blob: be01e1e82e594f9ed74fd825702590258c92fba6 [file] [log] [blame]
Peter Pan0a6d6ba2018-08-16 17:30:12 +02001/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (c) 2016-2017 Micron Technology, Inc.
4 *
5 * Authors:
6 * Peter Pan <peterpandong@micron.com>
7 */
8#ifndef __LINUX_MTD_SPINAND_H
9#define __LINUX_MTD_SPINAND_H
10
11#ifndef __UBOOT__
12#include <linux/mutex.h>
13#include <linux/bitops.h>
14#include <linux/device.h>
15#include <linux/mtd/mtd.h>
16#include <linux/mtd/nand.h>
17#include <linux/spi/spi.h>
18#include <linux/spi/spi-mem.h>
19#else
20#include <common.h>
21#include <spi.h>
22#include <spi-mem.h>
23#include <linux/mtd/nand.h>
24#endif
25
26/**
27 * Standard SPI NAND flash operations
28 */
29
30#define SPINAND_RESET_OP \
31 SPI_MEM_OP(SPI_MEM_OP_CMD(0xff, 1), \
32 SPI_MEM_OP_NO_ADDR, \
33 SPI_MEM_OP_NO_DUMMY, \
34 SPI_MEM_OP_NO_DATA)
35
36#define SPINAND_WR_EN_DIS_OP(enable) \
37 SPI_MEM_OP(SPI_MEM_OP_CMD((enable) ? 0x06 : 0x04, 1), \
38 SPI_MEM_OP_NO_ADDR, \
39 SPI_MEM_OP_NO_DUMMY, \
40 SPI_MEM_OP_NO_DATA)
41
42#define SPINAND_READID_OP(ndummy, buf, len) \
43 SPI_MEM_OP(SPI_MEM_OP_CMD(0x9f, 1), \
44 SPI_MEM_OP_NO_ADDR, \
45 SPI_MEM_OP_DUMMY(ndummy, 1), \
46 SPI_MEM_OP_DATA_IN(len, buf, 1))
47
48#define SPINAND_SET_FEATURE_OP(reg, valptr) \
49 SPI_MEM_OP(SPI_MEM_OP_CMD(0x1f, 1), \
50 SPI_MEM_OP_ADDR(1, reg, 1), \
51 SPI_MEM_OP_NO_DUMMY, \
52 SPI_MEM_OP_DATA_OUT(1, valptr, 1))
53
54#define SPINAND_GET_FEATURE_OP(reg, valptr) \
55 SPI_MEM_OP(SPI_MEM_OP_CMD(0x0f, 1), \
56 SPI_MEM_OP_ADDR(1, reg, 1), \
57 SPI_MEM_OP_NO_DUMMY, \
58 SPI_MEM_OP_DATA_IN(1, valptr, 1))
59
60#define SPINAND_BLK_ERASE_OP(addr) \
61 SPI_MEM_OP(SPI_MEM_OP_CMD(0xd8, 1), \
62 SPI_MEM_OP_ADDR(3, addr, 1), \
63 SPI_MEM_OP_NO_DUMMY, \
64 SPI_MEM_OP_NO_DATA)
65
66#define SPINAND_PAGE_READ_OP(addr) \
67 SPI_MEM_OP(SPI_MEM_OP_CMD(0x13, 1), \
68 SPI_MEM_OP_ADDR(3, addr, 1), \
69 SPI_MEM_OP_NO_DUMMY, \
70 SPI_MEM_OP_NO_DATA)
71
72#define SPINAND_PAGE_READ_FROM_CACHE_OP(fast, addr, ndummy, buf, len) \
73 SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b : 0x03, 1), \
74 SPI_MEM_OP_ADDR(2, addr, 1), \
75 SPI_MEM_OP_DUMMY(ndummy, 1), \
76 SPI_MEM_OP_DATA_IN(len, buf, 1))
77
78#define SPINAND_PAGE_READ_FROM_CACHE_X2_OP(addr, ndummy, buf, len) \
79 SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1), \
80 SPI_MEM_OP_ADDR(2, addr, 1), \
81 SPI_MEM_OP_DUMMY(ndummy, 1), \
82 SPI_MEM_OP_DATA_IN(len, buf, 2))
83
84#define SPINAND_PAGE_READ_FROM_CACHE_X4_OP(addr, ndummy, buf, len) \
85 SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1), \
86 SPI_MEM_OP_ADDR(2, addr, 1), \
87 SPI_MEM_OP_DUMMY(ndummy, 1), \
88 SPI_MEM_OP_DATA_IN(len, buf, 4))
89
90#define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(addr, ndummy, buf, len) \
91 SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1), \
92 SPI_MEM_OP_ADDR(2, addr, 2), \
93 SPI_MEM_OP_DUMMY(ndummy, 2), \
94 SPI_MEM_OP_DATA_IN(len, buf, 2))
95
96#define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(addr, ndummy, buf, len) \
97 SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1), \
98 SPI_MEM_OP_ADDR(2, addr, 4), \
99 SPI_MEM_OP_DUMMY(ndummy, 4), \
100 SPI_MEM_OP_DATA_IN(len, buf, 4))
101
102#define SPINAND_PROG_EXEC_OP(addr) \
103 SPI_MEM_OP(SPI_MEM_OP_CMD(0x10, 1), \
104 SPI_MEM_OP_ADDR(3, addr, 1), \
105 SPI_MEM_OP_NO_DUMMY, \
106 SPI_MEM_OP_NO_DATA)
107
108#define SPINAND_PROG_LOAD(reset, addr, buf, len) \
109 SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x02 : 0x84, 1), \
110 SPI_MEM_OP_ADDR(2, addr, 1), \
111 SPI_MEM_OP_NO_DUMMY, \
112 SPI_MEM_OP_DATA_OUT(len, buf, 1))
113
114#define SPINAND_PROG_LOAD_X4(reset, addr, buf, len) \
115 SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x32 : 0x34, 1), \
116 SPI_MEM_OP_ADDR(2, addr, 1), \
117 SPI_MEM_OP_NO_DUMMY, \
118 SPI_MEM_OP_DATA_OUT(len, buf, 4))
119
120/**
121 * Standard SPI NAND flash commands
122 */
123#define SPINAND_CMD_PROG_LOAD_X4 0x32
124#define SPINAND_CMD_PROG_LOAD_RDM_DATA_X4 0x34
125
126/* feature register */
127#define REG_BLOCK_LOCK 0xa0
128#define BL_ALL_UNLOCKED 0x00
129
130/* configuration register */
131#define REG_CFG 0xb0
132#define CFG_OTP_ENABLE BIT(6)
133#define CFG_ECC_ENABLE BIT(4)
134#define CFG_QUAD_ENABLE BIT(0)
135
136/* status register */
137#define REG_STATUS 0xc0
138#define STATUS_BUSY BIT(0)
139#define STATUS_ERASE_FAILED BIT(2)
140#define STATUS_PROG_FAILED BIT(3)
141#define STATUS_ECC_MASK GENMASK(5, 4)
142#define STATUS_ECC_NO_BITFLIPS (0 << 4)
143#define STATUS_ECC_HAS_BITFLIPS (1 << 4)
144#define STATUS_ECC_UNCOR_ERROR (2 << 4)
145
146struct spinand_op;
147struct spinand_device;
148
149#define SPINAND_MAX_ID_LEN 4
150
151/**
152 * struct spinand_id - SPI NAND id structure
153 * @data: buffer containing the id bytes. Currently 4 bytes large, but can
154 * be extended if required
155 * @len: ID length
156 *
157 * struct_spinand_id->data contains all bytes returned after a READ_ID command,
158 * including dummy bytes if the chip does not emit ID bytes right after the
159 * READ_ID command. The responsibility to extract real ID bytes is left to
160 * struct_manufacurer_ops->detect().
161 */
162struct spinand_id {
163 u8 data[SPINAND_MAX_ID_LEN];
164 int len;
165};
166
167/**
168 * struct manufacurer_ops - SPI NAND manufacturer specific operations
169 * @detect: detect a SPI NAND device. Every time a SPI NAND device is probed
170 * the core calls the struct_manufacurer_ops->detect() hook of each
171 * registered manufacturer until one of them return 1. Note that
172 * the first thing to check in this hook is that the manufacturer ID
173 * in struct_spinand_device->id matches the manufacturer whose
174 * ->detect() hook has been called. Should return 1 if there's a
175 * match, 0 if the manufacturer ID does not match and a negative
176 * error code otherwise. When true is returned, the core assumes
177 * that properties of the NAND chip (spinand->base.memorg and
178 * spinand->base.eccreq) have been filled
179 * @init: initialize a SPI NAND device
180 * @cleanup: cleanup a SPI NAND device
181 *
182 * Each SPI NAND manufacturer driver should implement this interface so that
183 * NAND chips coming from this vendor can be detected and initialized properly.
184 */
185struct spinand_manufacturer_ops {
186 int (*detect)(struct spinand_device *spinand);
187 int (*init)(struct spinand_device *spinand);
188 void (*cleanup)(struct spinand_device *spinand);
189};
190
191/**
192 * struct spinand_manufacturer - SPI NAND manufacturer instance
193 * @id: manufacturer ID
194 * @name: manufacturer name
195 * @ops: manufacturer operations
196 */
197struct spinand_manufacturer {
198 u8 id;
199 char *name;
200 const struct spinand_manufacturer_ops *ops;
201};
202
Peter Pan883d8772018-08-16 17:30:13 +0200203/* SPI NAND manufacturers */
Stefan Roese9e5c2a72018-08-16 18:05:08 +0200204extern const struct spinand_manufacturer gigadevice_spinand_manufacturer;
Boris Brezillon6f041cc2018-08-16 17:30:15 +0200205extern const struct spinand_manufacturer macronix_spinand_manufacturer;
Peter Pan883d8772018-08-16 17:30:13 +0200206extern const struct spinand_manufacturer micron_spinand_manufacturer;
Frieder Schrempf3181c0a2018-08-16 17:30:14 +0200207extern const struct spinand_manufacturer winbond_spinand_manufacturer;
Peter Pan883d8772018-08-16 17:30:13 +0200208
Peter Pan0a6d6ba2018-08-16 17:30:12 +0200209/**
210 * struct spinand_op_variants - SPI NAND operation variants
211 * @ops: the list of variants for a given operation
212 * @nops: the number of variants
213 *
214 * Some operations like read-from-cache/write-to-cache have several variants
215 * depending on the number of IO lines you use to transfer data or address
216 * cycles. This structure is a way to describe the different variants supported
217 * by a chip and let the core pick the best one based on the SPI mem controller
218 * capabilities.
219 */
220struct spinand_op_variants {
221 const struct spi_mem_op *ops;
222 unsigned int nops;
223};
224
225#define SPINAND_OP_VARIANTS(name, ...) \
226 const struct spinand_op_variants name = { \
227 .ops = (struct spi_mem_op[]) { __VA_ARGS__ }, \
228 .nops = sizeof((struct spi_mem_op[]){ __VA_ARGS__ }) / \
229 sizeof(struct spi_mem_op), \
230 }
231
232/**
233 * spinand_ecc_info - description of the on-die ECC implemented by a SPI NAND
234 * chip
235 * @get_status: get the ECC status. Should return a positive number encoding
236 * the number of corrected bitflips if correction was possible or
237 * -EBADMSG if there are uncorrectable errors. I can also return
238 * other negative error codes if the error is not caused by
239 * uncorrectable bitflips
240 * @ooblayout: the OOB layout used by the on-die ECC implementation
241 */
242struct spinand_ecc_info {
243 int (*get_status)(struct spinand_device *spinand, u8 status);
244 const struct mtd_ooblayout_ops *ooblayout;
245};
246
247#define SPINAND_HAS_QE_BIT BIT(0)
248
249/**
250 * struct spinand_info - Structure used to describe SPI NAND chips
251 * @model: model name
252 * @devid: device ID
253 * @flags: OR-ing of the SPINAND_XXX flags
254 * @memorg: memory organization
255 * @eccreq: ECC requirements
256 * @eccinfo: on-die ECC info
257 * @op_variants: operations variants
258 * @op_variants.read_cache: variants of the read-cache operation
259 * @op_variants.write_cache: variants of the write-cache operation
260 * @op_variants.update_cache: variants of the update-cache operation
261 * @select_target: function used to select a target/die. Required only for
262 * multi-die chips
263 *
264 * Each SPI NAND manufacturer driver should have a spinand_info table
265 * describing all the chips supported by the driver.
266 */
267struct spinand_info {
268 const char *model;
269 u8 devid;
270 u32 flags;
271 struct nand_memory_organization memorg;
272 struct nand_ecc_req eccreq;
273 struct spinand_ecc_info eccinfo;
274 struct {
275 const struct spinand_op_variants *read_cache;
276 const struct spinand_op_variants *write_cache;
277 const struct spinand_op_variants *update_cache;
278 } op_variants;
279 int (*select_target)(struct spinand_device *spinand,
280 unsigned int target);
281};
282
283#define SPINAND_INFO_OP_VARIANTS(__read, __write, __update) \
284 { \
285 .read_cache = __read, \
286 .write_cache = __write, \
287 .update_cache = __update, \
288 }
289
290#define SPINAND_ECCINFO(__ooblayout, __get_status) \
291 .eccinfo = { \
292 .ooblayout = __ooblayout, \
293 .get_status = __get_status, \
294 }
295
296#define SPINAND_SELECT_TARGET(__func) \
297 .select_target = __func,
298
299#define SPINAND_INFO(__model, __id, __memorg, __eccreq, __op_variants, \
300 __flags, ...) \
301 { \
302 .model = __model, \
303 .devid = __id, \
304 .memorg = __memorg, \
305 .eccreq = __eccreq, \
306 .op_variants = __op_variants, \
307 .flags = __flags, \
308 __VA_ARGS__ \
309 }
310
311/**
312 * struct spinand_device - SPI NAND device instance
313 * @base: NAND device instance
314 * @slave: pointer to the SPI slave object
315 * @lock: lock used to serialize accesses to the NAND
316 * @id: NAND ID as returned by READ_ID
317 * @flags: NAND flags
318 * @op_templates: various SPI mem op templates
319 * @op_templates.read_cache: read cache op template
320 * @op_templates.write_cache: write cache op template
321 * @op_templates.update_cache: update cache op template
322 * @select_target: select a specific target/die. Usually called before sending
323 * a command addressing a page or an eraseblock embedded in
324 * this die. Only required if your chip exposes several dies
325 * @cur_target: currently selected target/die
326 * @eccinfo: on-die ECC information
327 * @cfg_cache: config register cache. One entry per die
328 * @databuf: bounce buffer for data
329 * @oobbuf: bounce buffer for OOB data
330 * @scratchbuf: buffer used for everything but page accesses. This is needed
331 * because the spi-mem interface explicitly requests that buffers
332 * passed in spi_mem_op be DMA-able, so we can't based the bufs on
333 * the stack
334 * @manufacturer: SPI NAND manufacturer information
335 * @priv: manufacturer private data
336 */
337struct spinand_device {
338 struct nand_device base;
339#ifndef __UBOOT__
340 struct spi_mem *spimem;
341 struct mutex lock;
342#else
343 struct spi_slave *slave;
344#endif
345 struct spinand_id id;
346 u32 flags;
347
348 struct {
349 const struct spi_mem_op *read_cache;
350 const struct spi_mem_op *write_cache;
351 const struct spi_mem_op *update_cache;
352 } op_templates;
353
354 int (*select_target)(struct spinand_device *spinand,
355 unsigned int target);
356 unsigned int cur_target;
357
358 struct spinand_ecc_info eccinfo;
359
360 u8 *cfg_cache;
361 u8 *databuf;
362 u8 *oobbuf;
363 u8 *scratchbuf;
364 const struct spinand_manufacturer *manufacturer;
365 void *priv;
366};
367
368/**
369 * mtd_to_spinand() - Get the SPI NAND device attached to an MTD instance
370 * @mtd: MTD instance
371 *
372 * Return: the SPI NAND device attached to @mtd.
373 */
374static inline struct spinand_device *mtd_to_spinand(struct mtd_info *mtd)
375{
376 return container_of(mtd_to_nanddev(mtd), struct spinand_device, base);
377}
378
379/**
380 * spinand_to_mtd() - Get the MTD device embedded in a SPI NAND device
381 * @spinand: SPI NAND device
382 *
383 * Return: the MTD device embedded in @spinand.
384 */
385static inline struct mtd_info *spinand_to_mtd(struct spinand_device *spinand)
386{
387 return nanddev_to_mtd(&spinand->base);
388}
389
390/**
391 * nand_to_spinand() - Get the SPI NAND device embedding an NAND object
392 * @nand: NAND object
393 *
394 * Return: the SPI NAND device embedding @nand.
395 */
396static inline struct spinand_device *nand_to_spinand(struct nand_device *nand)
397{
398 return container_of(nand, struct spinand_device, base);
399}
400
401/**
402 * spinand_to_nand() - Get the NAND device embedded in a SPI NAND object
403 * @spinand: SPI NAND device
404 *
405 * Return: the NAND device embedded in @spinand.
406 */
407static inline struct nand_device *
408spinand_to_nand(struct spinand_device *spinand)
409{
410 return &spinand->base;
411}
412
413/**
414 * spinand_set_of_node - Attach a DT node to a SPI NAND device
415 * @spinand: SPI NAND device
416 * @np: DT node
417 *
418 * Attach a DT node to a SPI NAND device.
419 */
420static inline void spinand_set_of_node(struct spinand_device *spinand,
421 const struct device_node *np)
422{
423 nanddev_set_of_node(&spinand->base, np);
424}
425
426int spinand_match_and_init(struct spinand_device *dev,
427 const struct spinand_info *table,
428 unsigned int table_size, u8 devid);
429
430int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val);
431int spinand_select_target(struct spinand_device *spinand, unsigned int target);
432
433#endif /* __LINUX_MTD_SPINAND_H */