf->delta <= ULONG_MAX); |
| 1065 | #endif |
| 1066 | return 0; |
| 1067 | } |
| 1068 | |
| 1069 | /** |
| 1070 | * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array. |
| 1071 | * @wbuf: the write-buffer where to add |
| 1072 | * @inum: the inode number |
| 1073 | * |
| 1074 | * This function adds an inode number to the inode array of the write-buffer. |
| 1075 | */ |
| 1076 | void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum) |
| 1077 | { |
| 1078 | if (!wbuf->buf) |
| 1079 | /* NOR flash or something similar */ |
| 1080 | return; |
| 1081 | |
| 1082 | spin_lock(&wbuf->lock); |
| 1083 | if (wbuf->used) |
| 1084 | wbuf->inodes[wbuf->next_ino++] = inum; |
| 1085 | spin_unlock(&wbuf->lock); |
| 1086 | } |
| 1087 | |
| 1088 | /** |
| 1089 | * wbuf_has_ino - returns if the wbuf contains data from the inode. |
| 1090 | * @wbuf: the write-buffer |
| 1091 | * @inum: the inode number |
| 1092 | * |
| 1093 | * This function returns with %1 if the write-buffer contains some data from the |
| 1094 | * given inode otherwise it returns with %0. |
| 1095 | */ |
| 1096 | static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum) |
| 1097 | { |
| 1098 | int i, ret = 0; |
| 1099 | |
| 1100 | spin_lock(&wbuf->lock); |
| 1101 | for (i = 0; i < wbuf->next_ino; i++) |
| 1102 | if (inum == wbuf->inodes[i]) { |
| 1103 | ret = 1; |
| 1104 | break; |
| 1105 | } |
| 1106 | spin_unlock(&wbuf->lock); |
| 1107 | |
| 1108 | return ret; |
| 1109 | } |
| 1110 | |
| 1111 | /** |
| 1112 | * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode. |
| 1113 | * @c: UBIFS file-system description object |
| 1114 | * @inode: inode to synchronize |
| 1115 | * |
| 1116 | * This function synchronizes write-buffers which contain nodes belonging to |
| 1117 | * @inode. Returns zero in case of success and a negative error code in case of |
| 1118 | * failure. |
| 1119 | */ |
| 1120 | int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode) |
| 1121 | { |
| 1122 | int i, err = 0; |
| 1123 | |
| 1124 | for (i = 0; i < c->jhead_cnt; i++) { |
| 1125 | struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; |
| 1126 | |
| 1127 | if (i == GCHD) |
| 1128 | /* |
| 1129 | * GC head is special, do not look at it. Even if the |
| 1130 | * head contains something related to this inode, it is |
| 1131 | * a _copy_ of corresponding on-flash node which sits |
| 1132 | * somewhere else. |
| 1133 | */ |
| 1134 | continue; |
| 1135 | |
| 1136 | if (!wbuf_has_ino(wbuf, inode->i_ino)) |
| 1137 | continue; |
| 1138 | |
| 1139 | mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); |
| 1140 | if (wbuf_has_ino(wbuf, inode->i_ino)) |
| 1141 | err = ubifs_wbuf_sync_nolock(wbuf); |
| 1142 | mutex_unlock(&wbuf->io_mutex); |
| 1143 | |
| 1144 | if (err) { |
| 1145 | ubifs_ro_mode(c, err); |
| 1146 | return err; |
| 1147 | } |
| 1148 | } |
| 1149 | return 0; |
| 1150 | } |