blob: d0d98277ea4c6d482c92fa7c2d98a63ca97def69 [file] [log] [blame]
/*
* (C) Copyright 2010
* Vipin Kumar, ST Micoelectronics, vipin.kumar@st.com.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
/*
* Designware ethernet IP driver for u-boot
*/
#include <common.h>
#include <miiphy.h>
#include <malloc.h>
#include <linux/err.h>
#include <asm/io.h>
#include "designware.h"
static void tx_descs_init(struct eth_device *dev)
{
struct dw_eth_dev *priv = dev->priv;
struct eth_dma_regs *dma_p = priv->dma_regs_p;
struct dmamacdescr *desc_table_p = &priv->tx_mac_descrtable[0];
char *txbuffs = &priv->txbuffs[0];
struct dmamacdescr *desc_p;
u32 idx;
for (idx = 0; idx < CONFIG_TX_DESCR_NUM; idx++) {
desc_p = &desc_table_p[idx];
desc_p->dmamac_addr = &txbuffs[idx * CONFIG_ETH_BUFSIZE];
desc_p->dmamac_next = &desc_table_p[idx + 1];
#if defined(CONFIG_DW_ALTDESCRIPTOR)
desc_p->txrx_status &= ~(DESC_TXSTS_TXINT | DESC_TXSTS_TXLAST |
DESC_TXSTS_TXFIRST | DESC_TXSTS_TXCRCDIS | \
DESC_TXSTS_TXCHECKINSCTRL | \
DESC_TXSTS_TXRINGEND | DESC_TXSTS_TXPADDIS);
desc_p->txrx_status |= DESC_TXSTS_TXCHAIN;
desc_p->dmamac_cntl = 0;
desc_p->txrx_status &= ~(DESC_TXSTS_MSK | DESC_TXSTS_OWNBYDMA);
#else
desc_p->dmamac_cntl = DESC_TXCTRL_TXCHAIN;
desc_p->txrx_status = 0;
#endif
}
/* Correcting the last pointer of the chain */
desc_p->dmamac_next = &desc_table_p[0];
writel((ulong)&desc_table_p[0], &dma_p->txdesclistaddr);
}
static void rx_descs_init(struct eth_device *dev)
{
struct dw_eth_dev *priv = dev->priv;
struct eth_dma_regs *dma_p = priv->dma_regs_p;
struct dmamacdescr *desc_table_p = &priv->rx_mac_descrtable[0];
char *rxbuffs = &priv->rxbuffs[0];
struct dmamacdescr *desc_p;
u32 idx;
for (idx = 0; idx < CONFIG_RX_DESCR_NUM; idx++) {
desc_p = &desc_table_p[idx];
desc_p->dmamac_addr = &rxbuffs[idx * CONFIG_ETH_BUFSIZE];
desc_p->dmamac_next = &desc_table_p[idx + 1];
desc_p->dmamac_cntl =
(MAC_MAX_FRAME_SZ & DESC_RXCTRL_SIZE1MASK) | \
DESC_RXCTRL_RXCHAIN;
desc_p->txrx_status = DESC_RXSTS_OWNBYDMA;
}
/* Correcting the last pointer of the chain */
desc_p->dmamac_next = &desc_table_p[0];
writel((ulong)&desc_table_p[0], &dma_p->rxdesclistaddr);
}
static void descs_init(struct eth_device *dev)
{
tx_descs_init(dev);
rx_descs_init(dev);
}
static int mac_reset(struct eth_device *dev)
{
struct dw_eth_dev *priv = dev->priv;
struct eth_mac_regs *mac_p = priv->mac_regs_p;
struct eth_dma_regs *dma_p = priv->dma_regs_p;
int timeout = CONFIG_MACRESET_TIMEOUT;
writel(DMAMAC_SRST, &dma_p->busmode);
writel(MII_PORTSELECT, &mac_p->conf);
do {
if (!(readl(&dma_p->busmode) & DMAMAC_SRST))
return 0;
udelay(1000);
} while (timeout--);
return -1;
}
static int dw_write_hwaddr(struct eth_device *dev)
{
struct dw_eth_dev *priv = dev->priv;
struct eth_mac_regs *mac_p = priv->mac_regs_p;
u32 macid_lo, macid_hi;
u8 *mac_id = &dev->enetaddr[0];
macid_lo = mac_id[0] + (mac_id[1] << 8) + \
(mac_id[2] << 16) + (mac_id[3] << 24);
macid_hi = mac_id[4] + (mac_id[5] << 8);
writel(macid_hi, &mac_p->macaddr0hi);
writel(macid_lo, &mac_p->macaddr0lo);
return 0;
}
static int dw_eth_init(struct eth_device *dev, bd_t *bis)
{
struct dw_eth_dev *priv = dev->priv;
struct eth_mac_regs *mac_p = priv->mac_regs_p;
struct eth_dma_regs *dma_p = priv->dma_regs_p;
u32 conf;
/* Reset ethernet hardware */
if (mac_reset(dev) < 0)
return -1;
writel(FIXEDBURST | PRIORXTX_41 | BURST_16,
&dma_p->busmode);
writel(FLUSHTXFIFO | readl(&dma_p->opmode), &dma_p->opmode);
writel(STOREFORWARD | TXSECONDFRAME, &dma_p->opmode);
conf = FRAMEBURSTENABLE | DISABLERXOWN;
if (priv->speed != SPEED_1000M)
conf |= MII_PORTSELECT;
if (priv->duplex == FULL_DUPLEX)
conf |= FULLDPLXMODE;
writel(conf, &mac_p->conf);
descs_init(dev);
/*
* Start/Enable xfer at dma as well as mac level
*/
writel(readl(&dma_p->opmode) | RXSTART, &dma_p->opmode);
writel(readl(&dma_p->opmode) | TXSTART, &dma_p->opmode);
writel(readl(&mac_p->conf) | RXENABLE, &mac_p->conf);
writel(readl(&mac_p->conf) | TXENABLE, &mac_p->conf);
return 0;
}
static int dw_eth_send(struct eth_device *dev, volatile void *packet,
int length)
{
struct dw_eth_dev *priv = dev->priv;
struct eth_dma_regs *dma_p = priv->dma_regs_p;
u32 desc_num = priv->tx_currdescnum;
struct dmamacdescr *desc_p = &priv->tx_mac_descrtable[desc_num];
/* Check if the descriptor is owned by CPU */
if (desc_p->txrx_status & DESC_TXSTS_OWNBYDMA) {
printf("CPU not owner of tx frame\n");
return -1;
}
memcpy((void *)desc_p->dmamac_addr, (void *)packet, length);
#if defined(CONFIG_DW_ALTDESCRIPTOR)
desc_p->txrx_status |= DESC_TXSTS_TXFIRST | DESC_TXSTS_TXLAST;
desc_p->dmamac_cntl |= (length << DESC_TXCTRL_SIZE1SHFT) & \
DESC_TXCTRL_SIZE1MASK;
desc_p->txrx_status &= ~(DESC_TXSTS_MSK);
desc_p->txrx_status |= DESC_TXSTS_OWNBYDMA;
#else
desc_p->dmamac_cntl |= ((length << DESC_TXCTRL_SIZE1SHFT) & \
DESC_TXCTRL_SIZE1MASK) | DESC_TXCTRL_TXLAST | \
DESC_TXCTRL_TXFIRST;
desc_p->txrx_status = DESC_TXSTS_OWNBYDMA;
#endif
/* Test the wrap-around condition. */
if (++desc_num >= CONFIG_TX_DESCR_NUM)
desc_num = 0;
priv->tx_currdescnum = desc_num;
/* Start the transmission */
writel(POLL_DATA, &dma_p->txpolldemand);
return 0;
}
static int dw_eth_recv(struct eth_device *dev)
{
struct dw_eth_dev *priv = dev->priv;
u32 desc_num = priv->rx_currdescnum;
struct dmamacdescr *desc_p = &priv->rx_mac_descrtable[desc_num];
u32 status = desc_p->txrx_status;
int length = 0;
/* Check if the owner is the CPU */
if (!(status & DESC_RXSTS_OWNBYDMA)) {
length = (status & DESC_RXSTS_FRMLENMSK) >> \
DESC_RXSTS_FRMLENSHFT;
NetReceive(desc_p->dmamac_addr, length);
/*
* Make the current descriptor valid again and go to
* the next one
*/
desc_p->txrx_status |= DESC_RXSTS_OWNBYDMA;
/* Test the wrap-around condition. */
if (++desc_num >= CONFIG_RX_DESCR_NUM)
desc_num = 0;
}
priv->rx_currdescnum = desc_num;
return length;
}
static void dw_eth_halt(struct eth_device *dev)
{
struct dw_eth_dev *priv = dev->priv;
mac_reset(dev);
priv->tx_currdescnum = priv->rx_currdescnum = 0;
}
static int eth_mdio_read(struct eth_device *dev, u8 addr, u8 reg, u16 *val)
{
struct dw_eth_dev *priv = dev->priv;
struct eth_mac_regs *mac_p = priv->mac_regs_p;
u32 miiaddr;
int timeout = CONFIG_MDIO_TIMEOUT;
miiaddr = ((addr << MIIADDRSHIFT) & MII_ADDRMSK) | \
((reg << MIIREGSHIFT) & MII_REGMSK);
writel(miiaddr | MII_CLKRANGE_150_250M | MII_BUSY, &mac_p->miiaddr);
do {
if (!(readl(&mac_p->miiaddr) & MII_BUSY)) {
*val = readl(&mac_p->miidata);
return 0;
}
udelay(1000);
} while (timeout--);
return -1;
}
static int eth_mdio_write(struct eth_device *dev, u8 addr, u8 reg, u16 val)
{
struct dw_eth_dev *priv = dev->priv;
struct eth_mac_regs *mac_p = priv->mac_regs_p;
u32 miiaddr;
int ret = -1, timeout = CONFIG_MDIO_TIMEOUT;
u16 value;
writel(val, &mac_p->miidata);
miiaddr = ((addr << MIIADDRSHIFT) & MII_ADDRMSK) | \
((reg << MIIREGSHIFT) & MII_REGMSK) | MII_WRITE;
writel(miiaddr | MII_CLKRANGE_150_250M | MII_BUSY, &mac_p->miiaddr);
do {
if (!(readl(&mac_p->miiaddr) & MII_BUSY))
ret = 0;
udelay(1000);
} while (timeout--);
/* Needed as a fix for ST-Phy */
eth_mdio_read(dev, addr, reg, &value);
return ret;
}
#if defined(CONFIG_DW_SEARCH_PHY)
static int find_phy(struct eth_device *dev)
{
int phy_addr = 0;
u16 ctrl, oldctrl;
do {
eth_mdio_read(dev, phy_addr, PHY_BMCR, &ctrl);
oldctrl = ctrl & PHY_BMCR_AUTON;
ctrl ^= PHY_BMCR_AUTON;
eth_mdio_write(dev, phy_addr, PHY_BMCR, ctrl);
eth_mdio_read(dev, phy_addr, PHY_BMCR, &ctrl);
ctrl &= PHY_BMCR_AUTON;
if (ctrl == oldctrl) {
phy_addr++;
} else {
ctrl ^= PHY_BMCR_AUTON;
eth_mdio_write(dev, phy_addr, PHY_BMCR, ctrl);
return phy_addr;
}
} while (phy_addr < 32);
return -1;
}
#endif
static int dw_reset_phy(struct eth_device *dev)
{
struct dw_eth_dev *priv = dev->priv;
u16 ctrl;
int timeout = CONFIG_PHYRESET_TIMEOUT;
u32 phy_addr = priv->address;
eth_mdio_write(dev, phy_addr, PHY_BMCR, PHY_BMCR_RESET);
do {
eth_mdio_read(dev, phy_addr, PHY_BMCR, &ctrl);
if (!(ctrl & PHY_BMCR_RESET))
break;
udelay(1000);
} while (timeout--);
if (timeout < 0)
return -1;
#ifdef CONFIG_PHY_RESET_DELAY
udelay(CONFIG_PHY_RESET_DELAY);
#endif
return 0;
}
static int configure_phy(struct eth_device *dev)
{
struct dw_eth_dev *priv = dev->priv;
int phy_addr;
u16 bmcr, ctrl;
#if defined(CONFIG_DW_AUTONEG)
u16 bmsr;
u32 timeout;
u16 anlpar, btsr;
#endif
#if defined(CONFIG_DW_SEARCH_PHY)
phy_addr = find_phy(dev);
if (phy_addr > 0)
priv->address = phy_addr;
else
return -1;
#endif
if (dw_reset_phy(dev) < 0)
return -1;
#if defined(CONFIG_DW_AUTONEG)
bmcr = PHY_BMCR_AUTON | PHY_BMCR_RST_NEG | PHY_BMCR_100MB | \
PHY_BMCR_DPLX | PHY_BMCR_1000_MBPS;
#else
bmcr = PHY_BMCR_100MB | PHY_BMCR_DPLX;
#if defined(CONFIG_DW_SPEED10M)
bmcr &= ~PHY_BMCR_100MB;
#endif
#if defined(CONFIG_DW_DUPLEXHALF)
bmcr &= ~PHY_BMCR_DPLX;
#endif
#endif
if (eth_mdio_write(dev, phy_addr, PHY_BMCR, bmcr) < 0)
return -1;
/* Read the phy status register and populate priv structure */
#if defined(CONFIG_DW_AUTONEG)
timeout = CONFIG_AUTONEG_TIMEOUT;
do {
eth_mdio_read(dev, phy_addr, PHY_BMSR, &bmsr);
if (bmsr & PHY_BMSR_AUTN_COMP)
break;
udelay(1000);
} while (timeout--);
eth_mdio_read(dev, phy_addr, PHY_ANLPAR, &anlpar);
eth_mdio_read(dev, phy_addr, PHY_1000BTSR, &btsr);
if (btsr & (PHY_1000BTSR_1000FD | PHY_1000BTSR_1000HD)) {
priv->speed = SPEED_1000M;
if (btsr & PHY_1000BTSR_1000FD)
priv->duplex = FULL_DUPLEX;
else
priv->duplex = HALF_DUPLEX;
} else {
if (anlpar & PHY_ANLPAR_100)
priv->speed = SPEED_100M;
else
priv->speed = SPEED_10M;
if (anlpar & (PHY_ANLPAR_10FD | PHY_ANLPAR_TXFD))
priv->duplex = FULL_DUPLEX;
else
priv->duplex = HALF_DUPLEX;
}
#else
if (eth_mdio_read(dev, phy_addr, PHY_BMCR, &ctrl) < 0)
return -1;
if (ctrl & PHY_BMCR_DPLX)
priv->duplex = FULL_DUPLEX;
else
priv->duplex = HALF_DUPLEX;
if (ctrl & PHY_BMCR_1000_MBPS)
priv->speed = SPEED_1000M;
else if (ctrl & PHY_BMCR_100_MBPS)
priv->speed = SPEED_100M;
else
priv->speed = SPEED_10M;
#endif
return 0;
}
#if defined(CONFIG_MII)
static int dw_mii_read(char *devname, u8 addr, u8 reg, u16 *val)
{
struct eth_device *dev;
dev = eth_get_dev_by_name(devname);
if (dev)
eth_mdio_read(dev, addr, reg, val);
return 0;
}
static int dw_mii_write(char *devname, u8 addr, u8 reg, u16 val)
{
struct eth_device *dev;
dev = eth_get_dev_by_name(devname);
if (dev)
eth_mdio_write(dev, addr, reg, val);
return 0;
}
#endif
int designware_initialize(u32 id, ulong base_addr, u32 phy_addr)
{
struct eth_device *dev;
struct dw_eth_dev *priv;
dev = (struct eth_device *) malloc(sizeof(struct eth_device));
if (!dev)
return -ENOMEM;
/*
* Since the priv structure contains the descriptors which need a strict
* buswidth alignment, memalign is used to allocate memory
*/
priv = (struct dw_eth_dev *) memalign(16, sizeof(struct dw_eth_dev));
if (!priv) {
free(dev);
return -ENOMEM;
}
memset(dev, 0, sizeof(struct eth_device));
memset(priv, 0, sizeof(struct dw_eth_dev));
sprintf(dev->name, "mii%d", id);
dev->iobase = (int)base_addr;
dev->priv = priv;
eth_getenv_enetaddr_by_index(id, &dev->enetaddr[0]);
priv->dev = dev;
priv->mac_regs_p = (struct eth_mac_regs *)base_addr;
priv->dma_regs_p = (struct eth_dma_regs *)(base_addr +
DW_DMA_BASE_OFFSET);
priv->address = phy_addr;
if (mac_reset(dev) < 0)
return -1;
if (configure_phy(dev) < 0) {
printf("Phy could not be configured\n");
return -1;
}
dev->init = dw_eth_init;
dev->send = dw_eth_send;
dev->recv = dw_eth_recv;
dev->halt = dw_eth_halt;
dev->write_hwaddr = dw_write_hwaddr;
eth_register(dev);
#if defined(CONFIG_MII)
miiphy_register(dev->name, dw_mii_read, dw_mii_write);
#endif
return 1;
}