wdenk | fe8c280 | 2002-11-03 00:38:21 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * (C) Copyright 2002 |
| 3 | * Custom IDEAS, Inc. <www.cideas.com> |
| 4 | * Gerald Van Baren <vanbaren@cideas.com> |
| 5 | * |
| 6 | * See file CREDITS for list of people who contributed to this |
| 7 | * project. |
| 8 | * |
| 9 | * This program is free software; you can redistribute it and/or |
| 10 | * modify it under the terms of the GNU General Public License as |
| 11 | * published by the Free Software Foundation; either version 2 of |
| 12 | * the License, or (at your option) any later version. |
| 13 | * |
| 14 | * This program is distributed in the hope that it will be useful, |
| 15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 17 | * GNU General Public License for more details. |
| 18 | * |
| 19 | * You should have received a copy of the GNU General Public License |
| 20 | * along with this program; if not, write to the Free Software |
| 21 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| 22 | * MA 02111-1307 USA |
| 23 | */ |
| 24 | |
| 25 | #include <asm/u-boot.h> |
| 26 | #include <common.h> |
| 27 | #include <ioports.h> |
| 28 | #include <mpc8260.h> |
| 29 | /*NO// #include <memtest.h> */ |
| 30 | #include <i2c.h> |
| 31 | #include <spi.h> |
| 32 | |
| 33 | #ifdef CONFIG_SHOW_BOOT_PROGRESS |
| 34 | #include <status_led.h> |
| 35 | #endif |
| 36 | |
| 37 | #include "clkinit.h" |
| 38 | #include "ioconfig.h" /* I/O configuration table */ |
| 39 | |
| 40 | /* |
| 41 | * PBI Page Based Interleaving |
| 42 | * PSDMR_PBI page based interleaving |
| 43 | * 0 bank based interleaving |
| 44 | * External Address Multiplexing (EAMUX) adds a clock to address cycles |
| 45 | * (this can help with marginal board layouts) |
| 46 | * PSDMR_EAMUX adds a clock |
| 47 | * 0 no extra clock |
| 48 | * Buffer Command (BUFCMD) adds a clock to command cycles. |
| 49 | * PSDMR_BUFCMD adds a clock |
| 50 | * 0 no extra clock |
| 51 | */ |
| 52 | #define CONFIG_PBI PSDMR_PBI |
| 53 | #define PESSIMISTIC_SDRAM 0 |
| 54 | #define EAMUX 0 /* EST requires EAMUX */ |
| 55 | #define BUFCMD 0 |
| 56 | |
| 57 | /* |
| 58 | * ADC/DAC Defines: |
| 59 | */ |
| 60 | #define INITIAL_SAMPLE_RATE 10016 /* Initial Daq sample rate */ |
| 61 | #define INITIAL_RIGHT_JUST 0 /* Initial DAC right justification */ |
| 62 | #define INITIAL_MCLK_DIVIDE 0 /* Initial MCLK Divide */ |
| 63 | #define INITIAL_SAMPLE_64X 1 /* Initial 64x clocking mode */ |
| 64 | #define INITIAL_SAMPLE_128X 0 /* Initial 128x clocking mode */ |
| 65 | |
| 66 | /* |
| 67 | * ADC Defines: |
| 68 | */ |
| 69 | #define I2C_ADC_1_ADDR 0x0E /* I2C Address of the ADC #1 */ |
| 70 | #define I2C_ADC_2_ADDR 0x0F /* I2C Address of the ADC #2 */ |
| 71 | |
| 72 | #define ADC_SDATA1_MASK 0x00020000 /* PA14 - CH12SDATA_PU */ |
| 73 | #define ADC_SDATA2_MASK 0x00010000 /* PA15 - CH34SDATA_PU */ |
| 74 | |
| 75 | #define ADC_VREF_CAP 100 /* VREF capacitor in uF */ |
| 76 | #define ADC_INITIAL_DELAY (10 * ADC_VREF_CAP) /* 10 usec per uF, in usec */ |
| 77 | #define ADC_SDATA_DELAY 100 /* ADC SDATA release delay in usec */ |
| 78 | #define ADC_CAL_DELAY (1000000 / INITIAL_SAMPLE_RATE * 4500) |
| 79 | /* Wait at least 4100 LRCLK's */ |
| 80 | |
| 81 | #define ADC_REG1_FRAME_START 0x80 /* Frame start */ |
| 82 | #define ADC_REG1_GROUND_CAL 0x40 /* Ground calibration enable */ |
| 83 | #define ADC_REG1_ANA_MOD_PDOWN 0x20 /* Analog modulator section in power down */ |
| 84 | #define ADC_REG1_DIG_MOD_PDOWN 0x10 /* Digital modulator section in power down */ |
| 85 | |
| 86 | #define ADC_REG2_128x 0x80 /* Oversample at 128x */ |
| 87 | #define ADC_REG2_CAL 0x40 /* System calibration enable */ |
| 88 | #define ADC_REG2_CHANGE_SIGN 0x20 /* Change sign enable */ |
| 89 | #define ADC_REG2_LR_DISABLE 0x10 /* Left/Right output disable */ |
| 90 | #define ADC_REG2_HIGH_PASS_DIS 0x08 /* High pass filter disable */ |
| 91 | #define ADC_REG2_SLAVE_MODE 0x04 /* Slave mode */ |
| 92 | #define ADC_REG2_DFS 0x02 /* Digital format select */ |
| 93 | #define ADC_REG2_MUTE 0x01 /* Mute */ |
| 94 | |
| 95 | #define ADC_REG7_ADDR_ENABLE 0x80 /* Address enable */ |
| 96 | #define ADC_REG7_PEAK_ENABLE 0x40 /* Peak enable */ |
| 97 | #define ADC_REG7_PEAK_UPDATE 0x20 /* Peak update */ |
| 98 | #define ADC_REG7_PEAK_FORMAT 0x10 /* Peak display format */ |
| 99 | #define ADC_REG7_DIG_FILT_PDOWN 0x04 /* Digital filter power down enable */ |
| 100 | #define ADC_REG7_FIR2_IN_EN 0x02 /* External FIR2 input enable */ |
| 101 | #define ADC_REG7_PSYCHO_EN 0x01 /* External pyscho filter input enable */ |
| 102 | |
| 103 | /* |
| 104 | * DAC Defines: |
| 105 | */ |
| 106 | |
| 107 | #define I2C_DAC_ADDR 0x11 /* I2C Address of the DAC */ |
| 108 | |
| 109 | #define DAC_RST_MASK 0x00008000 /* PA16 - DAC_RST* */ |
| 110 | #define DAC_RESET_DELAY 100 /* DAC reset delay in usec */ |
| 111 | #define DAC_INITIAL_DELAY 5000 /* DAC initialization delay in usec */ |
| 112 | |
| 113 | #define DAC_REG1_AMUTE 0x80 /* Auto-mute */ |
| 114 | |
| 115 | #define DAC_REG1_LEFT_JUST_24_BIT (0 << 4) /* Fmt 0: Left justified 24 bit */ |
| 116 | #define DAC_REG1_I2S_24_BIT (1 << 4) /* Fmt 1: I2S up to 24 bit */ |
| 117 | #define DAC_REG1_RIGHT_JUST_16BIT (2 << 4) /* Fmt 2: Right justified 16 bit */ |
| 118 | #define DAC_REG1_RIGHT_JUST_24BIT (3 << 4) /* Fmt 3: Right justified 24 bit */ |
| 119 | #define DAC_REG1_RIGHT_JUST_20BIT (4 << 4) /* Fmt 4: Right justified 20 bit */ |
| 120 | #define DAC_REG1_RIGHT_JUST_18BIT (5 << 4) /* Fmt 5: Right justified 18 bit */ |
| 121 | |
| 122 | #define DAC_REG1_DEM_NO (0 << 2) /* No De-emphasis */ |
| 123 | #define DAC_REG1_DEM_44KHZ (1 << 2) /* 44.1KHz De-emphasis */ |
| 124 | #define DAC_REG1_DEM_48KHZ (2 << 2) /* 48KHz De-emphasis */ |
| 125 | #define DAC_REG1_DEM_32KHZ (3 << 2) /* 32KHz De-emphasis */ |
| 126 | |
| 127 | #define DAC_REG1_SINGLE 0 /* 4- 50KHz sample rate */ |
| 128 | #define DAC_REG1_DOUBLE 1 /* 50-100KHz sample rate */ |
| 129 | #define DAC_REG1_QUAD 2 /* 100-200KHz sample rate */ |
| 130 | #define DAC_REG1_DSD 3 /* Direct Stream Data, DSD */ |
| 131 | |
| 132 | #define DAC_REG5_INVERT_A 0x80 /* Invert channel A */ |
| 133 | #define DAC_REG5_INVERT_B 0x40 /* Invert channel B */ |
| 134 | #define DAC_REG5_I2C_MODE 0x20 /* Control port (I2C) mode */ |
| 135 | #define DAC_REG5_POWER_DOWN 0x10 /* Power down mode */ |
| 136 | #define DAC_REG5_MUTEC_A_B 0x08 /* Mutec A=B */ |
| 137 | #define DAC_REG5_FREEZE 0x04 /* Freeze */ |
| 138 | #define DAC_REG5_MCLK_DIV 0x02 /* MCLK divide by 2 */ |
| 139 | #define DAC_REG5_RESERVED 0x01 /* Reserved */ |
| 140 | |
| 141 | /* ------------------------------------------------------------------------- */ |
| 142 | |
| 143 | /* |
| 144 | * Check Board Identity: |
| 145 | */ |
| 146 | |
| 147 | int checkboard(void) |
| 148 | { |
| 149 | printf ("SACSng\n"); |
| 150 | |
| 151 | return 0; |
| 152 | } |
| 153 | |
| 154 | /* ------------------------------------------------------------------------- */ |
| 155 | |
| 156 | long int initdram(int board_type) |
| 157 | { |
| 158 | volatile immap_t *immap = (immap_t *)CFG_IMMR; |
| 159 | volatile memctl8260_t *memctl = &immap->im_memctl; |
| 160 | volatile uchar c = 0; |
| 161 | volatile uchar *ramaddr = (uchar *)(CFG_SDRAM_BASE + 0x8); |
| 162 | uint psdmr = CFG_PSDMR; |
| 163 | int i; |
| 164 | uint psrt = 14; /* for no SPD */ |
| 165 | uint chipselects = 1; /* for no SPD */ |
| 166 | uint sdram_size = CFG_SDRAM0_SIZE * 1024 * 1024; /* for no SPD */ |
| 167 | uint or = CFG_OR2_PRELIM; /* for no SPD */ |
| 168 | #ifdef SDRAM_SPD_ADDR |
| 169 | uint data_width; |
| 170 | uint rows; |
| 171 | uint banks; |
| 172 | uint cols; |
| 173 | uint caslatency; |
| 174 | uint width; |
| 175 | uint rowst; |
| 176 | uint sdam; |
| 177 | uint bsma; |
| 178 | uint sda10; |
| 179 | u_char spd_size; |
| 180 | u_char data; |
| 181 | u_char cksum; |
| 182 | int j; |
| 183 | #endif |
| 184 | |
| 185 | #ifdef SDRAM_SPD_ADDR |
| 186 | /* Keep the compiler from complaining about potentially uninitialized vars */ |
| 187 | data_width = chipselects = rows = banks = cols = caslatency = psrt = 0; |
| 188 | |
| 189 | /* |
| 190 | * Read the SDRAM SPD EEPROM via I2C. |
| 191 | */ |
| 192 | i2c_read(SDRAM_SPD_ADDR, 0, 1, &data, 1); |
| 193 | spd_size = data; |
| 194 | cksum = data; |
| 195 | for(j = 1; j < 64; j++) { /* read only the checksummed bytes */ |
| 196 | /* note: the I2C address autoincrements when alen == 0 */ |
| 197 | i2c_read(SDRAM_SPD_ADDR, 0, 0, &data, 1); |
| 198 | if(j == 5) chipselects = data & 0x0F; |
| 199 | else if(j == 6) data_width = data; |
| 200 | else if(j == 7) data_width |= data << 8; |
| 201 | else if(j == 3) rows = data & 0x0F; |
| 202 | else if(j == 4) cols = data & 0x0F; |
| 203 | else if(j == 12) { |
| 204 | /* |
| 205 | * Refresh rate: this assumes the prescaler is set to |
| 206 | * approximately 1uSec per tick. |
| 207 | */ |
| 208 | switch(data & 0x7F) { |
| 209 | default: |
| 210 | case 0: psrt = 14 ; /* 15.625uS */ break; |
| 211 | case 1: psrt = 2; /* 3.9uS */ break; |
| 212 | case 2: psrt = 6; /* 7.8uS */ break; |
| 213 | case 3: psrt = 29; /* 31.3uS */ break; |
| 214 | case 4: psrt = 60; /* 62.5uS */ break; |
| 215 | case 5: psrt = 120; /* 125uS */ break; |
| 216 | } |
| 217 | } |
| 218 | else if(j == 17) banks = data; |
| 219 | else if(j == 18) { |
| 220 | caslatency = 3; /* default CL */ |
| 221 | #if(PESSIMISTIC_SDRAM) |
| 222 | if((data & 0x04) != 0) caslatency = 3; |
| 223 | else if((data & 0x02) != 0) caslatency = 2; |
| 224 | else if((data & 0x01) != 0) caslatency = 1; |
| 225 | #else |
| 226 | if((data & 0x01) != 0) caslatency = 1; |
| 227 | else if((data & 0x02) != 0) caslatency = 2; |
| 228 | else if((data & 0x04) != 0) caslatency = 3; |
| 229 | #endif |
| 230 | else { |
| 231 | printf ("WARNING: Unknown CAS latency 0x%02X, using 3\n", |
| 232 | data); |
| 233 | } |
| 234 | } |
| 235 | else if(j == 63) { |
| 236 | if(data != cksum) { |
| 237 | printf ("WARNING: Configuration data checksum failure:" |
| 238 | " is 0x%02x, calculated 0x%02x\n", |
| 239 | data, cksum); |
| 240 | } |
| 241 | } |
| 242 | cksum += data; |
| 243 | } |
| 244 | |
| 245 | /* We don't trust CL less than 2 (only saw it on an old 16MByte DIMM) */ |
| 246 | if(caslatency < 2) { |
| 247 | printf("CL was %d, forcing to 2\n", caslatency); |
| 248 | caslatency = 2; |
| 249 | } |
| 250 | if(rows > 14) { |
| 251 | printf("This doesn't look good, rows = %d, should be <= 14\n", rows); |
| 252 | rows = 14; |
| 253 | } |
| 254 | if(cols > 11) { |
| 255 | printf("This doesn't look good, columns = %d, should be <= 11\n", cols); |
| 256 | cols = 11; |
| 257 | } |
| 258 | |
| 259 | if((data_width != 64) && (data_width != 72)) |
| 260 | { |
| 261 | printf("WARNING: SDRAM width unsupported, is %d, expected 64 or 72.\n", |
| 262 | data_width); |
| 263 | } |
| 264 | width = 3; /* 2^3 = 8 bytes = 64 bits wide */ |
| 265 | /* |
| 266 | * Convert banks into log2(banks) |
| 267 | */ |
| 268 | if (banks == 2) banks = 1; |
| 269 | else if(banks == 4) banks = 2; |
| 270 | else if(banks == 8) banks = 3; |
| 271 | |
| 272 | sdram_size = 1 << (rows + cols + banks + width); |
| 273 | |
| 274 | #if(CONFIG_PBI == 0) /* bank-based interleaving */ |
| 275 | rowst = ((32 - 6) - (rows + cols + width)) * 2; |
| 276 | #else |
| 277 | rowst = 32 - (rows + banks + cols + width); |
| 278 | #endif |
| 279 | |
| 280 | or = ~(sdram_size - 1) | /* SDAM address mask */ |
| 281 | ((banks-1) << 13) | /* banks per device */ |
| 282 | (rowst << 9) | /* rowst */ |
| 283 | ((rows - 9) << 6); /* numr */ |
| 284 | |
| 285 | memctl->memc_or2 = or; |
| 286 | |
| 287 | /* |
| 288 | * SDAM specifies the number of columns that are multiplexed |
| 289 | * (reference AN2165/D), defined to be (columns - 6) for page |
| 290 | * interleave, (columns - 8) for bank interleave. |
| 291 | * |
| 292 | * BSMA is 14 - max(rows, cols). The bank select lines come |
| 293 | * into play above the highest "address" line going into the |
| 294 | * the SDRAM. |
| 295 | */ |
| 296 | #if(CONFIG_PBI == 0) /* bank-based interleaving */ |
| 297 | sdam = cols - 8; |
| 298 | bsma = ((31 - width) - 14) - ((rows > cols) ? rows : cols); |
| 299 | sda10 = sdam + 2; |
| 300 | #else |
| 301 | sdam = cols - 6; |
| 302 | bsma = ((31 - width) - 14) - ((rows > cols) ? rows : cols); |
| 303 | sda10 = sdam; |
| 304 | #endif |
| 305 | #if(PESSIMISTIC_SDRAM) |
| 306 | psdmr = (CONFIG_PBI |\ |
| 307 | PSDMR_RFEN |\ |
| 308 | PSDMR_RFRC_16_CLK |\ |
| 309 | PSDMR_PRETOACT_8W |\ |
| 310 | PSDMR_ACTTORW_8W |\ |
| 311 | PSDMR_WRC_4C |\ |
| 312 | PSDMR_EAMUX |\ |
| 313 | PSDMR_BUFCMD) |\ |
| 314 | caslatency |\ |
| 315 | ((caslatency - 1) << 6) | /* LDOTOPRE is CL - 1 */ \ |
| 316 | (sdam << 24) |\ |
| 317 | (bsma << 21) |\ |
| 318 | (sda10 << 18); |
| 319 | #else |
| 320 | psdmr = (CONFIG_PBI |\ |
| 321 | PSDMR_RFEN |\ |
| 322 | PSDMR_RFRC_7_CLK |\ |
| 323 | PSDMR_PRETOACT_3W | /* 1 for 7E parts (fast PC-133) */ \ |
| 324 | PSDMR_ACTTORW_2W | /* 1 for 7E parts (fast PC-133) */ \ |
| 325 | PSDMR_WRC_1C | /* 1 clock + 7nSec */ |
| 326 | EAMUX |\ |
| 327 | BUFCMD) |\ |
| 328 | caslatency |\ |
| 329 | ((caslatency - 1) << 6) | /* LDOTOPRE is CL - 1 */ \ |
| 330 | (sdam << 24) |\ |
| 331 | (bsma << 21) |\ |
| 332 | (sda10 << 18); |
| 333 | #endif |
| 334 | #endif |
| 335 | |
| 336 | /* |
| 337 | * Quote from 8260 UM (10.4.2 SDRAM Power-On Initialization, 10-35): |
| 338 | * |
| 339 | * "At system reset, initialization software must set up the |
| 340 | * programmable parameters in the memory controller banks registers |
| 341 | * (ORx, BRx, P/LSDMR). After all memory parameters are configured, |
| 342 | * system software should execute the following initialization sequence |
| 343 | * for each SDRAM device. |
| 344 | * |
| 345 | * 1. Issue a PRECHARGE-ALL-BANKS command |
| 346 | * 2. Issue eight CBR REFRESH commands |
| 347 | * 3. Issue a MODE-SET command to initialize the mode register |
| 348 | * |
| 349 | * Quote from Micron MT48LC8M16A2 data sheet: |
| 350 | * |
| 351 | * "...the SDRAM requires a 100uS delay prior to issuing any |
| 352 | * command other than a COMMAND INHIBIT or NOP. Starting at some |
| 353 | * point during this 100uS period and continuing at least through |
| 354 | * the end of this period, COMMAND INHIBIT or NOP commands should |
| 355 | * be applied." |
| 356 | * |
| 357 | * "Once the 100uS delay has been satisfied with at least one COMMAND |
| 358 | * INHIBIT or NOP command having been applied, a /PRECHARGE command/ |
| 359 | * should be applied. All banks must then be precharged, thereby |
| 360 | * placing the device in the all banks idle state." |
| 361 | * |
| 362 | * "Once in the idle state, /two/ AUTO REFRESH cycles must be |
| 363 | * performed. After the AUTO REFRESH cycles are complete, the |
| 364 | * SDRAM is ready for mode register programming." |
| 365 | * |
| 366 | * (/emphasis/ mine, gvb) |
| 367 | * |
| 368 | * The way I interpret this, Micron start up sequence is: |
| 369 | * 1. Issue a PRECHARGE-BANK command (initial precharge) |
| 370 | * 2. Issue a PRECHARGE-ALL-BANKS command ("all banks ... precharged") |
| 371 | * 3. Issue two (presumably, doing eight is OK) CBR REFRESH commands |
| 372 | * 4. Issue a MODE-SET command to initialize the mode register |
| 373 | * |
| 374 | * -------- |
| 375 | * |
| 376 | * The initial commands are executed by setting P/LSDMR[OP] and |
| 377 | * accessing the SDRAM with a single-byte transaction." |
| 378 | * |
| 379 | * The appropriate BRx/ORx registers have already been set when we |
| 380 | * get here. The SDRAM can be accessed at the address CFG_SDRAM_BASE. |
| 381 | */ |
| 382 | |
| 383 | memctl->memc_mptpr = CFG_MPTPR; |
| 384 | memctl->memc_psrt = psrt; |
| 385 | |
| 386 | memctl->memc_psdmr = psdmr | PSDMR_OP_PREA; |
| 387 | *ramaddr = c; |
| 388 | |
| 389 | memctl->memc_psdmr = psdmr | PSDMR_OP_CBRR; |
| 390 | for (i = 0; i < 8; i++) |
| 391 | *ramaddr = c; |
| 392 | |
| 393 | memctl->memc_psdmr = psdmr | PSDMR_OP_MRW; |
| 394 | *ramaddr = c; |
| 395 | |
| 396 | memctl->memc_psdmr = psdmr | PSDMR_OP_NORM | PSDMR_RFEN; |
| 397 | *ramaddr = c; |
| 398 | |
| 399 | /* |
| 400 | * Do it a second time for the second set of chips if the DIMM has |
| 401 | * two chip selects (double sided). |
| 402 | */ |
| 403 | if(chipselects > 1) { |
| 404 | ramaddr += sdram_size; |
| 405 | |
| 406 | memctl->memc_br3 = CFG_BR3_PRELIM + sdram_size; |
| 407 | memctl->memc_or3 = or; |
| 408 | |
| 409 | memctl->memc_psdmr = psdmr | PSDMR_OP_PREA; |
| 410 | *ramaddr = c; |
| 411 | |
| 412 | memctl->memc_psdmr = psdmr | PSDMR_OP_CBRR; |
| 413 | for (i = 0; i < 8; i++) |
| 414 | *ramaddr = c; |
| 415 | |
| 416 | memctl->memc_psdmr = psdmr | PSDMR_OP_MRW; |
| 417 | *ramaddr = c; |
| 418 | |
| 419 | memctl->memc_psdmr = psdmr | PSDMR_OP_NORM | PSDMR_RFEN; |
| 420 | *ramaddr = c; |
| 421 | } |
| 422 | |
| 423 | /* return total ram size */ |
| 424 | return (sdram_size * chipselects); |
| 425 | } |
| 426 | |
| 427 | /*----------------------------------------------------------------------- |
| 428 | * Board Control Functions |
| 429 | */ |
| 430 | void board_poweroff (void) |
| 431 | { |
| 432 | while (1); /* hang forever */ |
| 433 | } |
| 434 | |
| 435 | |
| 436 | #ifdef CONFIG_MISC_INIT_R |
| 437 | /* ------------------------------------------------------------------------- */ |
| 438 | int misc_init_r(void) |
| 439 | { |
| 440 | /* |
| 441 | * Note: iop is used by the I2C macros, and iopa by the ADC/DAC initialization. |
| 442 | */ |
| 443 | volatile ioport_t *iopa = ioport_addr((immap_t *)CFG_IMMR, 0 /* port A */); |
| 444 | volatile ioport_t *iop = ioport_addr((immap_t *)CFG_IMMR, I2C_PORT); |
| 445 | |
| 446 | int reg; /* I2C register value */ |
| 447 | char *ep; /* Environment pointer */ |
| 448 | char str_buf[12] ; /* sprintf output buffer */ |
| 449 | int sample_rate; /* ADC/DAC sample rate */ |
| 450 | int sample_64x; /* Use 64/4 clocking for the ADC/DAC */ |
| 451 | int sample_128x; /* Use 128/4 clocking for the ADC/DAC */ |
| 452 | int right_just; /* Is the data to the DAC right justified? */ |
| 453 | int mclk_divide; /* MCLK Divide */ |
| 454 | |
| 455 | /* |
| 456 | * SACSng custom initialization: |
| 457 | * Start the ADC and DAC clocks, since the Crystal parts do not |
| 458 | * work on the I2C bus until the clocks are running. |
| 459 | */ |
| 460 | |
| 461 | sample_rate = INITIAL_SAMPLE_RATE; |
| 462 | if ((ep = getenv("DaqSampleRate")) != NULL) { |
| 463 | sample_rate = simple_strtol(ep, NULL, 10); |
| 464 | } |
| 465 | |
| 466 | sample_64x = INITIAL_SAMPLE_64X; |
| 467 | sample_128x = INITIAL_SAMPLE_128X; |
| 468 | if ((ep = getenv("Daq64xSampling")) != NULL) { |
| 469 | sample_64x = simple_strtol(ep, NULL, 10); |
| 470 | if (sample_64x) { |
| 471 | sample_128x = 0; |
| 472 | } |
| 473 | else { |
| 474 | sample_128x = 1; |
| 475 | } |
| 476 | } |
| 477 | else { |
| 478 | if ((ep = getenv("Daq128xSampling")) != NULL) { |
| 479 | sample_128x = simple_strtol(ep, NULL, 10); |
| 480 | if (sample_128x) { |
| 481 | sample_64x = 0; |
| 482 | } |
| 483 | else { |
| 484 | sample_64x = 1; |
| 485 | } |
| 486 | } |
| 487 | } |
| 488 | |
| 489 | Daq_Init_Clocks(sample_rate, sample_64x); |
| 490 | sample_rate = Daq_Get_SampleRate(); |
| 491 | Daq_Start_Clocks(sample_rate); |
| 492 | |
| 493 | sprintf(str_buf, "%d", sample_rate); |
| 494 | setenv("DaqSampleRate", str_buf); |
| 495 | |
| 496 | if (sample_64x) { |
| 497 | setenv("Daq64xSampling", "1"); |
| 498 | setenv("Daq128xSampling", NULL); |
| 499 | } |
| 500 | else { |
| 501 | setenv("Daq64xSampling", NULL); |
| 502 | setenv("Daq128xSampling", "1"); |
| 503 | } |
| 504 | |
| 505 | /* Display the ADC/DAC clocking information */ |
| 506 | Daq_Display_Clocks(); |
| 507 | |
| 508 | /* |
| 509 | * Determine the DAC data justification |
| 510 | */ |
| 511 | |
| 512 | right_just = INITIAL_RIGHT_JUST; |
| 513 | if ((ep = getenv("DaqDACRightJustified")) != NULL) { |
| 514 | right_just = simple_strtol(ep, NULL, 10); |
| 515 | } |
| 516 | |
| 517 | sprintf(str_buf, "%d", right_just); |
| 518 | setenv("DaqDACRightJustified", str_buf); |
| 519 | |
| 520 | /* |
| 521 | * Determine the DAC MCLK Divide |
| 522 | */ |
| 523 | |
| 524 | mclk_divide = INITIAL_MCLK_DIVIDE; |
| 525 | if ((ep = getenv("DaqDACMClockDivide")) != NULL) { |
| 526 | mclk_divide = simple_strtol(ep, NULL, 10); |
| 527 | } |
| 528 | |
| 529 | sprintf(str_buf, "%d", mclk_divide); |
| 530 | setenv("DaqDACMClockDivide", str_buf); |
| 531 | |
| 532 | /* |
| 533 | * Initializing the I2C address in the Crystal A/Ds: |
| 534 | * |
| 535 | * 1) Wait for VREF cap to settle (10uSec per uF) |
| 536 | * 2) Release pullup on SDATA |
| 537 | * 3) Write the I2C address to register 6 |
| 538 | * 4) Enable address matching by setting the MSB in register 7 |
| 539 | */ |
| 540 | |
| 541 | printf("Initializing the ADC...\n"); |
| 542 | udelay(ADC_INITIAL_DELAY); /* 10uSec per uF of VREF cap */ |
| 543 | |
| 544 | iopa->pdat &= ~ADC_SDATA1_MASK; /* release SDATA1 */ |
| 545 | udelay(ADC_SDATA_DELAY); /* arbitrary settling time */ |
| 546 | |
| 547 | i2c_reg_write(0x00, 0x06, I2C_ADC_1_ADDR); /* set address */ |
| 548 | i2c_reg_write(I2C_ADC_1_ADDR, 0x07, /* turn on ADDREN */ |
| 549 | ADC_REG7_ADDR_ENABLE); |
| 550 | |
| 551 | i2c_reg_write(I2C_ADC_1_ADDR, 0x02, /* 128x, slave mode, !HPEN */ |
| 552 | (sample_64x ? 0 : ADC_REG2_128x) | |
| 553 | ADC_REG2_HIGH_PASS_DIS | |
| 554 | ADC_REG2_SLAVE_MODE); |
| 555 | |
| 556 | reg = i2c_reg_read(I2C_ADC_1_ADDR, 0x06) & 0x7F; |
| 557 | if(reg != I2C_ADC_1_ADDR) |
| 558 | printf("Init of ADC U10 failed: address is 0x%02X should be 0x%02X\n", |
| 559 | reg, I2C_ADC_1_ADDR); |
| 560 | |
| 561 | iopa->pdat &= ~ADC_SDATA2_MASK; /* release SDATA2 */ |
| 562 | udelay(ADC_SDATA_DELAY); /* arbitrary settling time */ |
| 563 | |
| 564 | i2c_reg_write(0x00, 0x06, I2C_ADC_2_ADDR); /* set address (do not set ADDREN yet) */ |
| 565 | |
| 566 | i2c_reg_write(I2C_ADC_2_ADDR, 0x02, /* 64x, slave mode, !HPEN */ |
| 567 | (sample_64x ? 0 : ADC_REG2_128x) | |
| 568 | ADC_REG2_HIGH_PASS_DIS | |
| 569 | ADC_REG2_SLAVE_MODE); |
| 570 | |
| 571 | reg = i2c_reg_read(I2C_ADC_2_ADDR, 0x06) & 0x7F; |
| 572 | if(reg != I2C_ADC_2_ADDR) |
| 573 | printf("Init of ADC U15 failed: address is 0x%02X should be 0x%02X\n", |
| 574 | reg, I2C_ADC_2_ADDR); |
| 575 | |
| 576 | i2c_reg_write(I2C_ADC_1_ADDR, 0x01, /* set FSTART and GNDCAL */ |
| 577 | ADC_REG1_FRAME_START | |
| 578 | ADC_REG1_GROUND_CAL); |
| 579 | |
| 580 | i2c_reg_write(I2C_ADC_1_ADDR, 0x02, /* Start calibration */ |
| 581 | (sample_64x ? 0 : ADC_REG2_128x) | |
| 582 | ADC_REG2_CAL | |
| 583 | ADC_REG2_HIGH_PASS_DIS | |
| 584 | ADC_REG2_SLAVE_MODE); |
| 585 | |
| 586 | udelay(ADC_CAL_DELAY); /* a minimum of 4100 LRCLKs */ |
| 587 | i2c_reg_write(I2C_ADC_1_ADDR, 0x01, 0x00); /* remove GNDCAL */ |
| 588 | |
| 589 | /* |
| 590 | * Now that we have synchronized the ADC's, enable address |
| 591 | * selection on the second ADC as well as the first. |
| 592 | */ |
| 593 | i2c_reg_write(I2C_ADC_2_ADDR, 0x07, ADC_REG7_ADDR_ENABLE); |
| 594 | |
| 595 | /* |
| 596 | * Initialize the Crystal DAC |
| 597 | * |
| 598 | * Two of the config lines are used for I2C so we have to set them |
| 599 | * to the proper initialization state without inadvertantly |
| 600 | * sending an I2C "start" sequence. When we bring the I2C back to |
| 601 | * the normal state, we send an I2C "stop" sequence. |
| 602 | */ |
| 603 | printf("Initializing the DAC...\n"); |
| 604 | |
| 605 | /* |
| 606 | * Bring the I2C clock and data lines low for initialization |
| 607 | */ |
| 608 | I2C_SCL(0); |
| 609 | I2C_DELAY; |
| 610 | I2C_SDA(0); |
| 611 | I2C_ACTIVE; |
| 612 | I2C_DELAY; |
| 613 | |
| 614 | /* Reset the DAC */ |
| 615 | iopa->pdat &= ~DAC_RST_MASK; |
| 616 | udelay(DAC_RESET_DELAY); |
| 617 | |
| 618 | /* Release the DAC reset */ |
| 619 | iopa->pdat |= DAC_RST_MASK; |
| 620 | udelay(DAC_INITIAL_DELAY); |
| 621 | |
| 622 | /* |
| 623 | * Cause the DAC to: |
| 624 | * Enable control port (I2C mode) |
| 625 | * Going into power down |
| 626 | */ |
| 627 | i2c_reg_write(I2C_DAC_ADDR, 0x05, |
| 628 | DAC_REG5_I2C_MODE | |
| 629 | DAC_REG5_POWER_DOWN); |
| 630 | |
| 631 | /* |
| 632 | * Cause the DAC to: |
| 633 | * Enable control port (I2C mode) |
| 634 | * Going into power down |
| 635 | * . MCLK divide by 1 |
| 636 | * . MCLK divide by 2 |
| 637 | */ |
| 638 | i2c_reg_write(I2C_DAC_ADDR, 0x05, |
| 639 | DAC_REG5_I2C_MODE | |
| 640 | DAC_REG5_POWER_DOWN | |
| 641 | (mclk_divide ? DAC_REG5_MCLK_DIV : 0)); |
| 642 | |
| 643 | /* |
| 644 | * Cause the DAC to: |
| 645 | * Auto-mute disabled |
| 646 | * . Format 0, left justified 24 bits |
| 647 | * . Format 3, right justified 24 bits |
| 648 | * No de-emphasis |
| 649 | * . Single speed mode |
| 650 | * . Double speed mode |
| 651 | */ |
| 652 | i2c_reg_write(I2C_DAC_ADDR, 0x01, |
| 653 | (right_just ? DAC_REG1_RIGHT_JUST_24BIT : |
| 654 | DAC_REG1_LEFT_JUST_24_BIT) | |
| 655 | DAC_REG1_DEM_NO | |
| 656 | (sample_rate >= 50000 ? DAC_REG1_DOUBLE : DAC_REG1_SINGLE)); |
| 657 | |
| 658 | sprintf(str_buf, "%d", |
| 659 | sample_rate >= 50000 ? DAC_REG1_DOUBLE : DAC_REG1_SINGLE); |
| 660 | setenv("DaqDACFunctionalMode", str_buf); |
| 661 | |
| 662 | /* |
| 663 | * Cause the DAC to: |
| 664 | * Enable control port (I2C mode) |
| 665 | * Remove power down |
| 666 | * . MCLK divide by 1 |
| 667 | * . MCLK divide by 2 |
| 668 | */ |
| 669 | i2c_reg_write(I2C_DAC_ADDR, 0x05, |
| 670 | DAC_REG5_I2C_MODE | |
| 671 | (mclk_divide ? DAC_REG5_MCLK_DIV : 0)); |
| 672 | |
| 673 | /* |
| 674 | * Create a I2C stop condition: |
| 675 | * low->high on data while clock is high. |
| 676 | */ |
| 677 | I2C_SCL(1); |
| 678 | I2C_DELAY; |
| 679 | I2C_SDA(1); |
| 680 | I2C_DELAY; |
| 681 | I2C_TRISTATE; |
| 682 | |
| 683 | printf("\n"); |
| 684 | |
| 685 | #ifdef CONFIG_SHOW_BOOT_PROGRESS |
| 686 | /* |
| 687 | * Turn off the RED fail LED now that we are up and running. |
| 688 | */ |
| 689 | status_led_set(STATUS_LED_RED, STATUS_LED_OFF); |
| 690 | #endif |
| 691 | |
| 692 | return 0; |
| 693 | } |
| 694 | |
| 695 | #ifdef CONFIG_SHOW_BOOT_PROGRESS |
| 696 | /* |
| 697 | * Show boot status: flash the LED if something goes wrong, indicating |
| 698 | * that last thing that worked and thus, by implication, what is broken. |
| 699 | * |
| 700 | * This stores the last OK value in RAM so this will not work properly |
| 701 | * before RAM is initialized. Since it is being used for indicating |
| 702 | * boot status (i.e. after RAM is initialized), that is OK. |
| 703 | */ |
| 704 | static void flash_code(uchar number, uchar modulo, uchar digits) |
| 705 | { |
| 706 | int j; |
| 707 | |
| 708 | /* |
| 709 | * Recursively do upper digits. |
| 710 | */ |
| 711 | if(digits > 1) { |
| 712 | flash_code(number / modulo, modulo, digits - 1); |
| 713 | } |
| 714 | |
| 715 | number = number % modulo; |
| 716 | |
| 717 | /* |
| 718 | * Zero is indicated by one long flash (dash). |
| 719 | */ |
| 720 | if(number == 0) { |
| 721 | status_led_set(STATUS_LED_BOOT, STATUS_LED_ON); |
| 722 | udelay(1000000); |
| 723 | status_led_set(STATUS_LED_BOOT, STATUS_LED_OFF); |
| 724 | udelay(200000); |
| 725 | } else { |
| 726 | /* |
| 727 | * Non-zero is indicated by short flashes, one per count. |
| 728 | */ |
| 729 | for(j = 0; j < number; j++) { |
| 730 | status_led_set(STATUS_LED_BOOT, STATUS_LED_ON); |
| 731 | udelay(100000); |
| 732 | status_led_set(STATUS_LED_BOOT, STATUS_LED_OFF); |
| 733 | udelay(200000); |
| 734 | } |
| 735 | } |
| 736 | /* |
| 737 | * Inter-digit pause: we've already waited 200 mSec, wait 1 sec total |
| 738 | */ |
| 739 | udelay(700000); |
| 740 | } |
| 741 | |
| 742 | static int last_boot_progress; |
| 743 | |
| 744 | void show_boot_progress (int status) |
| 745 | { |
| 746 | if(status != -1) { |
| 747 | last_boot_progress = status; |
| 748 | } else { |
| 749 | /* |
| 750 | * Houston, we have a problem. Blink the last OK status which |
| 751 | * indicates where things failed. |
| 752 | */ |
| 753 | status_led_set(STATUS_LED_RED, STATUS_LED_ON); |
| 754 | flash_code(last_boot_progress, 5, 3); |
| 755 | udelay(1000000); |
| 756 | status_led_set(STATUS_LED_RED, STATUS_LED_BLINKING); |
| 757 | } |
| 758 | } |
| 759 | #endif /* CONFIG_SHOW_BOOT_PROGRESS */ |
| 760 | |
| 761 | |
| 762 | /* |
| 763 | * The following are used to control the SPI chip selects for the SPI command. |
| 764 | */ |
| 765 | #if (CONFIG_COMMANDS & CFG_CMD_SPI) |
| 766 | |
| 767 | #define SPI_ADC_CS_MASK 0x00000800 |
| 768 | #define SPI_DAC_CS_MASK 0x00001000 |
| 769 | |
| 770 | void spi_adc_chipsel(int cs) |
| 771 | { |
| 772 | volatile ioport_t *iopd = ioport_addr((immap_t *)CFG_IMMR, 3 /* port D */); |
| 773 | |
| 774 | if(cs) |
| 775 | iopd->pdat &= ~SPI_ADC_CS_MASK; /* activate the chip select */ |
| 776 | else |
| 777 | iopd->pdat |= SPI_ADC_CS_MASK; /* deactivate the chip select */ |
| 778 | } |
| 779 | |
| 780 | void spi_dac_chipsel(int cs) |
| 781 | { |
| 782 | volatile ioport_t *iopd = ioport_addr((immap_t *)CFG_IMMR, 3 /* port D */); |
| 783 | |
| 784 | if(cs) |
| 785 | iopd->pdat &= ~SPI_DAC_CS_MASK; /* activate the chip select */ |
| 786 | else |
| 787 | iopd->pdat |= SPI_DAC_CS_MASK; /* deactivate the chip select */ |
| 788 | } |
| 789 | |
| 790 | /* |
| 791 | * The SPI command uses this table of functions for controlling the SPI |
| 792 | * chip selects: it calls the appropriate function to control the SPI |
| 793 | * chip selects. |
| 794 | */ |
| 795 | spi_chipsel_type spi_chipsel[2] = { |
| 796 | spi_adc_chipsel, |
| 797 | spi_dac_chipsel |
| 798 | }; |
| 799 | #endif /* CFG_CMD_SPI */ |
| 800 | |
| 801 | #endif /* CONFIG_MISC_INIT_R */ |