Kyungmin Park | f412fef | 2008-11-19 16:27:23 +0100 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (c) International Business Machines Corp., 2006 |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify |
| 5 | * it under the terms of the GNU General Public License as published by |
| 6 | * the Free Software Foundation; either version 2 of the License, or |
| 7 | * (at your option) any later version. |
| 8 | * |
| 9 | * This program is distributed in the hope that it will be useful, |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See |
| 12 | * the GNU General Public License for more details. |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public License |
| 15 | * along with this program; if not, write to the Free Software |
| 16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 17 | * |
| 18 | * Author: Artem Bityutskiy (Битюцкий Артём) |
| 19 | */ |
| 20 | |
| 21 | /* |
| 22 | * UBI scanning unit. |
| 23 | * |
| 24 | * This unit is responsible for scanning the flash media, checking UBI |
| 25 | * headers and providing complete information about the UBI flash image. |
| 26 | * |
| 27 | * The scanning information is represented by a &struct ubi_scan_info' object. |
| 28 | * Information about found volumes is represented by &struct ubi_scan_volume |
| 29 | * objects which are kept in volume RB-tree with root at the @volumes field. |
| 30 | * The RB-tree is indexed by the volume ID. |
| 31 | * |
| 32 | * Found logical eraseblocks are represented by &struct ubi_scan_leb objects. |
| 33 | * These objects are kept in per-volume RB-trees with the root at the |
| 34 | * corresponding &struct ubi_scan_volume object. To put it differently, we keep |
| 35 | * an RB-tree of per-volume objects and each of these objects is the root of |
| 36 | * RB-tree of per-eraseblock objects. |
| 37 | * |
| 38 | * Corrupted physical eraseblocks are put to the @corr list, free physical |
| 39 | * eraseblocks are put to the @free list and the physical eraseblock to be |
| 40 | * erased are put to the @erase list. |
| 41 | */ |
| 42 | |
| 43 | #ifdef UBI_LINUX |
| 44 | #include <linux/err.h> |
| 45 | #include <linux/crc32.h> |
| 46 | #include <asm/div64.h> |
| 47 | #endif |
| 48 | |
| 49 | #include <ubi_uboot.h> |
| 50 | #include "ubi.h" |
| 51 | |
| 52 | #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID |
| 53 | static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si); |
| 54 | #else |
| 55 | #define paranoid_check_si(ubi, si) 0 |
| 56 | #endif |
| 57 | |
| 58 | /* Temporary variables used during scanning */ |
| 59 | static struct ubi_ec_hdr *ech; |
| 60 | static struct ubi_vid_hdr *vidh; |
| 61 | |
| 62 | /** |
| 63 | * add_to_list - add physical eraseblock to a list. |
| 64 | * @si: scanning information |
| 65 | * @pnum: physical eraseblock number to add |
| 66 | * @ec: erase counter of the physical eraseblock |
| 67 | * @list: the list to add to |
| 68 | * |
| 69 | * This function adds physical eraseblock @pnum to free, erase, corrupted or |
| 70 | * alien lists. Returns zero in case of success and a negative error code in |
| 71 | * case of failure. |
| 72 | */ |
| 73 | static int add_to_list(struct ubi_scan_info *si, int pnum, int ec, |
| 74 | struct list_head *list) |
| 75 | { |
| 76 | struct ubi_scan_leb *seb; |
| 77 | |
| 78 | if (list == &si->free) |
| 79 | dbg_bld("add to free: PEB %d, EC %d", pnum, ec); |
| 80 | else if (list == &si->erase) |
| 81 | dbg_bld("add to erase: PEB %d, EC %d", pnum, ec); |
| 82 | else if (list == &si->corr) |
| 83 | dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec); |
| 84 | else if (list == &si->alien) |
| 85 | dbg_bld("add to alien: PEB %d, EC %d", pnum, ec); |
| 86 | else |
| 87 | BUG(); |
| 88 | |
| 89 | seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL); |
| 90 | if (!seb) |
| 91 | return -ENOMEM; |
| 92 | |
| 93 | seb->pnum = pnum; |
| 94 | seb->ec = ec; |
| 95 | list_add_tail(&seb->u.list, list); |
| 96 | return 0; |
| 97 | } |
| 98 | |
| 99 | /** |
| 100 | * validate_vid_hdr - check that volume identifier header is correct and |
| 101 | * consistent. |
| 102 | * @vid_hdr: the volume identifier header to check |
| 103 | * @sv: information about the volume this logical eraseblock belongs to |
| 104 | * @pnum: physical eraseblock number the VID header came from |
| 105 | * |
| 106 | * This function checks that data stored in @vid_hdr is consistent. Returns |
| 107 | * non-zero if an inconsistency was found and zero if not. |
| 108 | * |
| 109 | * Note, UBI does sanity check of everything it reads from the flash media. |
| 110 | * Most of the checks are done in the I/O unit. Here we check that the |
| 111 | * information in the VID header is consistent to the information in other VID |
| 112 | * headers of the same volume. |
| 113 | */ |
| 114 | static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr, |
| 115 | const struct ubi_scan_volume *sv, int pnum) |
| 116 | { |
| 117 | int vol_type = vid_hdr->vol_type; |
| 118 | int vol_id = be32_to_cpu(vid_hdr->vol_id); |
| 119 | int used_ebs = be32_to_cpu(vid_hdr->used_ebs); |
| 120 | int data_pad = be32_to_cpu(vid_hdr->data_pad); |
| 121 | |
| 122 | if (sv->leb_count != 0) { |
| 123 | int sv_vol_type; |
| 124 | |
| 125 | /* |
| 126 | * This is not the first logical eraseblock belonging to this |
| 127 | * volume. Ensure that the data in its VID header is consistent |
| 128 | * to the data in previous logical eraseblock headers. |
| 129 | */ |
| 130 | |
| 131 | if (vol_id != sv->vol_id) { |
| 132 | dbg_err("inconsistent vol_id"); |
| 133 | goto bad; |
| 134 | } |
| 135 | |
| 136 | if (sv->vol_type == UBI_STATIC_VOLUME) |
| 137 | sv_vol_type = UBI_VID_STATIC; |
| 138 | else |
| 139 | sv_vol_type = UBI_VID_DYNAMIC; |
| 140 | |
| 141 | if (vol_type != sv_vol_type) { |
| 142 | dbg_err("inconsistent vol_type"); |
| 143 | goto bad; |
| 144 | } |
| 145 | |
| 146 | if (used_ebs != sv->used_ebs) { |
| 147 | dbg_err("inconsistent used_ebs"); |
| 148 | goto bad; |
| 149 | } |
| 150 | |
| 151 | if (data_pad != sv->data_pad) { |
| 152 | dbg_err("inconsistent data_pad"); |
| 153 | goto bad; |
| 154 | } |
| 155 | } |
| 156 | |
| 157 | return 0; |
| 158 | |
| 159 | bad: |
| 160 | ubi_err("inconsistent VID header at PEB %d", pnum); |
| 161 | ubi_dbg_dump_vid_hdr(vid_hdr); |
| 162 | ubi_dbg_dump_sv(sv); |
| 163 | return -EINVAL; |
| 164 | } |
| 165 | |
| 166 | /** |
| 167 | * add_volume - add volume to the scanning information. |
| 168 | * @si: scanning information |
| 169 | * @vol_id: ID of the volume to add |
| 170 | * @pnum: physical eraseblock number |
| 171 | * @vid_hdr: volume identifier header |
| 172 | * |
| 173 | * If the volume corresponding to the @vid_hdr logical eraseblock is already |
| 174 | * present in the scanning information, this function does nothing. Otherwise |
| 175 | * it adds corresponding volume to the scanning information. Returns a pointer |
| 176 | * to the scanning volume object in case of success and a negative error code |
| 177 | * in case of failure. |
| 178 | */ |
| 179 | static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id, |
| 180 | int pnum, |
| 181 | const struct ubi_vid_hdr *vid_hdr) |
| 182 | { |
| 183 | struct ubi_scan_volume *sv; |
| 184 | struct rb_node **p = &si->volumes.rb_node, *parent = NULL; |
| 185 | |
| 186 | ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id)); |
| 187 | |
| 188 | /* Walk the volume RB-tree to look if this volume is already present */ |
| 189 | while (*p) { |
| 190 | parent = *p; |
| 191 | sv = rb_entry(parent, struct ubi_scan_volume, rb); |
| 192 | |
| 193 | if (vol_id == sv->vol_id) |
| 194 | return sv; |
| 195 | |
| 196 | if (vol_id > sv->vol_id) |
| 197 | p = &(*p)->rb_left; |
| 198 | else |
| 199 | p = &(*p)->rb_right; |
| 200 | } |
| 201 | |
| 202 | /* The volume is absent - add it */ |
| 203 | sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL); |
| 204 | if (!sv) |
| 205 | return ERR_PTR(-ENOMEM); |
| 206 | |
| 207 | sv->highest_lnum = sv->leb_count = 0; |
| 208 | sv->vol_id = vol_id; |
| 209 | sv->root = RB_ROOT; |
| 210 | sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs); |
| 211 | sv->data_pad = be32_to_cpu(vid_hdr->data_pad); |
| 212 | sv->compat = vid_hdr->compat; |
| 213 | sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME |
| 214 | : UBI_STATIC_VOLUME; |
| 215 | if (vol_id > si->highest_vol_id) |
| 216 | si->highest_vol_id = vol_id; |
| 217 | |
| 218 | rb_link_node(&sv->rb, parent, p); |
| 219 | rb_insert_color(&sv->rb, &si->volumes); |
| 220 | si->vols_found += 1; |
| 221 | dbg_bld("added volume %d", vol_id); |
| 222 | return sv; |
| 223 | } |
| 224 | |
| 225 | /** |
| 226 | * compare_lebs - find out which logical eraseblock is newer. |
| 227 | * @ubi: UBI device description object |
| 228 | * @seb: first logical eraseblock to compare |
| 229 | * @pnum: physical eraseblock number of the second logical eraseblock to |
| 230 | * compare |
| 231 | * @vid_hdr: volume identifier header of the second logical eraseblock |
| 232 | * |
| 233 | * This function compares 2 copies of a LEB and informs which one is newer. In |
| 234 | * case of success this function returns a positive value, in case of failure, a |
| 235 | * negative error code is returned. The success return codes use the following |
| 236 | * bits: |
| 237 | * o bit 0 is cleared: the first PEB (described by @seb) is newer then the |
| 238 | * second PEB (described by @pnum and @vid_hdr); |
| 239 | * o bit 0 is set: the second PEB is newer; |
| 240 | * o bit 1 is cleared: no bit-flips were detected in the newer LEB; |
| 241 | * o bit 1 is set: bit-flips were detected in the newer LEB; |
| 242 | * o bit 2 is cleared: the older LEB is not corrupted; |
| 243 | * o bit 2 is set: the older LEB is corrupted. |
| 244 | */ |
| 245 | static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb, |
| 246 | int pnum, const struct ubi_vid_hdr *vid_hdr) |
| 247 | { |
| 248 | void *buf; |
| 249 | int len, err, second_is_newer, bitflips = 0, corrupted = 0; |
| 250 | uint32_t data_crc, crc; |
| 251 | struct ubi_vid_hdr *vh = NULL; |
| 252 | unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum); |
| 253 | |
| 254 | if (seb->sqnum == 0 && sqnum2 == 0) { |
| 255 | long long abs, v1 = seb->leb_ver, v2 = be32_to_cpu(vid_hdr->leb_ver); |
| 256 | |
| 257 | /* |
| 258 | * UBI constantly increases the logical eraseblock version |
| 259 | * number and it can overflow. Thus, we have to bear in mind |
| 260 | * that versions that are close to %0xFFFFFFFF are less then |
| 261 | * versions that are close to %0. |
| 262 | * |
| 263 | * The UBI WL unit guarantees that the number of pending tasks |
| 264 | * is not greater then %0x7FFFFFFF. So, if the difference |
| 265 | * between any two versions is greater or equivalent to |
| 266 | * %0x7FFFFFFF, there was an overflow and the logical |
| 267 | * eraseblock with lower version is actually newer then the one |
| 268 | * with higher version. |
| 269 | * |
| 270 | * FIXME: but this is anyway obsolete and will be removed at |
| 271 | * some point. |
| 272 | */ |
| 273 | dbg_bld("using old crappy leb_ver stuff"); |
| 274 | |
| 275 | if (v1 == v2) { |
| 276 | ubi_err("PEB %d and PEB %d have the same version %lld", |
| 277 | seb->pnum, pnum, v1); |
| 278 | return -EINVAL; |
| 279 | } |
| 280 | |
| 281 | abs = v1 - v2; |
| 282 | if (abs < 0) |
| 283 | abs = -abs; |
| 284 | |
| 285 | if (abs < 0x7FFFFFFF) |
| 286 | /* Non-overflow situation */ |
| 287 | second_is_newer = (v2 > v1); |
| 288 | else |
| 289 | second_is_newer = (v2 < v1); |
| 290 | } else |
| 291 | /* Obviously the LEB with lower sequence counter is older */ |
| 292 | second_is_newer = sqnum2 > seb->sqnum; |
| 293 | |
| 294 | /* |
| 295 | * Now we know which copy is newer. If the copy flag of the PEB with |
| 296 | * newer version is not set, then we just return, otherwise we have to |
| 297 | * check data CRC. For the second PEB we already have the VID header, |
| 298 | * for the first one - we'll need to re-read it from flash. |
| 299 | * |
| 300 | * FIXME: this may be optimized so that we wouldn't read twice. |
| 301 | */ |
| 302 | |
| 303 | if (second_is_newer) { |
| 304 | if (!vid_hdr->copy_flag) { |
| 305 | /* It is not a copy, so it is newer */ |
| 306 | dbg_bld("second PEB %d is newer, copy_flag is unset", |
| 307 | pnum); |
| 308 | return 1; |
| 309 | } |
| 310 | } else { |
| 311 | pnum = seb->pnum; |
| 312 | |
| 313 | vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); |
| 314 | if (!vh) |
| 315 | return -ENOMEM; |
| 316 | |
| 317 | err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0); |
| 318 | if (err) { |
| 319 | if (err == UBI_IO_BITFLIPS) |
| 320 | bitflips = 1; |
| 321 | else { |
| 322 | dbg_err("VID of PEB %d header is bad, but it " |
| 323 | "was OK earlier", pnum); |
| 324 | if (err > 0) |
| 325 | err = -EIO; |
| 326 | |
| 327 | goto out_free_vidh; |
| 328 | } |
| 329 | } |
| 330 | |
| 331 | if (!vh->copy_flag) { |
| 332 | /* It is not a copy, so it is newer */ |
| 333 | dbg_bld("first PEB %d is newer, copy_flag is unset", |
| 334 | pnum); |
| 335 | err = bitflips << 1; |
| 336 | goto out_free_vidh; |
| 337 | } |
| 338 | |
| 339 | vid_hdr = vh; |
| 340 | } |
| 341 | |
| 342 | /* Read the data of the copy and check the CRC */ |
| 343 | |
| 344 | len = be32_to_cpu(vid_hdr->data_size); |
| 345 | buf = vmalloc(len); |
| 346 | if (!buf) { |
| 347 | err = -ENOMEM; |
| 348 | goto out_free_vidh; |
| 349 | } |
| 350 | |
| 351 | err = ubi_io_read_data(ubi, buf, pnum, 0, len); |
| 352 | if (err && err != UBI_IO_BITFLIPS) |
| 353 | goto out_free_buf; |
| 354 | |
| 355 | data_crc = be32_to_cpu(vid_hdr->data_crc); |
| 356 | crc = crc32(UBI_CRC32_INIT, buf, len); |
| 357 | if (crc != data_crc) { |
| 358 | dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x", |
| 359 | pnum, crc, data_crc); |
| 360 | corrupted = 1; |
| 361 | bitflips = 0; |
| 362 | second_is_newer = !second_is_newer; |
| 363 | } else { |
| 364 | dbg_bld("PEB %d CRC is OK", pnum); |
| 365 | bitflips = !!err; |
| 366 | } |
| 367 | |
| 368 | vfree(buf); |
| 369 | ubi_free_vid_hdr(ubi, vh); |
| 370 | |
| 371 | if (second_is_newer) |
| 372 | dbg_bld("second PEB %d is newer, copy_flag is set", pnum); |
| 373 | else |
| 374 | dbg_bld("first PEB %d is newer, copy_flag is set", pnum); |
| 375 | |
| 376 | return second_is_newer | (bitflips << 1) | (corrupted << 2); |
| 377 | |
| 378 | out_free_buf: |
| 379 | vfree(buf); |
| 380 | out_free_vidh: |
| 381 | ubi_free_vid_hdr(ubi, vh); |
| 382 | return err; |
| 383 | } |
| 384 | |
| 385 | /** |
| 386 | * ubi_scan_add_used - add information about a physical eraseblock to the |
| 387 | * scanning information. |
| 388 | * @ubi: UBI device description object |
| 389 | * @si: scanning information |
| 390 | * @pnum: the physical eraseblock number |
| 391 | * @ec: erase counter |
| 392 | * @vid_hdr: the volume identifier header |
| 393 | * @bitflips: if bit-flips were detected when this physical eraseblock was read |
| 394 | * |
| 395 | * This function adds information about a used physical eraseblock to the |
| 396 | * 'used' tree of the corresponding volume. The function is rather complex |
| 397 | * because it has to handle cases when this is not the first physical |
| 398 | * eraseblock belonging to the same logical eraseblock, and the newer one has |
| 399 | * to be picked, while the older one has to be dropped. This function returns |
| 400 | * zero in case of success and a negative error code in case of failure. |
| 401 | */ |
| 402 | int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si, |
| 403 | int pnum, int ec, const struct ubi_vid_hdr *vid_hdr, |
| 404 | int bitflips) |
| 405 | { |
| 406 | int err, vol_id, lnum; |
| 407 | uint32_t leb_ver; |
| 408 | unsigned long long sqnum; |
| 409 | struct ubi_scan_volume *sv; |
| 410 | struct ubi_scan_leb *seb; |
| 411 | struct rb_node **p, *parent = NULL; |
| 412 | |
| 413 | vol_id = be32_to_cpu(vid_hdr->vol_id); |
| 414 | lnum = be32_to_cpu(vid_hdr->lnum); |
| 415 | sqnum = be64_to_cpu(vid_hdr->sqnum); |
| 416 | leb_ver = be32_to_cpu(vid_hdr->leb_ver); |
| 417 | |
| 418 | dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, ver %u, bitflips %d", |
| 419 | pnum, vol_id, lnum, ec, sqnum, leb_ver, bitflips); |
| 420 | |
| 421 | sv = add_volume(si, vol_id, pnum, vid_hdr); |
| 422 | if (IS_ERR(sv) < 0) |
| 423 | return PTR_ERR(sv); |
| 424 | |
| 425 | if (si->max_sqnum < sqnum) |
| 426 | si->max_sqnum = sqnum; |
| 427 | |
| 428 | /* |
| 429 | * Walk the RB-tree of logical eraseblocks of volume @vol_id to look |
| 430 | * if this is the first instance of this logical eraseblock or not. |
| 431 | */ |
| 432 | p = &sv->root.rb_node; |
| 433 | while (*p) { |
| 434 | int cmp_res; |
| 435 | |
| 436 | parent = *p; |
| 437 | seb = rb_entry(parent, struct ubi_scan_leb, u.rb); |
| 438 | if (lnum != seb->lnum) { |
| 439 | if (lnum < seb->lnum) |
| 440 | p = &(*p)->rb_left; |
| 441 | else |
| 442 | p = &(*p)->rb_right; |
| 443 | continue; |
| 444 | } |
| 445 | |
| 446 | /* |
| 447 | * There is already a physical eraseblock describing the same |
| 448 | * logical eraseblock present. |
| 449 | */ |
| 450 | |
| 451 | dbg_bld("this LEB already exists: PEB %d, sqnum %llu, " |
| 452 | "LEB ver %u, EC %d", seb->pnum, seb->sqnum, |
| 453 | seb->leb_ver, seb->ec); |
| 454 | |
| 455 | /* |
| 456 | * Make sure that the logical eraseblocks have different |
| 457 | * versions. Otherwise the image is bad. |
| 458 | */ |
| 459 | if (seb->leb_ver == leb_ver && leb_ver != 0) { |
| 460 | ubi_err("two LEBs with same version %u", leb_ver); |
| 461 | ubi_dbg_dump_seb(seb, 0); |
| 462 | ubi_dbg_dump_vid_hdr(vid_hdr); |
| 463 | return -EINVAL; |
| 464 | } |
| 465 | |
| 466 | /* |
| 467 | * Make sure that the logical eraseblocks have different |
| 468 | * sequence numbers. Otherwise the image is bad. |
| 469 | * |
| 470 | * FIXME: remove 'sqnum != 0' check when leb_ver is removed. |
| 471 | */ |
| 472 | if (seb->sqnum == sqnum && sqnum != 0) { |
| 473 | ubi_err("two LEBs with same sequence number %llu", |
| 474 | sqnum); |
| 475 | ubi_dbg_dump_seb(seb, 0); |
| 476 | ubi_dbg_dump_vid_hdr(vid_hdr); |
| 477 | return -EINVAL; |
| 478 | } |
| 479 | |
| 480 | /* |
| 481 | * Now we have to drop the older one and preserve the newer |
| 482 | * one. |
| 483 | */ |
| 484 | cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr); |
| 485 | if (cmp_res < 0) |
| 486 | return cmp_res; |
| 487 | |
| 488 | if (cmp_res & 1) { |
| 489 | /* |
| 490 | * This logical eraseblock is newer then the one |
| 491 | * found earlier. |
| 492 | */ |
| 493 | err = validate_vid_hdr(vid_hdr, sv, pnum); |
| 494 | if (err) |
| 495 | return err; |
| 496 | |
| 497 | if (cmp_res & 4) |
| 498 | err = add_to_list(si, seb->pnum, seb->ec, |
| 499 | &si->corr); |
| 500 | else |
| 501 | err = add_to_list(si, seb->pnum, seb->ec, |
| 502 | &si->erase); |
| 503 | if (err) |
| 504 | return err; |
| 505 | |
| 506 | seb->ec = ec; |
| 507 | seb->pnum = pnum; |
| 508 | seb->scrub = ((cmp_res & 2) || bitflips); |
| 509 | seb->sqnum = sqnum; |
| 510 | seb->leb_ver = leb_ver; |
| 511 | |
| 512 | if (sv->highest_lnum == lnum) |
| 513 | sv->last_data_size = |
| 514 | be32_to_cpu(vid_hdr->data_size); |
| 515 | |
| 516 | return 0; |
| 517 | } else { |
| 518 | /* |
| 519 | * This logical eraseblock is older then the one found |
| 520 | * previously. |
| 521 | */ |
| 522 | if (cmp_res & 4) |
| 523 | return add_to_list(si, pnum, ec, &si->corr); |
| 524 | else |
| 525 | return add_to_list(si, pnum, ec, &si->erase); |
| 526 | } |
| 527 | } |
| 528 | |
| 529 | /* |
| 530 | * We've met this logical eraseblock for the first time, add it to the |
| 531 | * scanning information. |
| 532 | */ |
| 533 | |
| 534 | err = validate_vid_hdr(vid_hdr, sv, pnum); |
| 535 | if (err) |
| 536 | return err; |
| 537 | |
| 538 | seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL); |
| 539 | if (!seb) |
| 540 | return -ENOMEM; |
| 541 | |
| 542 | seb->ec = ec; |
| 543 | seb->pnum = pnum; |
| 544 | seb->lnum = lnum; |
| 545 | seb->sqnum = sqnum; |
| 546 | seb->scrub = bitflips; |
| 547 | seb->leb_ver = leb_ver; |
| 548 | |
| 549 | if (sv->highest_lnum <= lnum) { |
| 550 | sv->highest_lnum = lnum; |
| 551 | sv->last_data_size = be32_to_cpu(vid_hdr->data_size); |
| 552 | } |
| 553 | |
| 554 | sv->leb_count += 1; |
| 555 | rb_link_node(&seb->u.rb, parent, p); |
| 556 | rb_insert_color(&seb->u.rb, &sv->root); |
| 557 | return 0; |
| 558 | } |
| 559 | |
| 560 | /** |
| 561 | * ubi_scan_find_sv - find information about a particular volume in the |
| 562 | * scanning information. |
| 563 | * @si: scanning information |
| 564 | * @vol_id: the requested volume ID |
| 565 | * |
| 566 | * This function returns a pointer to the volume description or %NULL if there |
| 567 | * are no data about this volume in the scanning information. |
| 568 | */ |
| 569 | struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si, |
| 570 | int vol_id) |
| 571 | { |
| 572 | struct ubi_scan_volume *sv; |
| 573 | struct rb_node *p = si->volumes.rb_node; |
| 574 | |
| 575 | while (p) { |
| 576 | sv = rb_entry(p, struct ubi_scan_volume, rb); |
| 577 | |
| 578 | if (vol_id == sv->vol_id) |
| 579 | return sv; |
| 580 | |
| 581 | if (vol_id > sv->vol_id) |
| 582 | p = p->rb_left; |
| 583 | else |
| 584 | p = p->rb_right; |
| 585 | } |
| 586 | |
| 587 | return NULL; |
| 588 | } |
| 589 | |
| 590 | /** |
| 591 | * ubi_scan_find_seb - find information about a particular logical |
| 592 | * eraseblock in the volume scanning information. |
| 593 | * @sv: a pointer to the volume scanning information |
| 594 | * @lnum: the requested logical eraseblock |
| 595 | * |
| 596 | * This function returns a pointer to the scanning logical eraseblock or %NULL |
| 597 | * if there are no data about it in the scanning volume information. |
| 598 | */ |
| 599 | struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv, |
| 600 | int lnum) |
| 601 | { |
| 602 | struct ubi_scan_leb *seb; |
| 603 | struct rb_node *p = sv->root.rb_node; |
| 604 | |
| 605 | while (p) { |
| 606 | seb = rb_entry(p, struct ubi_scan_leb, u.rb); |
| 607 | |
| 608 | if (lnum == seb->lnum) |
| 609 | return seb; |
| 610 | |
| 611 | if (lnum > seb->lnum) |
| 612 | p = p->rb_left; |
| 613 | else |
| 614 | p = p->rb_right; |
| 615 | } |
| 616 | |
| 617 | return NULL; |
| 618 | } |
| 619 | |
| 620 | /** |
| 621 | * ubi_scan_rm_volume - delete scanning information about a volume. |
| 622 | * @si: scanning information |
| 623 | * @sv: the volume scanning information to delete |
| 624 | */ |
| 625 | void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv) |
| 626 | { |
| 627 | struct rb_node *rb; |
| 628 | struct ubi_scan_leb *seb; |
| 629 | |
| 630 | dbg_bld("remove scanning information about volume %d", sv->vol_id); |
| 631 | |
| 632 | while ((rb = rb_first(&sv->root))) { |
| 633 | seb = rb_entry(rb, struct ubi_scan_leb, u.rb); |
| 634 | rb_erase(&seb->u.rb, &sv->root); |
| 635 | list_add_tail(&seb->u.list, &si->erase); |
| 636 | } |
| 637 | |
| 638 | rb_erase(&sv->rb, &si->volumes); |
| 639 | kfree(sv); |
| 640 | si->vols_found -= 1; |
| 641 | } |
| 642 | |
| 643 | /** |
| 644 | * ubi_scan_erase_peb - erase a physical eraseblock. |
| 645 | * @ubi: UBI device description object |
| 646 | * @si: scanning information |
| 647 | * @pnum: physical eraseblock number to erase; |
| 648 | * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown) |
| 649 | * |
| 650 | * This function erases physical eraseblock 'pnum', and writes the erase |
| 651 | * counter header to it. This function should only be used on UBI device |
| 652 | * initialization stages, when the EBA unit had not been yet initialized. This |
| 653 | * function returns zero in case of success and a negative error code in case |
| 654 | * of failure. |
| 655 | */ |
| 656 | int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si, |
| 657 | int pnum, int ec) |
| 658 | { |
| 659 | int err; |
| 660 | struct ubi_ec_hdr *ec_hdr; |
| 661 | |
| 662 | if ((long long)ec >= UBI_MAX_ERASECOUNTER) { |
| 663 | /* |
| 664 | * Erase counter overflow. Upgrade UBI and use 64-bit |
| 665 | * erase counters internally. |
| 666 | */ |
| 667 | ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec); |
| 668 | return -EINVAL; |
| 669 | } |
| 670 | |
| 671 | ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); |
| 672 | if (!ec_hdr) |
| 673 | return -ENOMEM; |
| 674 | |
| 675 | ec_hdr->ec = cpu_to_be64(ec); |
| 676 | |
| 677 | err = ubi_io_sync_erase(ubi, pnum, 0); |
| 678 | if (err < 0) |
| 679 | goto out_free; |
| 680 | |
| 681 | err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr); |
| 682 | |
| 683 | out_free: |
| 684 | kfree(ec_hdr); |
| 685 | return err; |
| 686 | } |
| 687 | |
| 688 | /** |
| 689 | * ubi_scan_get_free_peb - get a free physical eraseblock. |
| 690 | * @ubi: UBI device description object |
| 691 | * @si: scanning information |
| 692 | * |
| 693 | * This function returns a free physical eraseblock. It is supposed to be |
| 694 | * called on the UBI initialization stages when the wear-leveling unit is not |
| 695 | * initialized yet. This function picks a physical eraseblocks from one of the |
| 696 | * lists, writes the EC header if it is needed, and removes it from the list. |
| 697 | * |
| 698 | * This function returns scanning physical eraseblock information in case of |
| 699 | * success and an error code in case of failure. |
| 700 | */ |
| 701 | struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi, |
| 702 | struct ubi_scan_info *si) |
| 703 | { |
| 704 | int err = 0, i; |
| 705 | struct ubi_scan_leb *seb; |
| 706 | |
| 707 | if (!list_empty(&si->free)) { |
| 708 | seb = list_entry(si->free.next, struct ubi_scan_leb, u.list); |
| 709 | list_del(&seb->u.list); |
| 710 | dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec); |
| 711 | return seb; |
| 712 | } |
| 713 | |
| 714 | for (i = 0; i < 2; i++) { |
| 715 | struct list_head *head; |
| 716 | struct ubi_scan_leb *tmp_seb; |
| 717 | |
| 718 | if (i == 0) |
| 719 | head = &si->erase; |
| 720 | else |
| 721 | head = &si->corr; |
| 722 | |
| 723 | /* |
| 724 | * We try to erase the first physical eraseblock from the @head |
| 725 | * list and pick it if we succeed, or try to erase the |
| 726 | * next one if not. And so forth. We don't want to take care |
| 727 | * about bad eraseblocks here - they'll be handled later. |
| 728 | */ |
| 729 | list_for_each_entry_safe(seb, tmp_seb, head, u.list) { |
| 730 | if (seb->ec == UBI_SCAN_UNKNOWN_EC) |
| 731 | seb->ec = si->mean_ec; |
| 732 | |
| 733 | err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1); |
| 734 | if (err) |
| 735 | continue; |
| 736 | |
| 737 | seb->ec += 1; |
| 738 | list_del(&seb->u.list); |
| 739 | dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec); |
| 740 | return seb; |
| 741 | } |
| 742 | } |
| 743 | |
| 744 | ubi_err("no eraseblocks found"); |
| 745 | return ERR_PTR(-ENOSPC); |
| 746 | } |
| 747 | |
| 748 | /** |
| 749 | * process_eb - read UBI headers, check them and add corresponding data |
| 750 | * to the scanning information. |
| 751 | * @ubi: UBI device description object |
| 752 | * @si: scanning information |
| 753 | * @pnum: the physical eraseblock number |
| 754 | * |
| 755 | * This function returns a zero if the physical eraseblock was successfully |
| 756 | * handled and a negative error code in case of failure. |
| 757 | */ |
| 758 | static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si, int pnum) |
| 759 | { |
| 760 | long long uninitialized_var(ec); |
| 761 | int err, bitflips = 0, vol_id, ec_corr = 0; |
| 762 | |
| 763 | dbg_bld("scan PEB %d", pnum); |
| 764 | |
| 765 | /* Skip bad physical eraseblocks */ |
| 766 | err = ubi_io_is_bad(ubi, pnum); |
| 767 | if (err < 0) |
| 768 | return err; |
| 769 | else if (err) { |
| 770 | /* |
| 771 | * FIXME: this is actually duty of the I/O unit to initialize |
| 772 | * this, but MTD does not provide enough information. |
| 773 | */ |
| 774 | si->bad_peb_count += 1; |
| 775 | return 0; |
| 776 | } |
| 777 | |
| 778 | err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); |
| 779 | if (err < 0) |
| 780 | return err; |
| 781 | else if (err == UBI_IO_BITFLIPS) |
| 782 | bitflips = 1; |
| 783 | else if (err == UBI_IO_PEB_EMPTY) |
| 784 | return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, &si->erase); |
| 785 | else if (err == UBI_IO_BAD_EC_HDR) { |
| 786 | /* |
| 787 | * We have to also look at the VID header, possibly it is not |
| 788 | * corrupted. Set %bitflips flag in order to make this PEB be |
| 789 | * moved and EC be re-created. |
| 790 | */ |
| 791 | ec_corr = 1; |
| 792 | ec = UBI_SCAN_UNKNOWN_EC; |
| 793 | bitflips = 1; |
| 794 | } |
| 795 | |
| 796 | si->is_empty = 0; |
| 797 | |
| 798 | if (!ec_corr) { |
| 799 | /* Make sure UBI version is OK */ |
| 800 | if (ech->version != UBI_VERSION) { |
| 801 | ubi_err("this UBI version is %d, image version is %d", |
| 802 | UBI_VERSION, (int)ech->version); |
| 803 | return -EINVAL; |
| 804 | } |
| 805 | |
| 806 | ec = be64_to_cpu(ech->ec); |
| 807 | if (ec > UBI_MAX_ERASECOUNTER) { |
| 808 | /* |
| 809 | * Erase counter overflow. The EC headers have 64 bits |
| 810 | * reserved, but we anyway make use of only 31 bit |
| 811 | * values, as this seems to be enough for any existing |
| 812 | * flash. Upgrade UBI and use 64-bit erase counters |
| 813 | * internally. |
| 814 | */ |
| 815 | ubi_err("erase counter overflow, max is %d", |
| 816 | UBI_MAX_ERASECOUNTER); |
| 817 | ubi_dbg_dump_ec_hdr(ech); |
| 818 | return -EINVAL; |
| 819 | } |
| 820 | } |
| 821 | |
| 822 | /* OK, we've done with the EC header, let's look at the VID header */ |
| 823 | |
| 824 | err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0); |
| 825 | if (err < 0) |
| 826 | return err; |
| 827 | else if (err == UBI_IO_BITFLIPS) |
| 828 | bitflips = 1; |
| 829 | else if (err == UBI_IO_BAD_VID_HDR || |
| 830 | (err == UBI_IO_PEB_FREE && ec_corr)) { |
| 831 | /* VID header is corrupted */ |
| 832 | err = add_to_list(si, pnum, ec, &si->corr); |
| 833 | if (err) |
| 834 | return err; |
| 835 | goto adjust_mean_ec; |
| 836 | } else if (err == UBI_IO_PEB_FREE) { |
| 837 | /* No VID header - the physical eraseblock is free */ |
| 838 | err = add_to_list(si, pnum, ec, &si->free); |
| 839 | if (err) |
| 840 | return err; |
| 841 | goto adjust_mean_ec; |
| 842 | } |
| 843 | |
| 844 | vol_id = be32_to_cpu(vidh->vol_id); |
| 845 | if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) { |
| 846 | int lnum = be32_to_cpu(vidh->lnum); |
| 847 | |
| 848 | /* Unsupported internal volume */ |
| 849 | switch (vidh->compat) { |
| 850 | case UBI_COMPAT_DELETE: |
| 851 | ubi_msg("\"delete\" compatible internal volume %d:%d" |
| 852 | " found, remove it", vol_id, lnum); |
| 853 | err = add_to_list(si, pnum, ec, &si->corr); |
| 854 | if (err) |
| 855 | return err; |
| 856 | break; |
| 857 | |
| 858 | case UBI_COMPAT_RO: |
| 859 | ubi_msg("read-only compatible internal volume %d:%d" |
| 860 | " found, switch to read-only mode", |
| 861 | vol_id, lnum); |
| 862 | ubi->ro_mode = 1; |
| 863 | break; |
| 864 | |
| 865 | case UBI_COMPAT_PRESERVE: |
| 866 | ubi_msg("\"preserve\" compatible internal volume %d:%d" |
| 867 | " found", vol_id, lnum); |
| 868 | err = add_to_list(si, pnum, ec, &si->alien); |
| 869 | if (err) |
| 870 | return err; |
| 871 | si->alien_peb_count += 1; |
| 872 | return 0; |
| 873 | |
| 874 | case UBI_COMPAT_REJECT: |
| 875 | ubi_err("incompatible internal volume %d:%d found", |
| 876 | vol_id, lnum); |
| 877 | return -EINVAL; |
| 878 | } |
| 879 | } |
| 880 | |
| 881 | /* Both UBI headers seem to be fine */ |
| 882 | err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips); |
| 883 | if (err) |
| 884 | return err; |
| 885 | |
| 886 | adjust_mean_ec: |
| 887 | if (!ec_corr) { |
| 888 | si->ec_sum += ec; |
| 889 | si->ec_count += 1; |
| 890 | if (ec > si->max_ec) |
| 891 | si->max_ec = ec; |
| 892 | if (ec < si->min_ec) |
| 893 | si->min_ec = ec; |
| 894 | } |
| 895 | |
| 896 | return 0; |
| 897 | } |
| 898 | |
| 899 | /** |
| 900 | * ubi_scan - scan an MTD device. |
| 901 | * @ubi: UBI device description object |
| 902 | * |
| 903 | * This function does full scanning of an MTD device and returns complete |
| 904 | * information about it. In case of failure, an error code is returned. |
| 905 | */ |
| 906 | struct ubi_scan_info *ubi_scan(struct ubi_device *ubi) |
| 907 | { |
| 908 | int err, pnum; |
| 909 | struct rb_node *rb1, *rb2; |
| 910 | struct ubi_scan_volume *sv; |
| 911 | struct ubi_scan_leb *seb; |
| 912 | struct ubi_scan_info *si; |
| 913 | |
| 914 | si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL); |
| 915 | if (!si) |
| 916 | return ERR_PTR(-ENOMEM); |
| 917 | |
| 918 | INIT_LIST_HEAD(&si->corr); |
| 919 | INIT_LIST_HEAD(&si->free); |
| 920 | INIT_LIST_HEAD(&si->erase); |
| 921 | INIT_LIST_HEAD(&si->alien); |
| 922 | si->volumes = RB_ROOT; |
| 923 | si->is_empty = 1; |
| 924 | |
| 925 | err = -ENOMEM; |
| 926 | ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); |
| 927 | if (!ech) |
| 928 | goto out_si; |
| 929 | |
| 930 | vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); |
| 931 | if (!vidh) |
| 932 | goto out_ech; |
| 933 | |
| 934 | for (pnum = 0; pnum < ubi->peb_count; pnum++) { |
| 935 | cond_resched(); |
| 936 | |
| 937 | dbg_msg("process PEB %d", pnum); |
| 938 | err = process_eb(ubi, si, pnum); |
| 939 | if (err < 0) |
| 940 | goto out_vidh; |
| 941 | } |
| 942 | |
| 943 | dbg_msg("scanning is finished"); |
| 944 | |
| 945 | /* Calculate mean erase counter */ |
| 946 | if (si->ec_count) { |
| 947 | do_div(si->ec_sum, si->ec_count); |
| 948 | si->mean_ec = si->ec_sum; |
| 949 | } |
| 950 | |
| 951 | if (si->is_empty) |
| 952 | ubi_msg("empty MTD device detected"); |
| 953 | |
| 954 | /* |
| 955 | * In case of unknown erase counter we use the mean erase counter |
| 956 | * value. |
| 957 | */ |
| 958 | ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { |
| 959 | ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) |
| 960 | if (seb->ec == UBI_SCAN_UNKNOWN_EC) |
| 961 | seb->ec = si->mean_ec; |
| 962 | } |
| 963 | |
| 964 | list_for_each_entry(seb, &si->free, u.list) { |
| 965 | if (seb->ec == UBI_SCAN_UNKNOWN_EC) |
| 966 | seb->ec = si->mean_ec; |
| 967 | } |
| 968 | |
| 969 | list_for_each_entry(seb, &si->corr, u.list) |
| 970 | if (seb->ec == UBI_SCAN_UNKNOWN_EC) |
| 971 | seb->ec = si->mean_ec; |
| 972 | |
| 973 | list_for_each_entry(seb, &si->erase, u.list) |
| 974 | if (seb->ec == UBI_SCAN_UNKNOWN_EC) |
| 975 | seb->ec = si->mean_ec; |
| 976 | |
| 977 | err = paranoid_check_si(ubi, si); |
| 978 | if (err) { |
| 979 | if (err > 0) |
| 980 | err = -EINVAL; |
| 981 | goto out_vidh; |
| 982 | } |
| 983 | |
| 984 | ubi_free_vid_hdr(ubi, vidh); |
| 985 | kfree(ech); |
| 986 | |
| 987 | return si; |
| 988 | |
| 989 | out_vidh: |
| 990 | ubi_free_vid_hdr(ubi, vidh); |
| 991 | out_ech: |
| 992 | kfree(ech); |
| 993 | out_si: |
| 994 | ubi_scan_destroy_si(si); |
| 995 | return ERR_PTR(err); |
| 996 | } |
| 997 | |
| 998 | /** |
| 999 | * destroy_sv - free the scanning volume information |
| 1000 | * @sv: scanning volume information |
| 1001 | * |
| 1002 | * This function destroys the volume RB-tree (@sv->root) and the scanning |
| 1003 | * volume information. |
| 1004 | */ |
| 1005 | static void destroy_sv(struct ubi_scan_volume *sv) |
| 1006 | { |
| 1007 | struct ubi_scan_leb *seb; |
| 1008 | struct rb_node *this = sv->root.rb_node; |
| 1009 | |
| 1010 | while (this) { |
| 1011 | if (this->rb_left) |
| 1012 | this = this->rb_left; |
| 1013 | else if (this->rb_right) |
| 1014 | this = this->rb_right; |
| 1015 | else { |
| 1016 | seb = rb_entry(this, struct ubi_scan_leb, u.rb); |
| 1017 | this = rb_parent(this); |
| 1018 | if (this) { |
| 1019 | if (this->rb_left == &seb->u.rb) |
| 1020 | this->rb_left = NULL; |
| 1021 | else |
| 1022 | this->rb_right = NULL; |
| 1023 | } |
| 1024 | |
| 1025 | kfree(seb); |
| 1026 | } |
| 1027 | } |
| 1028 | kfree(sv); |
| 1029 | } |
| 1030 | |
| 1031 | /** |
| 1032 | * ubi_scan_destroy_si - destroy scanning information. |
| 1033 | * @si: scanning information |
| 1034 | */ |
| 1035 | void ubi_scan_destroy_si(struct ubi_scan_info *si) |
| 1036 | { |
| 1037 | struct ubi_scan_leb *seb, *seb_tmp; |
| 1038 | struct ubi_scan_volume *sv; |
| 1039 | struct rb_node *rb; |
| 1040 | |
| 1041 | list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) { |
| 1042 | list_del(&seb->u.list); |
| 1043 | kfree(seb); |
| 1044 | } |
| 1045 | list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) { |
| 1046 | list_del(&seb->u.list); |
| 1047 | kfree(seb); |
| 1048 | } |
| 1049 | list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) { |
| 1050 | list_del(&seb->u.list); |
| 1051 | kfree(seb); |
| 1052 | } |
| 1053 | list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) { |
| 1054 | list_del(&seb->u.list); |
| 1055 | kfree(seb); |
| 1056 | } |
| 1057 | |
| 1058 | /* Destroy the volume RB-tree */ |
| 1059 | rb = si->volumes.rb_node; |
| 1060 | while (rb) { |
| 1061 | if (rb->rb_left) |
| 1062 | rb = rb->rb_left; |
| 1063 | else if (rb->rb_right) |
| 1064 | rb = rb->rb_right; |
| 1065 | else { |
| 1066 | sv = rb_entry(rb, struct ubi_scan_volume, rb); |
| 1067 | |
| 1068 | rb = rb_parent(rb); |
| 1069 | if (rb) { |
| 1070 | if (rb->rb_left == &sv->rb) |
| 1071 | rb->rb_left = NULL; |
| 1072 | else |
| 1073 | rb->rb_right = NULL; |
| 1074 | } |
| 1075 | |
| 1076 | destroy_sv(sv); |
| 1077 | } |
| 1078 | } |
| 1079 | |
| 1080 | kfree(si); |
| 1081 | } |
| 1082 | |
| 1083 | #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID |
| 1084 | |
| 1085 | /** |
| 1086 | * paranoid_check_si - check if the scanning information is correct and |
| 1087 | * consistent. |
| 1088 | * @ubi: UBI device description object |
| 1089 | * @si: scanning information |
| 1090 | * |
| 1091 | * This function returns zero if the scanning information is all right, %1 if |
| 1092 | * not and a negative error code if an error occurred. |
| 1093 | */ |
| 1094 | static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si) |
| 1095 | { |
| 1096 | int pnum, err, vols_found = 0; |
| 1097 | struct rb_node *rb1, *rb2; |
| 1098 | struct ubi_scan_volume *sv; |
| 1099 | struct ubi_scan_leb *seb, *last_seb; |
| 1100 | uint8_t *buf; |
| 1101 | |
| 1102 | /* |
| 1103 | * At first, check that scanning information is OK. |
| 1104 | */ |
| 1105 | ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { |
| 1106 | int leb_count = 0; |
| 1107 | |
| 1108 | cond_resched(); |
| 1109 | |
| 1110 | vols_found += 1; |
| 1111 | |
| 1112 | if (si->is_empty) { |
| 1113 | ubi_err("bad is_empty flag"); |
| 1114 | goto bad_sv; |
| 1115 | } |
| 1116 | |
| 1117 | if (sv->vol_id < 0 || sv->highest_lnum < 0 || |
| 1118 | sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 || |
| 1119 | sv->data_pad < 0 || sv->last_data_size < 0) { |
| 1120 | ubi_err("negative values"); |
| 1121 | goto bad_sv; |
| 1122 | } |
| 1123 | |
| 1124 | if (sv->vol_id >= UBI_MAX_VOLUMES && |
| 1125 | sv->vol_id < UBI_INTERNAL_VOL_START) { |
| 1126 | ubi_err("bad vol_id"); |
| 1127 | goto bad_sv; |
| 1128 | } |
| 1129 | |
| 1130 | if (sv->vol_id > si->highest_vol_id) { |
| 1131 | ubi_err("highest_vol_id is %d, but vol_id %d is there", |
| 1132 | si->highest_vol_id, sv->vol_id); |
| 1133 | goto out; |
| 1134 | } |
| 1135 | |
| 1136 | if (sv->vol_type != UBI_DYNAMIC_VOLUME && |
| 1137 | sv->vol_type != UBI_STATIC_VOLUME) { |
| 1138 | ubi_err("bad vol_type"); |
| 1139 | goto bad_sv; |
| 1140 | } |
| 1141 | |
| 1142 | if (sv->data_pad > ubi->leb_size / 2) { |
| 1143 | ubi_err("bad data_pad"); |
| 1144 | goto bad_sv; |
| 1145 | } |
| 1146 | |
| 1147 | last_seb = NULL; |
| 1148 | ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { |
| 1149 | cond_resched(); |
| 1150 | |
| 1151 | last_seb = seb; |
| 1152 | leb_count += 1; |
| 1153 | |
| 1154 | if (seb->pnum < 0 || seb->ec < 0) { |
| 1155 | ubi_err("negative values"); |
| 1156 | goto bad_seb; |
| 1157 | } |
| 1158 | |
| 1159 | if (seb->ec < si->min_ec) { |
| 1160 | ubi_err("bad si->min_ec (%d), %d found", |
| 1161 | si->min_ec, seb->ec); |
| 1162 | goto bad_seb; |
| 1163 | } |
| 1164 | |
| 1165 | if (seb->ec > si->max_ec) { |
| 1166 | ubi_err("bad si->max_ec (%d), %d found", |
| 1167 | si->max_ec, seb->ec); |
| 1168 | goto bad_seb; |
| 1169 | } |
| 1170 | |
| 1171 | if (seb->pnum >= ubi->peb_count) { |
| 1172 | ubi_err("too high PEB number %d, total PEBs %d", |
| 1173 | seb->pnum, ubi->peb_count); |
| 1174 | goto bad_seb; |
| 1175 | } |
| 1176 | |
| 1177 | if (sv->vol_type == UBI_STATIC_VOLUME) { |
| 1178 | if (seb->lnum >= sv->used_ebs) { |
| 1179 | ubi_err("bad lnum or used_ebs"); |
| 1180 | goto bad_seb; |
| 1181 | } |
| 1182 | } else { |
| 1183 | if (sv->used_ebs != 0) { |
| 1184 | ubi_err("non-zero used_ebs"); |
| 1185 | goto bad_seb; |
| 1186 | } |
| 1187 | } |
| 1188 | |
| 1189 | if (seb->lnum > sv->highest_lnum) { |
| 1190 | ubi_err("incorrect highest_lnum or lnum"); |
| 1191 | goto bad_seb; |
| 1192 | } |
| 1193 | } |
| 1194 | |
| 1195 | if (sv->leb_count != leb_count) { |
| 1196 | ubi_err("bad leb_count, %d objects in the tree", |
| 1197 | leb_count); |
| 1198 | goto bad_sv; |
| 1199 | } |
| 1200 | |
| 1201 | if (!last_seb) |
| 1202 | continue; |
| 1203 | |
| 1204 | seb = last_seb; |
| 1205 | |
| 1206 | if (seb->lnum != sv->highest_lnum) { |
| 1207 | ubi_err("bad highest_lnum"); |
| 1208 | goto bad_seb; |
| 1209 | } |
| 1210 | } |
| 1211 | |
| 1212 | if (vols_found != si->vols_found) { |
| 1213 | ubi_err("bad si->vols_found %d, should be %d", |
| 1214 | si->vols_found, vols_found); |
| 1215 | goto out; |
| 1216 | } |
| 1217 | |
| 1218 | /* Check that scanning information is correct */ |
| 1219 | ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { |
| 1220 | last_seb = NULL; |
| 1221 | ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { |
| 1222 | int vol_type; |
| 1223 | |
| 1224 | cond_resched(); |
| 1225 | |
| 1226 | last_seb = seb; |
| 1227 | |
| 1228 | err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1); |
| 1229 | if (err && err != UBI_IO_BITFLIPS) { |
| 1230 | ubi_err("VID header is not OK (%d)", err); |
| 1231 | if (err > 0) |
| 1232 | err = -EIO; |
| 1233 | return err; |
| 1234 | } |
| 1235 | |
| 1236 | vol_type = vidh->vol_type == UBI_VID_DYNAMIC ? |
| 1237 | UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; |
| 1238 | if (sv->vol_type != vol_type) { |
| 1239 | ubi_err("bad vol_type"); |
| 1240 | goto bad_vid_hdr; |
| 1241 | } |
| 1242 | |
| 1243 | if (seb->sqnum != be64_to_cpu(vidh->sqnum)) { |
| 1244 | ubi_err("bad sqnum %llu", seb->sqnum); |
| 1245 | goto bad_vid_hdr; |
| 1246 | } |
| 1247 | |
| 1248 | if (sv->vol_id != be32_to_cpu(vidh->vol_id)) { |
| 1249 | ubi_err("bad vol_id %d", sv->vol_id); |
| 1250 | goto bad_vid_hdr; |
| 1251 | } |
| 1252 | |
| 1253 | if (sv->compat != vidh->compat) { |
| 1254 | ubi_err("bad compat %d", vidh->compat); |
| 1255 | goto bad_vid_hdr; |
| 1256 | } |
| 1257 | |
| 1258 | if (seb->lnum != be32_to_cpu(vidh->lnum)) { |
| 1259 | ubi_err("bad lnum %d", seb->lnum); |
| 1260 | goto bad_vid_hdr; |
| 1261 | } |
| 1262 | |
| 1263 | if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) { |
| 1264 | ubi_err("bad used_ebs %d", sv->used_ebs); |
| 1265 | goto bad_vid_hdr; |
| 1266 | } |
| 1267 | |
| 1268 | if (sv->data_pad != be32_to_cpu(vidh->data_pad)) { |
| 1269 | ubi_err("bad data_pad %d", sv->data_pad); |
| 1270 | goto bad_vid_hdr; |
| 1271 | } |
| 1272 | |
| 1273 | if (seb->leb_ver != be32_to_cpu(vidh->leb_ver)) { |
| 1274 | ubi_err("bad leb_ver %u", seb->leb_ver); |
| 1275 | goto bad_vid_hdr; |
| 1276 | } |
| 1277 | } |
| 1278 | |
| 1279 | if (!last_seb) |
| 1280 | continue; |
| 1281 | |
| 1282 | if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) { |
| 1283 | ubi_err("bad highest_lnum %d", sv->highest_lnum); |
| 1284 | goto bad_vid_hdr; |
| 1285 | } |
| 1286 | |
| 1287 | if (sv->last_data_size != be32_to_cpu(vidh->data_size)) { |
| 1288 | ubi_err("bad last_data_size %d", sv->last_data_size); |
| 1289 | goto bad_vid_hdr; |
| 1290 | } |
| 1291 | } |
| 1292 | |
| 1293 | /* |
| 1294 | * Make sure that all the physical eraseblocks are in one of the lists |
| 1295 | * or trees. |
| 1296 | */ |
| 1297 | buf = kzalloc(ubi->peb_count, GFP_KERNEL); |
| 1298 | if (!buf) |
| 1299 | return -ENOMEM; |
| 1300 | |
| 1301 | for (pnum = 0; pnum < ubi->peb_count; pnum++) { |
| 1302 | err = ubi_io_is_bad(ubi, pnum); |
| 1303 | if (err < 0) { |
| 1304 | kfree(buf); |
| 1305 | return err; |
| 1306 | } |
| 1307 | else if (err) |
| 1308 | buf[pnum] = 1; |
| 1309 | } |
| 1310 | |
| 1311 | ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) |
| 1312 | ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) |
| 1313 | buf[seb->pnum] = 1; |
| 1314 | |
| 1315 | list_for_each_entry(seb, &si->free, u.list) |
| 1316 | buf[seb->pnum] = 1; |
| 1317 | |
| 1318 | list_for_each_entry(seb, &si->corr, u.list) |
| 1319 | buf[seb->pnum] = 1; |
| 1320 | |
| 1321 | list_for_each_entry(seb, &si->erase, u.list) |
| 1322 | buf[seb->pnum] = 1; |
| 1323 | |
| 1324 | list_for_each_entry(seb, &si->alien, u.list) |
| 1325 | buf[seb->pnum] = 1; |
| 1326 | |
| 1327 | err = 0; |
| 1328 | for (pnum = 0; pnum < ubi->peb_count; pnum++) |
| 1329 | if (!buf[pnum]) { |
| 1330 | ubi_err("PEB %d is not referred", pnum); |
| 1331 | err = 1; |
| 1332 | } |
| 1333 | |
| 1334 | kfree(buf); |
| 1335 | if (err) |
| 1336 | goto out; |
| 1337 | return 0; |
| 1338 | |
| 1339 | bad_seb: |
| 1340 | ubi_err("bad scanning information about LEB %d", seb->lnum); |
| 1341 | ubi_dbg_dump_seb(seb, 0); |
| 1342 | ubi_dbg_dump_sv(sv); |
| 1343 | goto out; |
| 1344 | |
| 1345 | bad_sv: |
| 1346 | ubi_err("bad scanning information about volume %d", sv->vol_id); |
| 1347 | ubi_dbg_dump_sv(sv); |
| 1348 | goto out; |
| 1349 | |
| 1350 | bad_vid_hdr: |
| 1351 | ubi_err("bad scanning information about volume %d", sv->vol_id); |
| 1352 | ubi_dbg_dump_sv(sv); |
| 1353 | ubi_dbg_dump_vid_hdr(vidh); |
| 1354 | |
| 1355 | out: |
| 1356 | ubi_dbg_dump_stack(); |
| 1357 | return 1; |
| 1358 | } |
| 1359 | |
| 1360 | #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */ |