blob: 39057d231683bb737257dec26dd61a00447dbf79 [file] [log] [blame]
wdenk682011f2003-06-03 23:54:09 +00001/**************************************************************************
Andre Schwarzac3315c2008-03-06 16:45:44 +01002Intel Pro 1000 for ppcboot/das-u-boot
wdenk682011f2003-06-03 23:54:09 +00003Drivers are port from Intel's Linux driver e1000-4.3.15
4and from Etherboot pro 1000 driver by mrakes at vivato dot net
5tested on both gig copper and gig fiber boards
6***************************************************************************/
7/*******************************************************************************
8
wdenk8bde7f72003-06-27 21:31:46 +00009
wdenk682011f2003-06-03 23:54:09 +000010 Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
wdenk8bde7f72003-06-27 21:31:46 +000011
12 This program is free software; you can redistribute it and/or modify it
13 under the terms of the GNU General Public License as published by the Free
14 Software Foundation; either version 2 of the License, or (at your option)
wdenk682011f2003-06-03 23:54:09 +000015 any later version.
wdenk8bde7f72003-06-27 21:31:46 +000016
17 This program is distributed in the hope that it will be useful, but WITHOUT
18 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
wdenk682011f2003-06-03 23:54:09 +000020 more details.
wdenk8bde7f72003-06-27 21:31:46 +000021
wdenk682011f2003-06-03 23:54:09 +000022 You should have received a copy of the GNU General Public License along with
wdenk8bde7f72003-06-27 21:31:46 +000023 this program; if not, write to the Free Software Foundation, Inc., 59
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -070024 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
wdenk8bde7f72003-06-27 21:31:46 +000025
wdenk682011f2003-06-03 23:54:09 +000026 The full GNU General Public License is included in this distribution in the
27 file called LICENSE.
wdenk8bde7f72003-06-27 21:31:46 +000028
wdenk682011f2003-06-03 23:54:09 +000029 Contact Information:
30 Linux NICS <linux.nics@intel.com>
31 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32
33*******************************************************************************/
34/*
35 * Copyright (C) Archway Digital Solutions.
36 *
37 * written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
38 * 2/9/2002
39 *
40 * Copyright (C) Linux Networx.
41 * Massive upgrade to work with the new intel gigabit NICs.
42 * <ebiederman at lnxi dot com>
Roy Zang2c2668f2011-01-21 11:29:38 +080043 *
44 * Copyright 2011 Freescale Semiconductor, Inc.
wdenk682011f2003-06-03 23:54:09 +000045 */
46
47#include "e1000.h"
48
wdenk682011f2003-06-03 23:54:09 +000049#define TOUT_LOOP 100000
50
Timur Tabif81ecb52009-08-17 15:55:38 -050051#define virt_to_bus(devno, v) pci_virt_to_mem(devno, (void *) (v))
wdenk682011f2003-06-03 23:54:09 +000052#define bus_to_phys(devno, a) pci_mem_to_phys(devno, a)
wdenk682011f2003-06-03 23:54:09 +000053
Roy Zang9ea005f2009-08-22 03:49:52 +080054#define E1000_DEFAULT_PCI_PBA 0x00000030
55#define E1000_DEFAULT_PCIE_PBA 0x000a0026
wdenk682011f2003-06-03 23:54:09 +000056
57/* NIC specific static variables go here */
58
59static char tx_pool[128 + 16];
60static char rx_pool[128 + 16];
61static char packet[2096];
62
63static struct e1000_tx_desc *tx_base;
64static struct e1000_rx_desc *rx_base;
65
66static int tx_tail;
67static int rx_tail, rx_last;
68
Kyle Moffettd60626f82011-10-18 11:05:26 +000069static struct pci_device_id e1000_supported[] = {
wdenk682011f2003-06-03 23:54:09 +000070 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
71 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
72 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
73 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
74 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
75 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
76 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
77 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
78 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
Paul Gortmaker8915f112008-07-09 17:50:45 -040079 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER},
wdenk682011f2003-06-03 23:54:09 +000080 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
81 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
82 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
Reinhard Arlt2ab4a4d2009-12-04 09:52:17 +010083 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER},
wdenk682011f2003-06-03 23:54:09 +000084 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
Andre Schwarzac3315c2008-03-06 16:45:44 +010085 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
Wolfgang Grandeggeraa3b8bf2008-05-28 19:55:19 +020086 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF},
Roy Zangaa070782009-07-31 13:34:02 +080087 /* E1000 PCIe card */
88 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER},
89 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER },
90 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES },
91 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER},
92 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER},
93 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER},
94 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE},
95 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL},
96 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD},
97 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER},
98 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER},
99 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES},
100 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI},
101 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E},
102 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT},
103 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L},
Roy Zang2c2668f2011-01-21 11:29:38 +0800104 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L},
Roy Zangaa070782009-07-31 13:34:02 +0800105 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3},
106 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT},
107 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT},
108 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT},
109 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT},
Stefan Althoefer1bc43432008-12-20 19:40:41 +0100110 {}
wdenk682011f2003-06-03 23:54:09 +0000111};
112
113/* Function forward declarations */
114static int e1000_setup_link(struct eth_device *nic);
115static int e1000_setup_fiber_link(struct eth_device *nic);
116static int e1000_setup_copper_link(struct eth_device *nic);
117static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
118static void e1000_config_collision_dist(struct e1000_hw *hw);
119static int e1000_config_mac_to_phy(struct e1000_hw *hw);
120static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
121static int e1000_check_for_link(struct eth_device *nic);
122static int e1000_wait_autoneg(struct e1000_hw *hw);
Roy Zangaa070782009-07-31 13:34:02 +0800123static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
wdenk682011f2003-06-03 23:54:09 +0000124 uint16_t * duplex);
125static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
126 uint16_t * phy_data);
127static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
128 uint16_t phy_data);
Roy Zangaa070782009-07-31 13:34:02 +0800129static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
wdenk682011f2003-06-03 23:54:09 +0000130static int e1000_phy_reset(struct e1000_hw *hw);
131static int e1000_detect_gig_phy(struct e1000_hw *hw);
Roy Zangaa070782009-07-31 13:34:02 +0800132static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
133static void e1000_set_media_type(struct e1000_hw *hw);
wdenk682011f2003-06-03 23:54:09 +0000134
Roy Zangaa070782009-07-31 13:34:02 +0800135static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
136static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
wdenk682011f2003-06-03 23:54:09 +0000137#define E1000_WRITE_REG(a, reg, value) (writel((value), ((a)->hw_addr + E1000_##reg)))
138#define E1000_READ_REG(a, reg) (readl((a)->hw_addr + E1000_##reg))
139#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) (\
140 writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2))))
141#define E1000_READ_REG_ARRAY(a, reg, offset) ( \
wdenk8bde7f72003-06-27 21:31:46 +0000142 readl((a)->hw_addr + E1000_##reg + ((offset) << 2)))
wdenk682011f2003-06-03 23:54:09 +0000143#define E1000_WRITE_FLUSH(a) {uint32_t x; x = E1000_READ_REG(a, STATUS);}
144
Wolfgang Denk7521af12005-10-09 01:04:33 +0200145#ifndef CONFIG_AP1000 /* remove for warnings */
Roy Zangecbd2072009-08-11 03:48:05 +0800146static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
147 uint16_t words,
148 uint16_t *data);
wdenk682011f2003-06-03 23:54:09 +0000149/******************************************************************************
150 * Raises the EEPROM's clock input.
151 *
152 * hw - Struct containing variables accessed by shared code
153 * eecd - EECD's current value
154 *****************************************************************************/
155static void
156e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
157{
158 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
159 * wait 50 microseconds.
160 */
161 *eecd = *eecd | E1000_EECD_SK;
162 E1000_WRITE_REG(hw, EECD, *eecd);
163 E1000_WRITE_FLUSH(hw);
164 udelay(50);
165}
166
167/******************************************************************************
168 * Lowers the EEPROM's clock input.
169 *
wdenk8bde7f72003-06-27 21:31:46 +0000170 * hw - Struct containing variables accessed by shared code
wdenk682011f2003-06-03 23:54:09 +0000171 * eecd - EECD's current value
172 *****************************************************************************/
173static void
174e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
175{
wdenk8bde7f72003-06-27 21:31:46 +0000176 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
177 * wait 50 microseconds.
wdenk682011f2003-06-03 23:54:09 +0000178 */
179 *eecd = *eecd & ~E1000_EECD_SK;
180 E1000_WRITE_REG(hw, EECD, *eecd);
181 E1000_WRITE_FLUSH(hw);
182 udelay(50);
183}
184
185/******************************************************************************
186 * Shift data bits out to the EEPROM.
187 *
188 * hw - Struct containing variables accessed by shared code
189 * data - data to send to the EEPROM
190 * count - number of bits to shift out
191 *****************************************************************************/
192static void
193e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
194{
195 uint32_t eecd;
196 uint32_t mask;
197
198 /* We need to shift "count" bits out to the EEPROM. So, value in the
199 * "data" parameter will be shifted out to the EEPROM one bit at a time.
wdenk8bde7f72003-06-27 21:31:46 +0000200 * In order to do this, "data" must be broken down into bits.
wdenk682011f2003-06-03 23:54:09 +0000201 */
202 mask = 0x01 << (count - 1);
203 eecd = E1000_READ_REG(hw, EECD);
204 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
205 do {
206 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
207 * and then raising and then lowering the clock (the SK bit controls
208 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
209 * by setting "DI" to "0" and then raising and then lowering the clock.
210 */
211 eecd &= ~E1000_EECD_DI;
212
213 if (data & mask)
214 eecd |= E1000_EECD_DI;
215
216 E1000_WRITE_REG(hw, EECD, eecd);
217 E1000_WRITE_FLUSH(hw);
218
219 udelay(50);
220
221 e1000_raise_ee_clk(hw, &eecd);
222 e1000_lower_ee_clk(hw, &eecd);
223
224 mask = mask >> 1;
225
226 } while (mask);
227
228 /* We leave the "DI" bit set to "0" when we leave this routine. */
229 eecd &= ~E1000_EECD_DI;
230 E1000_WRITE_REG(hw, EECD, eecd);
231}
232
233/******************************************************************************
234 * Shift data bits in from the EEPROM
235 *
236 * hw - Struct containing variables accessed by shared code
237 *****************************************************************************/
238static uint16_t
Roy Zangaa070782009-07-31 13:34:02 +0800239e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
wdenk682011f2003-06-03 23:54:09 +0000240{
241 uint32_t eecd;
242 uint32_t i;
243 uint16_t data;
244
Roy Zangaa070782009-07-31 13:34:02 +0800245 /* In order to read a register from the EEPROM, we need to shift 'count'
246 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
247 * input to the EEPROM (setting the SK bit), and then reading the
248 * value of the "DO" bit. During this "shifting in" process the
249 * "DI" bit should always be clear.
wdenk682011f2003-06-03 23:54:09 +0000250 */
251
252 eecd = E1000_READ_REG(hw, EECD);
253
254 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
255 data = 0;
256
Roy Zangaa070782009-07-31 13:34:02 +0800257 for (i = 0; i < count; i++) {
wdenk682011f2003-06-03 23:54:09 +0000258 data = data << 1;
259 e1000_raise_ee_clk(hw, &eecd);
260
261 eecd = E1000_READ_REG(hw, EECD);
262
263 eecd &= ~(E1000_EECD_DI);
264 if (eecd & E1000_EECD_DO)
265 data |= 1;
266
267 e1000_lower_ee_clk(hw, &eecd);
268 }
269
270 return data;
271}
272
273/******************************************************************************
wdenk682011f2003-06-03 23:54:09 +0000274 * Returns EEPROM to a "standby" state
wdenk8bde7f72003-06-27 21:31:46 +0000275 *
wdenk682011f2003-06-03 23:54:09 +0000276 * hw - Struct containing variables accessed by shared code
277 *****************************************************************************/
278static void
279e1000_standby_eeprom(struct e1000_hw *hw)
280{
Roy Zangaa070782009-07-31 13:34:02 +0800281 struct e1000_eeprom_info *eeprom = &hw->eeprom;
wdenk682011f2003-06-03 23:54:09 +0000282 uint32_t eecd;
283
284 eecd = E1000_READ_REG(hw, EECD);
285
Roy Zangaa070782009-07-31 13:34:02 +0800286 if (eeprom->type == e1000_eeprom_microwire) {
287 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
288 E1000_WRITE_REG(hw, EECD, eecd);
289 E1000_WRITE_FLUSH(hw);
290 udelay(eeprom->delay_usec);
wdenk682011f2003-06-03 23:54:09 +0000291
Roy Zangaa070782009-07-31 13:34:02 +0800292 /* Clock high */
293 eecd |= E1000_EECD_SK;
294 E1000_WRITE_REG(hw, EECD, eecd);
295 E1000_WRITE_FLUSH(hw);
296 udelay(eeprom->delay_usec);
wdenk682011f2003-06-03 23:54:09 +0000297
Roy Zangaa070782009-07-31 13:34:02 +0800298 /* Select EEPROM */
299 eecd |= E1000_EECD_CS;
300 E1000_WRITE_REG(hw, EECD, eecd);
301 E1000_WRITE_FLUSH(hw);
302 udelay(eeprom->delay_usec);
wdenk682011f2003-06-03 23:54:09 +0000303
Roy Zangaa070782009-07-31 13:34:02 +0800304 /* Clock low */
305 eecd &= ~E1000_EECD_SK;
306 E1000_WRITE_REG(hw, EECD, eecd);
307 E1000_WRITE_FLUSH(hw);
308 udelay(eeprom->delay_usec);
309 } else if (eeprom->type == e1000_eeprom_spi) {
310 /* Toggle CS to flush commands */
311 eecd |= E1000_EECD_CS;
312 E1000_WRITE_REG(hw, EECD, eecd);
313 E1000_WRITE_FLUSH(hw);
314 udelay(eeprom->delay_usec);
315 eecd &= ~E1000_EECD_CS;
316 E1000_WRITE_REG(hw, EECD, eecd);
317 E1000_WRITE_FLUSH(hw);
318 udelay(eeprom->delay_usec);
319 }
320}
321
322/***************************************************************************
323* Description: Determines if the onboard NVM is FLASH or EEPROM.
324*
325* hw - Struct containing variables accessed by shared code
326****************************************************************************/
327static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
328{
329 uint32_t eecd = 0;
330
331 DEBUGFUNC();
332
333 if (hw->mac_type == e1000_ich8lan)
334 return FALSE;
335
Roy Zang2c2668f2011-01-21 11:29:38 +0800336 if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
Roy Zangaa070782009-07-31 13:34:02 +0800337 eecd = E1000_READ_REG(hw, EECD);
338
339 /* Isolate bits 15 & 16 */
340 eecd = ((eecd >> 15) & 0x03);
341
342 /* If both bits are set, device is Flash type */
343 if (eecd == 0x03)
344 return FALSE;
345 }
346 return TRUE;
347}
348
349/******************************************************************************
350 * Prepares EEPROM for access
351 *
352 * hw - Struct containing variables accessed by shared code
353 *
354 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
355 * function should be called before issuing a command to the EEPROM.
356 *****************************************************************************/
357static int32_t
358e1000_acquire_eeprom(struct e1000_hw *hw)
359{
360 struct e1000_eeprom_info *eeprom = &hw->eeprom;
361 uint32_t eecd, i = 0;
362
Timur Tabif81ecb52009-08-17 15:55:38 -0500363 DEBUGFUNC();
Roy Zangaa070782009-07-31 13:34:02 +0800364
365 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
366 return -E1000_ERR_SWFW_SYNC;
367 eecd = E1000_READ_REG(hw, EECD);
368
Roy Zang2c2668f2011-01-21 11:29:38 +0800369 if (hw->mac_type != e1000_82573 || hw->mac_type != e1000_82574) {
Roy Zangaa070782009-07-31 13:34:02 +0800370 /* Request EEPROM Access */
371 if (hw->mac_type > e1000_82544) {
372 eecd |= E1000_EECD_REQ;
373 E1000_WRITE_REG(hw, EECD, eecd);
374 eecd = E1000_READ_REG(hw, EECD);
375 while ((!(eecd & E1000_EECD_GNT)) &&
376 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
377 i++;
378 udelay(5);
379 eecd = E1000_READ_REG(hw, EECD);
380 }
381 if (!(eecd & E1000_EECD_GNT)) {
382 eecd &= ~E1000_EECD_REQ;
383 E1000_WRITE_REG(hw, EECD, eecd);
384 DEBUGOUT("Could not acquire EEPROM grant\n");
385 return -E1000_ERR_EEPROM;
386 }
387 }
388 }
389
390 /* Setup EEPROM for Read/Write */
391
392 if (eeprom->type == e1000_eeprom_microwire) {
393 /* Clear SK and DI */
394 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
395 E1000_WRITE_REG(hw, EECD, eecd);
396
397 /* Set CS */
398 eecd |= E1000_EECD_CS;
399 E1000_WRITE_REG(hw, EECD, eecd);
400 } else if (eeprom->type == e1000_eeprom_spi) {
401 /* Clear SK and CS */
402 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
403 E1000_WRITE_REG(hw, EECD, eecd);
404 udelay(1);
405 }
406
407 return E1000_SUCCESS;
408}
409
410/******************************************************************************
411 * Sets up eeprom variables in the hw struct. Must be called after mac_type
412 * is configured. Additionally, if this is ICH8, the flash controller GbE
413 * registers must be mapped, or this will crash.
414 *
415 * hw - Struct containing variables accessed by shared code
416 *****************************************************************************/
417static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
418{
419 struct e1000_eeprom_info *eeprom = &hw->eeprom;
420 uint32_t eecd = E1000_READ_REG(hw, EECD);
421 int32_t ret_val = E1000_SUCCESS;
422 uint16_t eeprom_size;
423
Timur Tabif81ecb52009-08-17 15:55:38 -0500424 DEBUGFUNC();
Roy Zangaa070782009-07-31 13:34:02 +0800425
426 switch (hw->mac_type) {
427 case e1000_82542_rev2_0:
428 case e1000_82542_rev2_1:
429 case e1000_82543:
430 case e1000_82544:
431 eeprom->type = e1000_eeprom_microwire;
432 eeprom->word_size = 64;
433 eeprom->opcode_bits = 3;
434 eeprom->address_bits = 6;
435 eeprom->delay_usec = 50;
436 eeprom->use_eerd = FALSE;
437 eeprom->use_eewr = FALSE;
438 break;
439 case e1000_82540:
440 case e1000_82545:
441 case e1000_82545_rev_3:
442 case e1000_82546:
443 case e1000_82546_rev_3:
444 eeprom->type = e1000_eeprom_microwire;
445 eeprom->opcode_bits = 3;
446 eeprom->delay_usec = 50;
447 if (eecd & E1000_EECD_SIZE) {
448 eeprom->word_size = 256;
449 eeprom->address_bits = 8;
450 } else {
451 eeprom->word_size = 64;
452 eeprom->address_bits = 6;
453 }
454 eeprom->use_eerd = FALSE;
455 eeprom->use_eewr = FALSE;
456 break;
457 case e1000_82541:
458 case e1000_82541_rev_2:
459 case e1000_82547:
460 case e1000_82547_rev_2:
461 if (eecd & E1000_EECD_TYPE) {
462 eeprom->type = e1000_eeprom_spi;
463 eeprom->opcode_bits = 8;
464 eeprom->delay_usec = 1;
465 if (eecd & E1000_EECD_ADDR_BITS) {
466 eeprom->page_size = 32;
467 eeprom->address_bits = 16;
468 } else {
469 eeprom->page_size = 8;
470 eeprom->address_bits = 8;
471 }
472 } else {
473 eeprom->type = e1000_eeprom_microwire;
474 eeprom->opcode_bits = 3;
475 eeprom->delay_usec = 50;
476 if (eecd & E1000_EECD_ADDR_BITS) {
477 eeprom->word_size = 256;
478 eeprom->address_bits = 8;
479 } else {
480 eeprom->word_size = 64;
481 eeprom->address_bits = 6;
482 }
483 }
484 eeprom->use_eerd = FALSE;
485 eeprom->use_eewr = FALSE;
486 break;
487 case e1000_82571:
488 case e1000_82572:
489 eeprom->type = e1000_eeprom_spi;
490 eeprom->opcode_bits = 8;
491 eeprom->delay_usec = 1;
492 if (eecd & E1000_EECD_ADDR_BITS) {
493 eeprom->page_size = 32;
494 eeprom->address_bits = 16;
495 } else {
496 eeprom->page_size = 8;
497 eeprom->address_bits = 8;
498 }
499 eeprom->use_eerd = FALSE;
500 eeprom->use_eewr = FALSE;
501 break;
502 case e1000_82573:
Roy Zang2c2668f2011-01-21 11:29:38 +0800503 case e1000_82574:
Roy Zangaa070782009-07-31 13:34:02 +0800504 eeprom->type = e1000_eeprom_spi;
505 eeprom->opcode_bits = 8;
506 eeprom->delay_usec = 1;
507 if (eecd & E1000_EECD_ADDR_BITS) {
508 eeprom->page_size = 32;
509 eeprom->address_bits = 16;
510 } else {
511 eeprom->page_size = 8;
512 eeprom->address_bits = 8;
513 }
514 eeprom->use_eerd = TRUE;
515 eeprom->use_eewr = TRUE;
516 if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
517 eeprom->type = e1000_eeprom_flash;
518 eeprom->word_size = 2048;
519
520 /* Ensure that the Autonomous FLASH update bit is cleared due to
521 * Flash update issue on parts which use a FLASH for NVM. */
522 eecd &= ~E1000_EECD_AUPDEN;
523 E1000_WRITE_REG(hw, EECD, eecd);
524 }
525 break;
526 case e1000_80003es2lan:
527 eeprom->type = e1000_eeprom_spi;
528 eeprom->opcode_bits = 8;
529 eeprom->delay_usec = 1;
530 if (eecd & E1000_EECD_ADDR_BITS) {
531 eeprom->page_size = 32;
532 eeprom->address_bits = 16;
533 } else {
534 eeprom->page_size = 8;
535 eeprom->address_bits = 8;
536 }
537 eeprom->use_eerd = TRUE;
538 eeprom->use_eewr = FALSE;
539 break;
540
541 /* ich8lan does not support currently. if needed, please
542 * add corresponding code and functions.
543 */
544#if 0
545 case e1000_ich8lan:
546 {
547 int32_t i = 0;
548
549 eeprom->type = e1000_eeprom_ich8;
550 eeprom->use_eerd = FALSE;
551 eeprom->use_eewr = FALSE;
552 eeprom->word_size = E1000_SHADOW_RAM_WORDS;
553 uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw,
554 ICH_FLASH_GFPREG);
555 /* Zero the shadow RAM structure. But don't load it from NVM
556 * so as to save time for driver init */
557 if (hw->eeprom_shadow_ram != NULL) {
558 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
559 hw->eeprom_shadow_ram[i].modified = FALSE;
560 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
561 }
562 }
563
564 hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
565 ICH_FLASH_SECTOR_SIZE;
566
567 hw->flash_bank_size = ((flash_size >> 16)
568 & ICH_GFPREG_BASE_MASK) + 1;
569 hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
570
571 hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
572
573 hw->flash_bank_size /= 2 * sizeof(uint16_t);
574 break;
575 }
576#endif
577 default:
578 break;
579 }
580
581 if (eeprom->type == e1000_eeprom_spi) {
582 /* eeprom_size will be an enum [0..8] that maps
583 * to eeprom sizes 128B to
584 * 32KB (incremented by powers of 2).
585 */
586 if (hw->mac_type <= e1000_82547_rev_2) {
587 /* Set to default value for initial eeprom read. */
588 eeprom->word_size = 64;
589 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
590 &eeprom_size);
591 if (ret_val)
592 return ret_val;
593 eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
594 >> EEPROM_SIZE_SHIFT;
595 /* 256B eeprom size was not supported in earlier
596 * hardware, so we bump eeprom_size up one to
597 * ensure that "1" (which maps to 256B) is never
598 * the result used in the shifting logic below. */
599 if (eeprom_size)
600 eeprom_size++;
601 } else {
602 eeprom_size = (uint16_t)((eecd &
603 E1000_EECD_SIZE_EX_MASK) >>
604 E1000_EECD_SIZE_EX_SHIFT);
605 }
606
607 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
608 }
609 return ret_val;
610}
611
612/******************************************************************************
613 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
614 *
615 * hw - Struct containing variables accessed by shared code
616 *****************************************************************************/
617static int32_t
618e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
619{
620 uint32_t attempts = 100000;
621 uint32_t i, reg = 0;
622 int32_t done = E1000_ERR_EEPROM;
623
624 for (i = 0; i < attempts; i++) {
625 if (eerd == E1000_EEPROM_POLL_READ)
626 reg = E1000_READ_REG(hw, EERD);
627 else
628 reg = E1000_READ_REG(hw, EEWR);
629
630 if (reg & E1000_EEPROM_RW_REG_DONE) {
631 done = E1000_SUCCESS;
632 break;
633 }
634 udelay(5);
635 }
636
637 return done;
638}
639
640/******************************************************************************
641 * Reads a 16 bit word from the EEPROM using the EERD register.
642 *
643 * hw - Struct containing variables accessed by shared code
644 * offset - offset of word in the EEPROM to read
645 * data - word read from the EEPROM
646 * words - number of words to read
647 *****************************************************************************/
648static int32_t
649e1000_read_eeprom_eerd(struct e1000_hw *hw,
650 uint16_t offset,
651 uint16_t words,
652 uint16_t *data)
653{
654 uint32_t i, eerd = 0;
655 int32_t error = 0;
656
657 for (i = 0; i < words; i++) {
658 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
659 E1000_EEPROM_RW_REG_START;
660
661 E1000_WRITE_REG(hw, EERD, eerd);
662 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
663
664 if (error)
665 break;
666 data[i] = (E1000_READ_REG(hw, EERD) >>
667 E1000_EEPROM_RW_REG_DATA);
668
669 }
670
671 return error;
672}
673
674static void
675e1000_release_eeprom(struct e1000_hw *hw)
676{
677 uint32_t eecd;
678
679 DEBUGFUNC();
680
681 eecd = E1000_READ_REG(hw, EECD);
682
683 if (hw->eeprom.type == e1000_eeprom_spi) {
684 eecd |= E1000_EECD_CS; /* Pull CS high */
685 eecd &= ~E1000_EECD_SK; /* Lower SCK */
686
687 E1000_WRITE_REG(hw, EECD, eecd);
688
689 udelay(hw->eeprom.delay_usec);
690 } else if (hw->eeprom.type == e1000_eeprom_microwire) {
691 /* cleanup eeprom */
692
693 /* CS on Microwire is active-high */
694 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
695
696 E1000_WRITE_REG(hw, EECD, eecd);
697
698 /* Rising edge of clock */
699 eecd |= E1000_EECD_SK;
700 E1000_WRITE_REG(hw, EECD, eecd);
701 E1000_WRITE_FLUSH(hw);
702 udelay(hw->eeprom.delay_usec);
703
704 /* Falling edge of clock */
705 eecd &= ~E1000_EECD_SK;
706 E1000_WRITE_REG(hw, EECD, eecd);
707 E1000_WRITE_FLUSH(hw);
708 udelay(hw->eeprom.delay_usec);
709 }
710
711 /* Stop requesting EEPROM access */
712 if (hw->mac_type > e1000_82544) {
713 eecd &= ~E1000_EECD_REQ;
714 E1000_WRITE_REG(hw, EECD, eecd);
715 }
716}
717/******************************************************************************
718 * Reads a 16 bit word from the EEPROM.
719 *
720 * hw - Struct containing variables accessed by shared code
721 *****************************************************************************/
722static int32_t
723e1000_spi_eeprom_ready(struct e1000_hw *hw)
724{
725 uint16_t retry_count = 0;
726 uint8_t spi_stat_reg;
727
728 DEBUGFUNC();
729
730 /* Read "Status Register" repeatedly until the LSB is cleared. The
731 * EEPROM will signal that the command has been completed by clearing
732 * bit 0 of the internal status register. If it's not cleared within
733 * 5 milliseconds, then error out.
734 */
735 retry_count = 0;
736 do {
737 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
738 hw->eeprom.opcode_bits);
739 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
740 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
741 break;
742
743 udelay(5);
744 retry_count += 5;
745
746 e1000_standby_eeprom(hw);
747 } while (retry_count < EEPROM_MAX_RETRY_SPI);
748
749 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
750 * only 0-5mSec on 5V devices)
751 */
752 if (retry_count >= EEPROM_MAX_RETRY_SPI) {
753 DEBUGOUT("SPI EEPROM Status error\n");
754 return -E1000_ERR_EEPROM;
755 }
756
757 return E1000_SUCCESS;
wdenk682011f2003-06-03 23:54:09 +0000758}
759
760/******************************************************************************
761 * Reads a 16 bit word from the EEPROM.
762 *
763 * hw - Struct containing variables accessed by shared code
764 * offset - offset of word in the EEPROM to read
wdenk8bde7f72003-06-27 21:31:46 +0000765 * data - word read from the EEPROM
wdenk682011f2003-06-03 23:54:09 +0000766 *****************************************************************************/
Roy Zangaa070782009-07-31 13:34:02 +0800767static int32_t
768e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
769 uint16_t words, uint16_t *data)
wdenk682011f2003-06-03 23:54:09 +0000770{
Roy Zangaa070782009-07-31 13:34:02 +0800771 struct e1000_eeprom_info *eeprom = &hw->eeprom;
wdenk682011f2003-06-03 23:54:09 +0000772 uint32_t i = 0;
wdenk682011f2003-06-03 23:54:09 +0000773
Roy Zangaa070782009-07-31 13:34:02 +0800774 DEBUGFUNC();
775
776 /* If eeprom is not yet detected, do so now */
777 if (eeprom->word_size == 0)
778 e1000_init_eeprom_params(hw);
779
780 /* A check for invalid values: offset too large, too many words,
781 * and not enough words.
782 */
783 if ((offset >= eeprom->word_size) ||
784 (words > eeprom->word_size - offset) ||
785 (words == 0)) {
786 DEBUGOUT("\"words\" parameter out of bounds."
787 "Words = %d, size = %d\n", offset, eeprom->word_size);
788 return -E1000_ERR_EEPROM;
789 }
790
791 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
792 * directly. In this case, we need to acquire the EEPROM so that
793 * FW or other port software does not interrupt.
794 */
795 if (e1000_is_onboard_nvm_eeprom(hw) == TRUE &&
796 hw->eeprom.use_eerd == FALSE) {
797
798 /* Prepare the EEPROM for bit-bang reading */
799 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
800 return -E1000_ERR_EEPROM;
801 }
802
803 /* Eerd register EEPROM access requires no eeprom aquire/release */
804 if (eeprom->use_eerd == TRUE)
805 return e1000_read_eeprom_eerd(hw, offset, words, data);
806
807 /* ich8lan does not support currently. if needed, please
808 * add corresponding code and functions.
809 */
810#if 0
811 /* ICH EEPROM access is done via the ICH flash controller */
812 if (eeprom->type == e1000_eeprom_ich8)
813 return e1000_read_eeprom_ich8(hw, offset, words, data);
814#endif
815 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
816 * acquired the EEPROM at this point, so any returns should relase it */
817 if (eeprom->type == e1000_eeprom_spi) {
818 uint16_t word_in;
819 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
820
821 if (e1000_spi_eeprom_ready(hw)) {
822 e1000_release_eeprom(hw);
wdenk682011f2003-06-03 23:54:09 +0000823 return -E1000_ERR_EEPROM;
824 }
Roy Zangaa070782009-07-31 13:34:02 +0800825
826 e1000_standby_eeprom(hw);
827
828 /* Some SPI eeproms use the 8th address bit embedded in
829 * the opcode */
830 if ((eeprom->address_bits == 8) && (offset >= 128))
831 read_opcode |= EEPROM_A8_OPCODE_SPI;
832
833 /* Send the READ command (opcode + addr) */
834 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
835 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
836 eeprom->address_bits);
837
838 /* Read the data. The address of the eeprom internally
839 * increments with each byte (spi) being read, saving on the
840 * overhead of eeprom setup and tear-down. The address
841 * counter will roll over if reading beyond the size of
842 * the eeprom, thus allowing the entire memory to be read
843 * starting from any offset. */
844 for (i = 0; i < words; i++) {
845 word_in = e1000_shift_in_ee_bits(hw, 16);
846 data[i] = (word_in >> 8) | (word_in << 8);
847 }
848 } else if (eeprom->type == e1000_eeprom_microwire) {
849 for (i = 0; i < words; i++) {
850 /* Send the READ command (opcode + addr) */
851 e1000_shift_out_ee_bits(hw,
852 EEPROM_READ_OPCODE_MICROWIRE,
853 eeprom->opcode_bits);
854 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
855 eeprom->address_bits);
856
857 /* Read the data. For microwire, each word requires
858 * the overhead of eeprom setup and tear-down. */
859 data[i] = e1000_shift_in_ee_bits(hw, 16);
860 e1000_standby_eeprom(hw);
861 }
wdenk682011f2003-06-03 23:54:09 +0000862 }
863
wdenk682011f2003-06-03 23:54:09 +0000864 /* End this read operation */
Roy Zangaa070782009-07-31 13:34:02 +0800865 e1000_release_eeprom(hw);
wdenk682011f2003-06-03 23:54:09 +0000866
Roy Zangaa070782009-07-31 13:34:02 +0800867 return E1000_SUCCESS;
wdenk682011f2003-06-03 23:54:09 +0000868}
869
wdenk682011f2003-06-03 23:54:09 +0000870/******************************************************************************
871 * Verifies that the EEPROM has a valid checksum
wdenk8bde7f72003-06-27 21:31:46 +0000872 *
wdenk682011f2003-06-03 23:54:09 +0000873 * hw - Struct containing variables accessed by shared code
874 *
875 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
876 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
877 * valid.
878 *****************************************************************************/
Kyle Moffett114d7fc2011-10-18 11:05:27 +0000879static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
wdenk682011f2003-06-03 23:54:09 +0000880{
Kyle Moffett114d7fc2011-10-18 11:05:27 +0000881 uint16_t i, checksum, checksum_reg, *buf;
wdenk682011f2003-06-03 23:54:09 +0000882
883 DEBUGFUNC();
884
Kyle Moffett114d7fc2011-10-18 11:05:27 +0000885 /* Allocate a temporary buffer */
886 buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
887 if (!buf) {
888 E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n");
wdenk682011f2003-06-03 23:54:09 +0000889 return -E1000_ERR_EEPROM;
890 }
Kyle Moffett114d7fc2011-10-18 11:05:27 +0000891
892 /* Read the EEPROM */
893 if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
894 E1000_ERR(hw->nic, "Unable to read EEPROM!\n");
895 return -E1000_ERR_EEPROM;
896 }
897
898 /* Compute the checksum */
899 for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
900 checksum += buf[i];
901 checksum = ((uint16_t)EEPROM_SUM) - checksum;
902 checksum_reg = buf[i];
903
904 /* Verify it! */
905 if (checksum == checksum_reg)
906 return 0;
907
908 /* Hrm, verification failed, print an error */
909 E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n");
910 E1000_ERR(hw->nic, " ...register was 0x%04hx, calculated 0x%04hx\n",
911 checksum_reg, checksum);
912
913 return -E1000_ERR_EEPROM;
wdenk682011f2003-06-03 23:54:09 +0000914}
Roy Zangecbd2072009-08-11 03:48:05 +0800915
916/*****************************************************************************
917 * Set PHY to class A mode
918 * Assumes the following operations will follow to enable the new class mode.
919 * 1. Do a PHY soft reset
920 * 2. Restart auto-negotiation or force link.
921 *
922 * hw - Struct containing variables accessed by shared code
923 ****************************************************************************/
924static int32_t
925e1000_set_phy_mode(struct e1000_hw *hw)
926{
927 int32_t ret_val;
928 uint16_t eeprom_data;
929
930 DEBUGFUNC();
931
932 if ((hw->mac_type == e1000_82545_rev_3) &&
933 (hw->media_type == e1000_media_type_copper)) {
934 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
935 1, &eeprom_data);
936 if (ret_val)
937 return ret_val;
938
939 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
940 (eeprom_data & EEPROM_PHY_CLASS_A)) {
941 ret_val = e1000_write_phy_reg(hw,
942 M88E1000_PHY_PAGE_SELECT, 0x000B);
943 if (ret_val)
944 return ret_val;
945 ret_val = e1000_write_phy_reg(hw,
946 M88E1000_PHY_GEN_CONTROL, 0x8104);
947 if (ret_val)
948 return ret_val;
949
950 hw->phy_reset_disable = FALSE;
951 }
952 }
953
954 return E1000_SUCCESS;
955}
Wolfgang Denk7521af12005-10-09 01:04:33 +0200956#endif /* #ifndef CONFIG_AP1000 */
wdenk682011f2003-06-03 23:54:09 +0000957
Roy Zangaa070782009-07-31 13:34:02 +0800958/***************************************************************************
959 *
960 * Obtaining software semaphore bit (SMBI) before resetting PHY.
961 *
962 * hw: Struct containing variables accessed by shared code
963 *
964 * returns: - E1000_ERR_RESET if fail to obtain semaphore.
965 * E1000_SUCCESS at any other case.
966 *
967 ***************************************************************************/
968static int32_t
969e1000_get_software_semaphore(struct e1000_hw *hw)
970{
971 int32_t timeout = hw->eeprom.word_size + 1;
972 uint32_t swsm;
973
974 DEBUGFUNC();
975
976 if (hw->mac_type != e1000_80003es2lan)
977 return E1000_SUCCESS;
978
979 while (timeout) {
980 swsm = E1000_READ_REG(hw, SWSM);
981 /* If SMBI bit cleared, it is now set and we hold
982 * the semaphore */
983 if (!(swsm & E1000_SWSM_SMBI))
984 break;
985 mdelay(1);
986 timeout--;
987 }
988
989 if (!timeout) {
990 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
991 return -E1000_ERR_RESET;
992 }
993
994 return E1000_SUCCESS;
995}
996
997/***************************************************************************
998 * This function clears HW semaphore bits.
999 *
1000 * hw: Struct containing variables accessed by shared code
1001 *
1002 * returns: - None.
1003 *
1004 ***************************************************************************/
1005static void
1006e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
1007{
1008 uint32_t swsm;
1009
1010 DEBUGFUNC();
1011
1012 if (!hw->eeprom_semaphore_present)
1013 return;
1014
1015 swsm = E1000_READ_REG(hw, SWSM);
1016 if (hw->mac_type == e1000_80003es2lan) {
1017 /* Release both semaphores. */
1018 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1019 } else
1020 swsm &= ~(E1000_SWSM_SWESMBI);
1021 E1000_WRITE_REG(hw, SWSM, swsm);
1022}
1023
1024/***************************************************************************
1025 *
1026 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1027 * adapter or Eeprom access.
1028 *
1029 * hw: Struct containing variables accessed by shared code
1030 *
1031 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1032 * E1000_SUCCESS at any other case.
1033 *
1034 ***************************************************************************/
1035static int32_t
1036e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1037{
1038 int32_t timeout;
1039 uint32_t swsm;
1040
1041 DEBUGFUNC();
1042
1043 if (!hw->eeprom_semaphore_present)
1044 return E1000_SUCCESS;
1045
1046 if (hw->mac_type == e1000_80003es2lan) {
1047 /* Get the SW semaphore. */
1048 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1049 return -E1000_ERR_EEPROM;
1050 }
1051
1052 /* Get the FW semaphore. */
1053 timeout = hw->eeprom.word_size + 1;
1054 while (timeout) {
1055 swsm = E1000_READ_REG(hw, SWSM);
1056 swsm |= E1000_SWSM_SWESMBI;
1057 E1000_WRITE_REG(hw, SWSM, swsm);
1058 /* if we managed to set the bit we got the semaphore. */
1059 swsm = E1000_READ_REG(hw, SWSM);
1060 if (swsm & E1000_SWSM_SWESMBI)
1061 break;
1062
1063 udelay(50);
1064 timeout--;
1065 }
1066
1067 if (!timeout) {
1068 /* Release semaphores */
1069 e1000_put_hw_eeprom_semaphore(hw);
1070 DEBUGOUT("Driver can't access the Eeprom - "
1071 "SWESMBI bit is set.\n");
1072 return -E1000_ERR_EEPROM;
1073 }
1074
1075 return E1000_SUCCESS;
1076}
1077
1078static int32_t
1079e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1080{
1081 uint32_t swfw_sync = 0;
1082 uint32_t swmask = mask;
1083 uint32_t fwmask = mask << 16;
1084 int32_t timeout = 200;
1085
1086 DEBUGFUNC();
1087 while (timeout) {
1088 if (e1000_get_hw_eeprom_semaphore(hw))
1089 return -E1000_ERR_SWFW_SYNC;
1090
1091 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1092 if (!(swfw_sync & (fwmask | swmask)))
1093 break;
1094
1095 /* firmware currently using resource (fwmask) */
1096 /* or other software thread currently using resource (swmask) */
1097 e1000_put_hw_eeprom_semaphore(hw);
1098 mdelay(5);
1099 timeout--;
1100 }
1101
1102 if (!timeout) {
1103 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1104 return -E1000_ERR_SWFW_SYNC;
1105 }
1106
1107 swfw_sync |= swmask;
1108 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1109
1110 e1000_put_hw_eeprom_semaphore(hw);
1111 return E1000_SUCCESS;
1112}
1113
Kyle Moffett987b43a2010-09-13 05:52:22 +00001114static boolean_t e1000_is_second_port(struct e1000_hw *hw)
1115{
1116 switch (hw->mac_type) {
1117 case e1000_80003es2lan:
1118 case e1000_82546:
1119 case e1000_82571:
1120 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1121 return TRUE;
1122 /* Fallthrough */
1123 default:
1124 return FALSE;
1125 }
1126}
1127
wdenk682011f2003-06-03 23:54:09 +00001128/******************************************************************************
1129 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1130 * second function of dual function devices
1131 *
1132 * nic - Struct containing variables accessed by shared code
1133 *****************************************************************************/
1134static int
1135e1000_read_mac_addr(struct eth_device *nic)
1136{
Wolfgang Denk7521af12005-10-09 01:04:33 +02001137#ifndef CONFIG_AP1000
wdenk682011f2003-06-03 23:54:09 +00001138 struct e1000_hw *hw = nic->priv;
1139 uint16_t offset;
1140 uint16_t eeprom_data;
1141 int i;
1142
1143 DEBUGFUNC();
1144
1145 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1146 offset = i >> 1;
Roy Zangaa070782009-07-31 13:34:02 +08001147 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
wdenk682011f2003-06-03 23:54:09 +00001148 DEBUGOUT("EEPROM Read Error\n");
1149 return -E1000_ERR_EEPROM;
1150 }
1151 nic->enetaddr[i] = eeprom_data & 0xff;
1152 nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1153 }
Kyle Moffett987b43a2010-09-13 05:52:22 +00001154
1155 /* Invert the last bit if this is the second device */
1156 if (e1000_is_second_port(hw))
1157 nic->enetaddr[5] ^= 1;
1158
Andre Schwarzac3315c2008-03-06 16:45:44 +01001159#ifdef CONFIG_E1000_FALLBACK_MAC
Stefan Roesef2302d42008-08-06 14:05:38 +02001160 if ( *(u32*)(nic->enetaddr) == 0 || *(u32*)(nic->enetaddr) == ~0 ) {
1161 unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC;
1162
1163 memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE);
1164 }
Andre Schwarzac3315c2008-03-06 16:45:44 +01001165#endif
Wolfgang Denk7521af12005-10-09 01:04:33 +02001166#else
1167 /*
1168 * The AP1000's e1000 has no eeprom; the MAC address is stored in the
1169 * environment variables. Currently this does not support the addition
1170 * of a PMC e1000 card, which is certainly a possibility, so this should
1171 * be updated to properly use the env variable only for the onboard e1000
1172 */
1173
1174 int ii;
1175 char *s, *e;
1176
1177 DEBUGFUNC();
1178
1179 s = getenv ("ethaddr");
Stefan Roesef2302d42008-08-06 14:05:38 +02001180 if (s == NULL) {
Wolfgang Denk7521af12005-10-09 01:04:33 +02001181 return -E1000_ERR_EEPROM;
Stefan Roesef2302d42008-08-06 14:05:38 +02001182 } else {
Wolfgang Denk7521af12005-10-09 01:04:33 +02001183 for(ii = 0; ii < 6; ii++) {
1184 nic->enetaddr[ii] = s ? simple_strtoul (s, &e, 16) : 0;
1185 if (s){
1186 s = (*e) ? e + 1 : e;
1187 }
1188 }
1189 }
1190#endif
wdenk682011f2003-06-03 23:54:09 +00001191 return 0;
1192}
1193
1194/******************************************************************************
1195 * Initializes receive address filters.
1196 *
wdenk8bde7f72003-06-27 21:31:46 +00001197 * hw - Struct containing variables accessed by shared code
wdenk682011f2003-06-03 23:54:09 +00001198 *
1199 * Places the MAC address in receive address register 0 and clears the rest
1200 * of the receive addresss registers. Clears the multicast table. Assumes
1201 * the receiver is in reset when the routine is called.
1202 *****************************************************************************/
1203static void
1204e1000_init_rx_addrs(struct eth_device *nic)
1205{
1206 struct e1000_hw *hw = nic->priv;
1207 uint32_t i;
1208 uint32_t addr_low;
1209 uint32_t addr_high;
1210
1211 DEBUGFUNC();
1212
1213 /* Setup the receive address. */
1214 DEBUGOUT("Programming MAC Address into RAR[0]\n");
1215 addr_low = (nic->enetaddr[0] |
1216 (nic->enetaddr[1] << 8) |
1217 (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
1218
1219 addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
1220
1221 E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1222 E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1223
1224 /* Zero out the other 15 receive addresses. */
1225 DEBUGOUT("Clearing RAR[1-15]\n");
1226 for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1227 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1228 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1229 }
1230}
1231
1232/******************************************************************************
1233 * Clears the VLAN filer table
1234 *
1235 * hw - Struct containing variables accessed by shared code
1236 *****************************************************************************/
1237static void
1238e1000_clear_vfta(struct e1000_hw *hw)
1239{
1240 uint32_t offset;
1241
1242 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1243 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1244}
1245
1246/******************************************************************************
1247 * Set the mac type member in the hw struct.
wdenk8bde7f72003-06-27 21:31:46 +00001248 *
wdenk682011f2003-06-03 23:54:09 +00001249 * hw - Struct containing variables accessed by shared code
1250 *****************************************************************************/
Roy Zangaa070782009-07-31 13:34:02 +08001251int32_t
wdenk682011f2003-06-03 23:54:09 +00001252e1000_set_mac_type(struct e1000_hw *hw)
1253{
1254 DEBUGFUNC();
1255
1256 switch (hw->device_id) {
1257 case E1000_DEV_ID_82542:
1258 switch (hw->revision_id) {
1259 case E1000_82542_2_0_REV_ID:
1260 hw->mac_type = e1000_82542_rev2_0;
1261 break;
1262 case E1000_82542_2_1_REV_ID:
1263 hw->mac_type = e1000_82542_rev2_1;
1264 break;
1265 default:
1266 /* Invalid 82542 revision ID */
1267 return -E1000_ERR_MAC_TYPE;
1268 }
1269 break;
1270 case E1000_DEV_ID_82543GC_FIBER:
1271 case E1000_DEV_ID_82543GC_COPPER:
1272 hw->mac_type = e1000_82543;
1273 break;
1274 case E1000_DEV_ID_82544EI_COPPER:
1275 case E1000_DEV_ID_82544EI_FIBER:
1276 case E1000_DEV_ID_82544GC_COPPER:
1277 case E1000_DEV_ID_82544GC_LOM:
1278 hw->mac_type = e1000_82544;
1279 break;
1280 case E1000_DEV_ID_82540EM:
1281 case E1000_DEV_ID_82540EM_LOM:
Roy Zangaa070782009-07-31 13:34:02 +08001282 case E1000_DEV_ID_82540EP:
1283 case E1000_DEV_ID_82540EP_LOM:
1284 case E1000_DEV_ID_82540EP_LP:
wdenk682011f2003-06-03 23:54:09 +00001285 hw->mac_type = e1000_82540;
1286 break;
1287 case E1000_DEV_ID_82545EM_COPPER:
1288 case E1000_DEV_ID_82545EM_FIBER:
1289 hw->mac_type = e1000_82545;
1290 break;
Roy Zangaa070782009-07-31 13:34:02 +08001291 case E1000_DEV_ID_82545GM_COPPER:
1292 case E1000_DEV_ID_82545GM_FIBER:
1293 case E1000_DEV_ID_82545GM_SERDES:
1294 hw->mac_type = e1000_82545_rev_3;
1295 break;
wdenk682011f2003-06-03 23:54:09 +00001296 case E1000_DEV_ID_82546EB_COPPER:
1297 case E1000_DEV_ID_82546EB_FIBER:
Roy Zangaa070782009-07-31 13:34:02 +08001298 case E1000_DEV_ID_82546EB_QUAD_COPPER:
wdenk682011f2003-06-03 23:54:09 +00001299 hw->mac_type = e1000_82546;
1300 break;
Roy Zangaa070782009-07-31 13:34:02 +08001301 case E1000_DEV_ID_82546GB_COPPER:
1302 case E1000_DEV_ID_82546GB_FIBER:
1303 case E1000_DEV_ID_82546GB_SERDES:
1304 case E1000_DEV_ID_82546GB_PCIE:
1305 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1306 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1307 hw->mac_type = e1000_82546_rev_3;
1308 break;
1309 case E1000_DEV_ID_82541EI:
1310 case E1000_DEV_ID_82541EI_MOBILE:
1311 case E1000_DEV_ID_82541ER_LOM:
1312 hw->mac_type = e1000_82541;
1313 break;
Andre Schwarzac3315c2008-03-06 16:45:44 +01001314 case E1000_DEV_ID_82541ER:
Roy Zangaa070782009-07-31 13:34:02 +08001315 case E1000_DEV_ID_82541GI:
Wolfgang Grandeggeraa3b8bf2008-05-28 19:55:19 +02001316 case E1000_DEV_ID_82541GI_LF:
Roy Zangaa070782009-07-31 13:34:02 +08001317 case E1000_DEV_ID_82541GI_MOBILE:
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07001318 hw->mac_type = e1000_82541_rev_2;
1319 break;
Roy Zangaa070782009-07-31 13:34:02 +08001320 case E1000_DEV_ID_82547EI:
1321 case E1000_DEV_ID_82547EI_MOBILE:
1322 hw->mac_type = e1000_82547;
1323 break;
1324 case E1000_DEV_ID_82547GI:
1325 hw->mac_type = e1000_82547_rev_2;
1326 break;
1327 case E1000_DEV_ID_82571EB_COPPER:
1328 case E1000_DEV_ID_82571EB_FIBER:
1329 case E1000_DEV_ID_82571EB_SERDES:
1330 case E1000_DEV_ID_82571EB_SERDES_DUAL:
1331 case E1000_DEV_ID_82571EB_SERDES_QUAD:
1332 case E1000_DEV_ID_82571EB_QUAD_COPPER:
1333 case E1000_DEV_ID_82571PT_QUAD_COPPER:
1334 case E1000_DEV_ID_82571EB_QUAD_FIBER:
1335 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1336 hw->mac_type = e1000_82571;
1337 break;
1338 case E1000_DEV_ID_82572EI_COPPER:
1339 case E1000_DEV_ID_82572EI_FIBER:
1340 case E1000_DEV_ID_82572EI_SERDES:
1341 case E1000_DEV_ID_82572EI:
1342 hw->mac_type = e1000_82572;
1343 break;
1344 case E1000_DEV_ID_82573E:
1345 case E1000_DEV_ID_82573E_IAMT:
1346 case E1000_DEV_ID_82573L:
1347 hw->mac_type = e1000_82573;
1348 break;
Roy Zang2c2668f2011-01-21 11:29:38 +08001349 case E1000_DEV_ID_82574L:
1350 hw->mac_type = e1000_82574;
1351 break;
Roy Zangaa070782009-07-31 13:34:02 +08001352 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1353 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1354 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1355 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1356 hw->mac_type = e1000_80003es2lan;
1357 break;
1358 case E1000_DEV_ID_ICH8_IGP_M_AMT:
1359 case E1000_DEV_ID_ICH8_IGP_AMT:
1360 case E1000_DEV_ID_ICH8_IGP_C:
1361 case E1000_DEV_ID_ICH8_IFE:
1362 case E1000_DEV_ID_ICH8_IFE_GT:
1363 case E1000_DEV_ID_ICH8_IFE_G:
1364 case E1000_DEV_ID_ICH8_IGP_M:
1365 hw->mac_type = e1000_ich8lan;
1366 break;
wdenk682011f2003-06-03 23:54:09 +00001367 default:
1368 /* Should never have loaded on this device */
1369 return -E1000_ERR_MAC_TYPE;
1370 }
1371 return E1000_SUCCESS;
1372}
1373
1374/******************************************************************************
1375 * Reset the transmit and receive units; mask and clear all interrupts.
1376 *
1377 * hw - Struct containing variables accessed by shared code
1378 *****************************************************************************/
1379void
1380e1000_reset_hw(struct e1000_hw *hw)
1381{
1382 uint32_t ctrl;
1383 uint32_t ctrl_ext;
1384 uint32_t icr;
1385 uint32_t manc;
Roy Zang9ea005f2009-08-22 03:49:52 +08001386 uint32_t pba = 0;
wdenk682011f2003-06-03 23:54:09 +00001387
1388 DEBUGFUNC();
1389
Roy Zang9ea005f2009-08-22 03:49:52 +08001390 /* get the correct pba value for both PCI and PCIe*/
1391 if (hw->mac_type < e1000_82571)
1392 pba = E1000_DEFAULT_PCI_PBA;
1393 else
1394 pba = E1000_DEFAULT_PCIE_PBA;
1395
wdenk682011f2003-06-03 23:54:09 +00001396 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1397 if (hw->mac_type == e1000_82542_rev2_0) {
1398 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1399 pci_write_config_word(hw->pdev, PCI_COMMAND,
Roy Zangaa070782009-07-31 13:34:02 +08001400 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
wdenk682011f2003-06-03 23:54:09 +00001401 }
1402
1403 /* Clear interrupt mask to stop board from generating interrupts */
1404 DEBUGOUT("Masking off all interrupts\n");
1405 E1000_WRITE_REG(hw, IMC, 0xffffffff);
1406
1407 /* Disable the Transmit and Receive units. Then delay to allow
1408 * any pending transactions to complete before we hit the MAC with
1409 * the global reset.
1410 */
1411 E1000_WRITE_REG(hw, RCTL, 0);
1412 E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1413 E1000_WRITE_FLUSH(hw);
1414
1415 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1416 hw->tbi_compatibility_on = FALSE;
1417
1418 /* Delay to allow any outstanding PCI transactions to complete before
1419 * resetting the device
1420 */
1421 mdelay(10);
1422
1423 /* Issue a global reset to the MAC. This will reset the chip's
1424 * transmit, receive, DMA, and link units. It will not effect
1425 * the current PCI configuration. The global reset bit is self-
1426 * clearing, and should clear within a microsecond.
1427 */
1428 DEBUGOUT("Issuing a global reset to MAC\n");
1429 ctrl = E1000_READ_REG(hw, CTRL);
1430
Roy Zangaa070782009-07-31 13:34:02 +08001431 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
wdenk682011f2003-06-03 23:54:09 +00001432
1433 /* Force a reload from the EEPROM if necessary */
1434 if (hw->mac_type < e1000_82540) {
1435 /* Wait for reset to complete */
1436 udelay(10);
1437 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1438 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1439 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1440 E1000_WRITE_FLUSH(hw);
1441 /* Wait for EEPROM reload */
1442 mdelay(2);
1443 } else {
1444 /* Wait for EEPROM reload (it happens automatically) */
1445 mdelay(4);
1446 /* Dissable HW ARPs on ASF enabled adapters */
1447 manc = E1000_READ_REG(hw, MANC);
1448 manc &= ~(E1000_MANC_ARP_EN);
1449 E1000_WRITE_REG(hw, MANC, manc);
1450 }
1451
1452 /* Clear interrupt mask to stop board from generating interrupts */
1453 DEBUGOUT("Masking off all interrupts\n");
1454 E1000_WRITE_REG(hw, IMC, 0xffffffff);
1455
1456 /* Clear any pending interrupt events. */
1457 icr = E1000_READ_REG(hw, ICR);
1458
1459 /* If MWI was previously enabled, reenable it. */
1460 if (hw->mac_type == e1000_82542_rev2_0) {
1461 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1462 }
Roy Zang9ea005f2009-08-22 03:49:52 +08001463 E1000_WRITE_REG(hw, PBA, pba);
Roy Zangaa070782009-07-31 13:34:02 +08001464}
1465
1466/******************************************************************************
1467 *
1468 * Initialize a number of hardware-dependent bits
1469 *
1470 * hw: Struct containing variables accessed by shared code
1471 *
1472 * This function contains hardware limitation workarounds for PCI-E adapters
1473 *
1474 *****************************************************************************/
1475static void
1476e1000_initialize_hardware_bits(struct e1000_hw *hw)
1477{
1478 if ((hw->mac_type >= e1000_82571) &&
1479 (!hw->initialize_hw_bits_disable)) {
1480 /* Settings common to all PCI-express silicon */
1481 uint32_t reg_ctrl, reg_ctrl_ext;
1482 uint32_t reg_tarc0, reg_tarc1;
1483 uint32_t reg_tctl;
1484 uint32_t reg_txdctl, reg_txdctl1;
1485
1486 /* link autonegotiation/sync workarounds */
1487 reg_tarc0 = E1000_READ_REG(hw, TARC0);
1488 reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1489
1490 /* Enable not-done TX descriptor counting */
1491 reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1492 reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1493 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1494
1495 reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1496 reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1497 E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1498
1499 switch (hw->mac_type) {
1500 case e1000_82571:
1501 case e1000_82572:
1502 /* Clear PHY TX compatible mode bits */
1503 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1504 reg_tarc1 &= ~((1 << 30)|(1 << 29));
1505
1506 /* link autonegotiation/sync workarounds */
1507 reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1508
1509 /* TX ring control fixes */
1510 reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1511
1512 /* Multiple read bit is reversed polarity */
1513 reg_tctl = E1000_READ_REG(hw, TCTL);
1514 if (reg_tctl & E1000_TCTL_MULR)
1515 reg_tarc1 &= ~(1 << 28);
1516 else
1517 reg_tarc1 |= (1 << 28);
1518
1519 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1520 break;
1521 case e1000_82573:
Roy Zang2c2668f2011-01-21 11:29:38 +08001522 case e1000_82574:
Roy Zangaa070782009-07-31 13:34:02 +08001523 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1524 reg_ctrl_ext &= ~(1 << 23);
1525 reg_ctrl_ext |= (1 << 22);
1526
1527 /* TX byte count fix */
1528 reg_ctrl = E1000_READ_REG(hw, CTRL);
1529 reg_ctrl &= ~(1 << 29);
1530
1531 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1532 E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1533 break;
1534 case e1000_80003es2lan:
1535 /* improve small packet performace for fiber/serdes */
1536 if ((hw->media_type == e1000_media_type_fiber)
1537 || (hw->media_type ==
1538 e1000_media_type_internal_serdes)) {
1539 reg_tarc0 &= ~(1 << 20);
1540 }
1541
1542 /* Multiple read bit is reversed polarity */
1543 reg_tctl = E1000_READ_REG(hw, TCTL);
1544 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1545 if (reg_tctl & E1000_TCTL_MULR)
1546 reg_tarc1 &= ~(1 << 28);
1547 else
1548 reg_tarc1 |= (1 << 28);
1549
1550 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1551 break;
1552 case e1000_ich8lan:
1553 /* Reduce concurrent DMA requests to 3 from 4 */
1554 if ((hw->revision_id < 3) ||
1555 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1556 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1557 reg_tarc0 |= ((1 << 29)|(1 << 28));
1558
1559 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1560 reg_ctrl_ext |= (1 << 22);
1561 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1562
1563 /* workaround TX hang with TSO=on */
1564 reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1565
1566 /* Multiple read bit is reversed polarity */
1567 reg_tctl = E1000_READ_REG(hw, TCTL);
1568 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1569 if (reg_tctl & E1000_TCTL_MULR)
1570 reg_tarc1 &= ~(1 << 28);
1571 else
1572 reg_tarc1 |= (1 << 28);
1573
1574 /* workaround TX hang with TSO=on */
1575 reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1576
1577 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1578 break;
1579 default:
1580 break;
1581 }
1582
1583 E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1584 }
wdenk682011f2003-06-03 23:54:09 +00001585}
1586
1587/******************************************************************************
1588 * Performs basic configuration of the adapter.
1589 *
1590 * hw - Struct containing variables accessed by shared code
wdenk8bde7f72003-06-27 21:31:46 +00001591 *
1592 * Assumes that the controller has previously been reset and is in a
wdenk682011f2003-06-03 23:54:09 +00001593 * post-reset uninitialized state. Initializes the receive address registers,
1594 * multicast table, and VLAN filter table. Calls routines to setup link
1595 * configuration and flow control settings. Clears all on-chip counters. Leaves
1596 * the transmit and receive units disabled and uninitialized.
1597 *****************************************************************************/
1598static int
1599e1000_init_hw(struct eth_device *nic)
1600{
1601 struct e1000_hw *hw = nic->priv;
Roy Zangaa070782009-07-31 13:34:02 +08001602 uint32_t ctrl;
wdenk682011f2003-06-03 23:54:09 +00001603 uint32_t i;
1604 int32_t ret_val;
1605 uint16_t pcix_cmd_word;
1606 uint16_t pcix_stat_hi_word;
1607 uint16_t cmd_mmrbc;
1608 uint16_t stat_mmrbc;
Roy Zangaa070782009-07-31 13:34:02 +08001609 uint32_t mta_size;
1610 uint32_t reg_data;
1611 uint32_t ctrl_ext;
wdenk682011f2003-06-03 23:54:09 +00001612 DEBUGFUNC();
Roy Zangaa070782009-07-31 13:34:02 +08001613 /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1614 if ((hw->mac_type == e1000_ich8lan) &&
1615 ((hw->revision_id < 3) ||
1616 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1617 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1618 reg_data = E1000_READ_REG(hw, STATUS);
1619 reg_data &= ~0x80000000;
1620 E1000_WRITE_REG(hw, STATUS, reg_data);
wdenk682011f2003-06-03 23:54:09 +00001621 }
Roy Zangaa070782009-07-31 13:34:02 +08001622 /* Do not need initialize Identification LED */
wdenk682011f2003-06-03 23:54:09 +00001623
Roy Zangaa070782009-07-31 13:34:02 +08001624 /* Set the media type and TBI compatibility */
1625 e1000_set_media_type(hw);
1626
1627 /* Must be called after e1000_set_media_type
1628 * because media_type is used */
1629 e1000_initialize_hardware_bits(hw);
wdenk682011f2003-06-03 23:54:09 +00001630
1631 /* Disabling VLAN filtering. */
1632 DEBUGOUT("Initializing the IEEE VLAN\n");
Roy Zangaa070782009-07-31 13:34:02 +08001633 /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1634 if (hw->mac_type != e1000_ich8lan) {
1635 if (hw->mac_type < e1000_82545_rev_3)
1636 E1000_WRITE_REG(hw, VET, 0);
1637 e1000_clear_vfta(hw);
1638 }
wdenk682011f2003-06-03 23:54:09 +00001639
1640 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1641 if (hw->mac_type == e1000_82542_rev2_0) {
1642 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1643 pci_write_config_word(hw->pdev, PCI_COMMAND,
1644 hw->
1645 pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1646 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1647 E1000_WRITE_FLUSH(hw);
1648 mdelay(5);
1649 }
1650
1651 /* Setup the receive address. This involves initializing all of the Receive
1652 * Address Registers (RARs 0 - 15).
1653 */
1654 e1000_init_rx_addrs(nic);
1655
1656 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1657 if (hw->mac_type == e1000_82542_rev2_0) {
1658 E1000_WRITE_REG(hw, RCTL, 0);
1659 E1000_WRITE_FLUSH(hw);
1660 mdelay(1);
1661 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1662 }
1663
1664 /* Zero out the Multicast HASH table */
1665 DEBUGOUT("Zeroing the MTA\n");
Roy Zangaa070782009-07-31 13:34:02 +08001666 mta_size = E1000_MC_TBL_SIZE;
1667 if (hw->mac_type == e1000_ich8lan)
1668 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1669 for (i = 0; i < mta_size; i++) {
wdenk682011f2003-06-03 23:54:09 +00001670 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
Roy Zangaa070782009-07-31 13:34:02 +08001671 /* use write flush to prevent Memory Write Block (MWB) from
1672 * occuring when accessing our register space */
1673 E1000_WRITE_FLUSH(hw);
1674 }
wdenk682011f2003-06-03 23:54:09 +00001675#if 0
1676 /* Set the PCI priority bit correctly in the CTRL register. This
1677 * determines if the adapter gives priority to receives, or if it
Roy Zangaa070782009-07-31 13:34:02 +08001678 * gives equal priority to transmits and receives. Valid only on
1679 * 82542 and 82543 silicon.
wdenk682011f2003-06-03 23:54:09 +00001680 */
Roy Zangaa070782009-07-31 13:34:02 +08001681 if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
wdenk682011f2003-06-03 23:54:09 +00001682 ctrl = E1000_READ_REG(hw, CTRL);
1683 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
1684 }
1685#endif
Roy Zangaa070782009-07-31 13:34:02 +08001686 switch (hw->mac_type) {
1687 case e1000_82545_rev_3:
1688 case e1000_82546_rev_3:
1689 break;
1690 default:
wdenk682011f2003-06-03 23:54:09 +00001691 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
Roy Zangaa070782009-07-31 13:34:02 +08001692 if (hw->bus_type == e1000_bus_type_pcix) {
wdenk682011f2003-06-03 23:54:09 +00001693 pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1694 &pcix_cmd_word);
1695 pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1696 &pcix_stat_hi_word);
1697 cmd_mmrbc =
1698 (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1699 PCIX_COMMAND_MMRBC_SHIFT;
1700 stat_mmrbc =
1701 (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1702 PCIX_STATUS_HI_MMRBC_SHIFT;
1703 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1704 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1705 if (cmd_mmrbc > stat_mmrbc) {
1706 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1707 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1708 pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1709 pcix_cmd_word);
1710 }
1711 }
Roy Zangaa070782009-07-31 13:34:02 +08001712 break;
1713 }
1714
1715 /* More time needed for PHY to initialize */
1716 if (hw->mac_type == e1000_ich8lan)
1717 mdelay(15);
wdenk682011f2003-06-03 23:54:09 +00001718
1719 /* Call a subroutine to configure the link and setup flow control. */
1720 ret_val = e1000_setup_link(nic);
1721
1722 /* Set the transmit descriptor write-back policy */
1723 if (hw->mac_type > e1000_82544) {
1724 ctrl = E1000_READ_REG(hw, TXDCTL);
1725 ctrl =
1726 (ctrl & ~E1000_TXDCTL_WTHRESH) |
1727 E1000_TXDCTL_FULL_TX_DESC_WB;
1728 E1000_WRITE_REG(hw, TXDCTL, ctrl);
1729 }
Roy Zangaa070782009-07-31 13:34:02 +08001730
1731 switch (hw->mac_type) {
1732 default:
1733 break;
1734 case e1000_80003es2lan:
1735 /* Enable retransmit on late collisions */
1736 reg_data = E1000_READ_REG(hw, TCTL);
1737 reg_data |= E1000_TCTL_RTLC;
1738 E1000_WRITE_REG(hw, TCTL, reg_data);
1739
1740 /* Configure Gigabit Carry Extend Padding */
1741 reg_data = E1000_READ_REG(hw, TCTL_EXT);
1742 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1743 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1744 E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1745
1746 /* Configure Transmit Inter-Packet Gap */
1747 reg_data = E1000_READ_REG(hw, TIPG);
1748 reg_data &= ~E1000_TIPG_IPGT_MASK;
1749 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1750 E1000_WRITE_REG(hw, TIPG, reg_data);
1751
1752 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1753 reg_data &= ~0x00100000;
1754 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1755 /* Fall through */
1756 case e1000_82571:
1757 case e1000_82572:
1758 case e1000_ich8lan:
1759 ctrl = E1000_READ_REG(hw, TXDCTL1);
1760 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1761 | E1000_TXDCTL_FULL_TX_DESC_WB;
1762 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1763 break;
Roy Zang2c2668f2011-01-21 11:29:38 +08001764 case e1000_82573:
1765 case e1000_82574:
1766 reg_data = E1000_READ_REG(hw, GCR);
1767 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1768 E1000_WRITE_REG(hw, GCR, reg_data);
Roy Zangaa070782009-07-31 13:34:02 +08001769 }
1770
wdenk682011f2003-06-03 23:54:09 +00001771#if 0
1772 /* Clear all of the statistics registers (clear on read). It is
1773 * important that we do this after we have tried to establish link
1774 * because the symbol error count will increment wildly if there
1775 * is no link.
1776 */
1777 e1000_clear_hw_cntrs(hw);
Roy Zangaa070782009-07-31 13:34:02 +08001778
1779 /* ICH8 No-snoop bits are opposite polarity.
1780 * Set to snoop by default after reset. */
1781 if (hw->mac_type == e1000_ich8lan)
1782 e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
wdenk682011f2003-06-03 23:54:09 +00001783#endif
1784
Roy Zangaa070782009-07-31 13:34:02 +08001785 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1786 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1787 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1788 /* Relaxed ordering must be disabled to avoid a parity
1789 * error crash in a PCI slot. */
1790 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1791 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1792 }
1793
wdenk682011f2003-06-03 23:54:09 +00001794 return ret_val;
1795}
1796
1797/******************************************************************************
1798 * Configures flow control and link settings.
wdenk8bde7f72003-06-27 21:31:46 +00001799 *
wdenk682011f2003-06-03 23:54:09 +00001800 * hw - Struct containing variables accessed by shared code
wdenk8bde7f72003-06-27 21:31:46 +00001801 *
wdenk682011f2003-06-03 23:54:09 +00001802 * Determines which flow control settings to use. Calls the apropriate media-
1803 * specific link configuration function. Configures the flow control settings.
1804 * Assuming the adapter has a valid link partner, a valid link should be
wdenk8bde7f72003-06-27 21:31:46 +00001805 * established. Assumes the hardware has previously been reset and the
wdenk682011f2003-06-03 23:54:09 +00001806 * transmitter and receiver are not enabled.
1807 *****************************************************************************/
1808static int
1809e1000_setup_link(struct eth_device *nic)
1810{
1811 struct e1000_hw *hw = nic->priv;
1812 uint32_t ctrl_ext;
1813 int32_t ret_val;
1814 uint16_t eeprom_data;
1815
1816 DEBUGFUNC();
1817
Roy Zangaa070782009-07-31 13:34:02 +08001818 /* In the case of the phy reset being blocked, we already have a link.
1819 * We do not have to set it up again. */
1820 if (e1000_check_phy_reset_block(hw))
1821 return E1000_SUCCESS;
1822
Wolfgang Denk7521af12005-10-09 01:04:33 +02001823#ifndef CONFIG_AP1000
wdenk682011f2003-06-03 23:54:09 +00001824 /* Read and store word 0x0F of the EEPROM. This word contains bits
1825 * that determine the hardware's default PAUSE (flow control) mode,
1826 * a bit that determines whether the HW defaults to enabling or
1827 * disabling auto-negotiation, and the direction of the
1828 * SW defined pins. If there is no SW over-ride of the flow
1829 * control setting, then the variable hw->fc will
1830 * be initialized based on a value in the EEPROM.
1831 */
Roy Zangaa070782009-07-31 13:34:02 +08001832 if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1833 &eeprom_data) < 0) {
wdenk682011f2003-06-03 23:54:09 +00001834 DEBUGOUT("EEPROM Read Error\n");
1835 return -E1000_ERR_EEPROM;
1836 }
Wolfgang Denk7521af12005-10-09 01:04:33 +02001837#else
1838 /* we have to hardcode the proper value for our hardware. */
1839 /* this value is for the 82540EM pci card used for prototyping, and it works. */
1840 eeprom_data = 0xb220;
1841#endif
wdenk682011f2003-06-03 23:54:09 +00001842
1843 if (hw->fc == e1000_fc_default) {
Roy Zangaa070782009-07-31 13:34:02 +08001844 switch (hw->mac_type) {
1845 case e1000_ich8lan:
1846 case e1000_82573:
Roy Zang2c2668f2011-01-21 11:29:38 +08001847 case e1000_82574:
wdenk682011f2003-06-03 23:54:09 +00001848 hw->fc = e1000_fc_full;
Roy Zangaa070782009-07-31 13:34:02 +08001849 break;
1850 default:
1851#ifndef CONFIG_AP1000
1852 ret_val = e1000_read_eeprom(hw,
1853 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1854 if (ret_val) {
1855 DEBUGOUT("EEPROM Read Error\n");
1856 return -E1000_ERR_EEPROM;
1857 }
1858#else
1859 eeprom_data = 0xb220;
1860#endif
1861 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1862 hw->fc = e1000_fc_none;
1863 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1864 EEPROM_WORD0F_ASM_DIR)
1865 hw->fc = e1000_fc_tx_pause;
1866 else
1867 hw->fc = e1000_fc_full;
1868 break;
1869 }
wdenk682011f2003-06-03 23:54:09 +00001870 }
1871
1872 /* We want to save off the original Flow Control configuration just
1873 * in case we get disconnected and then reconnected into a different
1874 * hub or switch with different Flow Control capabilities.
1875 */
1876 if (hw->mac_type == e1000_82542_rev2_0)
1877 hw->fc &= (~e1000_fc_tx_pause);
1878
1879 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1880 hw->fc &= (~e1000_fc_rx_pause);
1881
1882 hw->original_fc = hw->fc;
1883
1884 DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1885
1886 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1887 * polarity value for the SW controlled pins, and setup the
1888 * Extended Device Control reg with that info.
1889 * This is needed because one of the SW controlled pins is used for
1890 * signal detection. So this should be done before e1000_setup_pcs_link()
1891 * or e1000_phy_setup() is called.
1892 */
1893 if (hw->mac_type == e1000_82543) {
1894 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1895 SWDPIO__EXT_SHIFT);
1896 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1897 }
1898
1899 /* Call the necessary subroutine to configure the link. */
1900 ret_val = (hw->media_type == e1000_media_type_fiber) ?
1901 e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
1902 if (ret_val < 0) {
1903 return ret_val;
1904 }
1905
1906 /* Initialize the flow control address, type, and PAUSE timer
1907 * registers to their default values. This is done even if flow
1908 * control is disabled, because it does not hurt anything to
1909 * initialize these registers.
1910 */
Roy Zangaa070782009-07-31 13:34:02 +08001911 DEBUGOUT("Initializing the Flow Control address, type"
1912 "and timer regs\n");
wdenk682011f2003-06-03 23:54:09 +00001913
Roy Zangaa070782009-07-31 13:34:02 +08001914 /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1915 if (hw->mac_type != e1000_ich8lan) {
1916 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1917 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1918 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1919 }
1920
wdenk682011f2003-06-03 23:54:09 +00001921 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1922
1923 /* Set the flow control receive threshold registers. Normally,
1924 * these registers will be set to a default threshold that may be
1925 * adjusted later by the driver's runtime code. However, if the
1926 * ability to transmit pause frames in not enabled, then these
wdenk8bde7f72003-06-27 21:31:46 +00001927 * registers will be set to 0.
wdenk682011f2003-06-03 23:54:09 +00001928 */
1929 if (!(hw->fc & e1000_fc_tx_pause)) {
1930 E1000_WRITE_REG(hw, FCRTL, 0);
1931 E1000_WRITE_REG(hw, FCRTH, 0);
1932 } else {
1933 /* We need to set up the Receive Threshold high and low water marks
1934 * as well as (optionally) enabling the transmission of XON frames.
1935 */
1936 if (hw->fc_send_xon) {
1937 E1000_WRITE_REG(hw, FCRTL,
1938 (hw->fc_low_water | E1000_FCRTL_XONE));
1939 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1940 } else {
1941 E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1942 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1943 }
1944 }
1945 return ret_val;
1946}
1947
1948/******************************************************************************
1949 * Sets up link for a fiber based adapter
1950 *
1951 * hw - Struct containing variables accessed by shared code
1952 *
1953 * Manipulates Physical Coding Sublayer functions in order to configure
1954 * link. Assumes the hardware has been previously reset and the transmitter
1955 * and receiver are not enabled.
1956 *****************************************************************************/
1957static int
1958e1000_setup_fiber_link(struct eth_device *nic)
1959{
1960 struct e1000_hw *hw = nic->priv;
1961 uint32_t ctrl;
1962 uint32_t status;
1963 uint32_t txcw = 0;
1964 uint32_t i;
1965 uint32_t signal;
1966 int32_t ret_val;
1967
1968 DEBUGFUNC();
wdenk8bde7f72003-06-27 21:31:46 +00001969 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1970 * set when the optics detect a signal. On older adapters, it will be
wdenk682011f2003-06-03 23:54:09 +00001971 * cleared when there is a signal
1972 */
1973 ctrl = E1000_READ_REG(hw, CTRL);
1974 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1975 signal = E1000_CTRL_SWDPIN1;
1976 else
1977 signal = 0;
1978
1979 printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
1980 ctrl);
1981 /* Take the link out of reset */
1982 ctrl &= ~(E1000_CTRL_LRST);
1983
1984 e1000_config_collision_dist(hw);
1985
1986 /* Check for a software override of the flow control settings, and setup
1987 * the device accordingly. If auto-negotiation is enabled, then software
1988 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1989 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
wdenk8bde7f72003-06-27 21:31:46 +00001990 * auto-negotiation is disabled, then software will have to manually
wdenk682011f2003-06-03 23:54:09 +00001991 * configure the two flow control enable bits in the CTRL register.
1992 *
1993 * The possible values of the "fc" parameter are:
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07001994 * 0: Flow control is completely disabled
1995 * 1: Rx flow control is enabled (we can receive pause frames, but
1996 * not send pause frames).
1997 * 2: Tx flow control is enabled (we can send pause frames but we do
1998 * not support receiving pause frames).
1999 * 3: Both Rx and TX flow control (symmetric) are enabled.
wdenk682011f2003-06-03 23:54:09 +00002000 */
2001 switch (hw->fc) {
2002 case e1000_fc_none:
2003 /* Flow control is completely disabled by a software over-ride. */
2004 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
2005 break;
2006 case e1000_fc_rx_pause:
wdenk8bde7f72003-06-27 21:31:46 +00002007 /* RX Flow control is enabled and TX Flow control is disabled by a
2008 * software over-ride. Since there really isn't a way to advertise
wdenk682011f2003-06-03 23:54:09 +00002009 * that we are capable of RX Pause ONLY, we will advertise that we
2010 * support both symmetric and asymmetric RX PAUSE. Later, we will
2011 * disable the adapter's ability to send PAUSE frames.
2012 */
2013 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2014 break;
2015 case e1000_fc_tx_pause:
wdenk8bde7f72003-06-27 21:31:46 +00002016 /* TX Flow control is enabled, and RX Flow control is disabled, by a
wdenk682011f2003-06-03 23:54:09 +00002017 * software over-ride.
2018 */
2019 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
2020 break;
2021 case e1000_fc_full:
2022 /* Flow control (both RX and TX) is enabled by a software over-ride. */
2023 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2024 break;
2025 default:
2026 DEBUGOUT("Flow control param set incorrectly\n");
2027 return -E1000_ERR_CONFIG;
2028 break;
2029 }
2030
2031 /* Since auto-negotiation is enabled, take the link out of reset (the link
2032 * will be in reset, because we previously reset the chip). This will
2033 * restart auto-negotiation. If auto-neogtiation is successful then the
2034 * link-up status bit will be set and the flow control enable bits (RFCE
2035 * and TFCE) will be set according to their negotiated value.
2036 */
2037 DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2038
2039 E1000_WRITE_REG(hw, TXCW, txcw);
2040 E1000_WRITE_REG(hw, CTRL, ctrl);
2041 E1000_WRITE_FLUSH(hw);
2042
2043 hw->txcw = txcw;
2044 mdelay(1);
2045
2046 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
wdenk8bde7f72003-06-27 21:31:46 +00002047 * indication in the Device Status Register. Time-out if a link isn't
2048 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
wdenk682011f2003-06-03 23:54:09 +00002049 * less than 500 milliseconds even if the other end is doing it in SW).
2050 */
2051 if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2052 DEBUGOUT("Looking for Link\n");
2053 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2054 mdelay(10);
2055 status = E1000_READ_REG(hw, STATUS);
2056 if (status & E1000_STATUS_LU)
2057 break;
2058 }
2059 if (i == (LINK_UP_TIMEOUT / 10)) {
wdenk8bde7f72003-06-27 21:31:46 +00002060 /* AutoNeg failed to achieve a link, so we'll call
wdenk682011f2003-06-03 23:54:09 +00002061 * e1000_check_for_link. This routine will force the link up if we
2062 * detect a signal. This will allow us to communicate with
2063 * non-autonegotiating link partners.
2064 */
2065 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2066 hw->autoneg_failed = 1;
2067 ret_val = e1000_check_for_link(nic);
2068 if (ret_val < 0) {
2069 DEBUGOUT("Error while checking for link\n");
2070 return ret_val;
2071 }
2072 hw->autoneg_failed = 0;
2073 } else {
2074 hw->autoneg_failed = 0;
2075 DEBUGOUT("Valid Link Found\n");
2076 }
2077 } else {
2078 DEBUGOUT("No Signal Detected\n");
2079 return -E1000_ERR_NOLINK;
2080 }
2081 return 0;
2082}
2083
2084/******************************************************************************
Roy Zangaa070782009-07-31 13:34:02 +08002085* Make sure we have a valid PHY and change PHY mode before link setup.
wdenk682011f2003-06-03 23:54:09 +00002086*
2087* hw - Struct containing variables accessed by shared code
2088******************************************************************************/
Roy Zangaa070782009-07-31 13:34:02 +08002089static int32_t
2090e1000_copper_link_preconfig(struct e1000_hw *hw)
wdenk682011f2003-06-03 23:54:09 +00002091{
wdenk682011f2003-06-03 23:54:09 +00002092 uint32_t ctrl;
2093 int32_t ret_val;
wdenk682011f2003-06-03 23:54:09 +00002094 uint16_t phy_data;
2095
2096 DEBUGFUNC();
2097
2098 ctrl = E1000_READ_REG(hw, CTRL);
2099 /* With 82543, we need to force speed and duplex on the MAC equal to what
2100 * the PHY speed and duplex configuration is. In addition, we need to
2101 * perform a hardware reset on the PHY to take it out of reset.
2102 */
2103 if (hw->mac_type > e1000_82543) {
2104 ctrl |= E1000_CTRL_SLU;
2105 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2106 E1000_WRITE_REG(hw, CTRL, ctrl);
2107 } else {
Roy Zangaa070782009-07-31 13:34:02 +08002108 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2109 | E1000_CTRL_SLU);
wdenk682011f2003-06-03 23:54:09 +00002110 E1000_WRITE_REG(hw, CTRL, ctrl);
Roy Zangaa070782009-07-31 13:34:02 +08002111 ret_val = e1000_phy_hw_reset(hw);
2112 if (ret_val)
2113 return ret_val;
wdenk682011f2003-06-03 23:54:09 +00002114 }
2115
2116 /* Make sure we have a valid PHY */
2117 ret_val = e1000_detect_gig_phy(hw);
Roy Zangaa070782009-07-31 13:34:02 +08002118 if (ret_val) {
wdenk682011f2003-06-03 23:54:09 +00002119 DEBUGOUT("Error, did not detect valid phy.\n");
2120 return ret_val;
2121 }
2122 DEBUGOUT("Phy ID = %x \n", hw->phy_id);
2123
Roy Zangaa070782009-07-31 13:34:02 +08002124#ifndef CONFIG_AP1000
2125 /* Set PHY to class A mode (if necessary) */
2126 ret_val = e1000_set_phy_mode(hw);
2127 if (ret_val)
2128 return ret_val;
2129#endif
2130 if ((hw->mac_type == e1000_82545_rev_3) ||
2131 (hw->mac_type == e1000_82546_rev_3)) {
2132 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2133 &phy_data);
2134 phy_data |= 0x00000008;
2135 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2136 phy_data);
wdenk682011f2003-06-03 23:54:09 +00002137 }
Roy Zangaa070782009-07-31 13:34:02 +08002138
2139 if (hw->mac_type <= e1000_82543 ||
2140 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2141 hw->mac_type == e1000_82541_rev_2
2142 || hw->mac_type == e1000_82547_rev_2)
2143 hw->phy_reset_disable = FALSE;
2144
2145 return E1000_SUCCESS;
2146}
2147
2148/*****************************************************************************
2149 *
2150 * This function sets the lplu state according to the active flag. When
2151 * activating lplu this function also disables smart speed and vise versa.
2152 * lplu will not be activated unless the device autonegotiation advertisment
2153 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2154 * hw: Struct containing variables accessed by shared code
2155 * active - true to enable lplu false to disable lplu.
2156 *
2157 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2158 * E1000_SUCCESS at any other case.
2159 *
2160 ****************************************************************************/
2161
2162static int32_t
2163e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active)
2164{
2165 uint32_t phy_ctrl = 0;
2166 int32_t ret_val;
2167 uint16_t phy_data;
2168 DEBUGFUNC();
2169
2170 if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2171 && hw->phy_type != e1000_phy_igp_3)
2172 return E1000_SUCCESS;
2173
2174 /* During driver activity LPLU should not be used or it will attain link
2175 * from the lowest speeds starting from 10Mbps. The capability is used
2176 * for Dx transitions and states */
2177 if (hw->mac_type == e1000_82541_rev_2
2178 || hw->mac_type == e1000_82547_rev_2) {
2179 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2180 &phy_data);
2181 if (ret_val)
2182 return ret_val;
2183 } else if (hw->mac_type == e1000_ich8lan) {
2184 /* MAC writes into PHY register based on the state transition
2185 * and start auto-negotiation. SW driver can overwrite the
2186 * settings in CSR PHY power control E1000_PHY_CTRL register. */
2187 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2188 } else {
2189 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2190 &phy_data);
2191 if (ret_val)
2192 return ret_val;
2193 }
2194
2195 if (!active) {
2196 if (hw->mac_type == e1000_82541_rev_2 ||
2197 hw->mac_type == e1000_82547_rev_2) {
2198 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2199 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2200 phy_data);
2201 if (ret_val)
2202 return ret_val;
2203 } else {
2204 if (hw->mac_type == e1000_ich8lan) {
2205 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2206 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2207 } else {
2208 phy_data &= ~IGP02E1000_PM_D3_LPLU;
2209 ret_val = e1000_write_phy_reg(hw,
2210 IGP02E1000_PHY_POWER_MGMT, phy_data);
2211 if (ret_val)
2212 return ret_val;
2213 }
2214 }
2215
2216 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
2217 * Dx states where the power conservation is most important. During
2218 * driver activity we should enable SmartSpeed, so performance is
2219 * maintained. */
2220 if (hw->smart_speed == e1000_smart_speed_on) {
2221 ret_val = e1000_read_phy_reg(hw,
2222 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2223 if (ret_val)
2224 return ret_val;
2225
2226 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2227 ret_val = e1000_write_phy_reg(hw,
2228 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2229 if (ret_val)
2230 return ret_val;
2231 } else if (hw->smart_speed == e1000_smart_speed_off) {
2232 ret_val = e1000_read_phy_reg(hw,
2233 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2234 if (ret_val)
2235 return ret_val;
2236
2237 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2238 ret_val = e1000_write_phy_reg(hw,
2239 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2240 if (ret_val)
2241 return ret_val;
2242 }
2243
2244 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2245 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2246 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2247
2248 if (hw->mac_type == e1000_82541_rev_2 ||
2249 hw->mac_type == e1000_82547_rev_2) {
2250 phy_data |= IGP01E1000_GMII_FLEX_SPD;
2251 ret_val = e1000_write_phy_reg(hw,
2252 IGP01E1000_GMII_FIFO, phy_data);
2253 if (ret_val)
2254 return ret_val;
2255 } else {
2256 if (hw->mac_type == e1000_ich8lan) {
2257 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2258 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2259 } else {
2260 phy_data |= IGP02E1000_PM_D3_LPLU;
2261 ret_val = e1000_write_phy_reg(hw,
2262 IGP02E1000_PHY_POWER_MGMT, phy_data);
2263 if (ret_val)
2264 return ret_val;
2265 }
2266 }
2267
2268 /* When LPLU is enabled we should disable SmartSpeed */
2269 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2270 &phy_data);
2271 if (ret_val)
2272 return ret_val;
2273
2274 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2275 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2276 phy_data);
2277 if (ret_val)
2278 return ret_val;
2279 }
2280 return E1000_SUCCESS;
2281}
2282
2283/*****************************************************************************
2284 *
2285 * This function sets the lplu d0 state according to the active flag. When
2286 * activating lplu this function also disables smart speed and vise versa.
2287 * lplu will not be activated unless the device autonegotiation advertisment
2288 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2289 * hw: Struct containing variables accessed by shared code
2290 * active - true to enable lplu false to disable lplu.
2291 *
2292 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2293 * E1000_SUCCESS at any other case.
2294 *
2295 ****************************************************************************/
2296
2297static int32_t
2298e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active)
2299{
2300 uint32_t phy_ctrl = 0;
2301 int32_t ret_val;
2302 uint16_t phy_data;
2303 DEBUGFUNC();
2304
2305 if (hw->mac_type <= e1000_82547_rev_2)
2306 return E1000_SUCCESS;
2307
2308 if (hw->mac_type == e1000_ich8lan) {
2309 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2310 } else {
2311 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2312 &phy_data);
2313 if (ret_val)
2314 return ret_val;
2315 }
2316
2317 if (!active) {
2318 if (hw->mac_type == e1000_ich8lan) {
2319 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2320 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2321 } else {
2322 phy_data &= ~IGP02E1000_PM_D0_LPLU;
2323 ret_val = e1000_write_phy_reg(hw,
2324 IGP02E1000_PHY_POWER_MGMT, phy_data);
2325 if (ret_val)
2326 return ret_val;
2327 }
2328
2329 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
2330 * Dx states where the power conservation is most important. During
2331 * driver activity we should enable SmartSpeed, so performance is
2332 * maintained. */
2333 if (hw->smart_speed == e1000_smart_speed_on) {
2334 ret_val = e1000_read_phy_reg(hw,
2335 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2336 if (ret_val)
2337 return ret_val;
2338
2339 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2340 ret_val = e1000_write_phy_reg(hw,
2341 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2342 if (ret_val)
2343 return ret_val;
2344 } else if (hw->smart_speed == e1000_smart_speed_off) {
2345 ret_val = e1000_read_phy_reg(hw,
2346 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2347 if (ret_val)
2348 return ret_val;
2349
2350 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2351 ret_val = e1000_write_phy_reg(hw,
2352 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2353 if (ret_val)
2354 return ret_val;
2355 }
2356
2357
2358 } else {
2359
2360 if (hw->mac_type == e1000_ich8lan) {
2361 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2362 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2363 } else {
2364 phy_data |= IGP02E1000_PM_D0_LPLU;
2365 ret_val = e1000_write_phy_reg(hw,
2366 IGP02E1000_PHY_POWER_MGMT, phy_data);
2367 if (ret_val)
2368 return ret_val;
2369 }
2370
2371 /* When LPLU is enabled we should disable SmartSpeed */
2372 ret_val = e1000_read_phy_reg(hw,
2373 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2374 if (ret_val)
2375 return ret_val;
2376
2377 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2378 ret_val = e1000_write_phy_reg(hw,
2379 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2380 if (ret_val)
2381 return ret_val;
2382
2383 }
2384 return E1000_SUCCESS;
2385}
2386
2387/********************************************************************
2388* Copper link setup for e1000_phy_igp series.
2389*
2390* hw - Struct containing variables accessed by shared code
2391*********************************************************************/
2392static int32_t
2393e1000_copper_link_igp_setup(struct e1000_hw *hw)
2394{
2395 uint32_t led_ctrl;
2396 int32_t ret_val;
2397 uint16_t phy_data;
2398
Timur Tabif81ecb52009-08-17 15:55:38 -05002399 DEBUGFUNC();
Roy Zangaa070782009-07-31 13:34:02 +08002400
2401 if (hw->phy_reset_disable)
2402 return E1000_SUCCESS;
2403
2404 ret_val = e1000_phy_reset(hw);
2405 if (ret_val) {
2406 DEBUGOUT("Error Resetting the PHY\n");
2407 return ret_val;
2408 }
2409
2410 /* Wait 15ms for MAC to configure PHY from eeprom settings */
2411 mdelay(15);
2412 if (hw->mac_type != e1000_ich8lan) {
2413 /* Configure activity LED after PHY reset */
2414 led_ctrl = E1000_READ_REG(hw, LEDCTL);
2415 led_ctrl &= IGP_ACTIVITY_LED_MASK;
2416 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2417 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2418 }
2419
2420 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2421 if (hw->phy_type == e1000_phy_igp) {
2422 /* disable lplu d3 during driver init */
2423 ret_val = e1000_set_d3_lplu_state(hw, FALSE);
2424 if (ret_val) {
2425 DEBUGOUT("Error Disabling LPLU D3\n");
2426 return ret_val;
2427 }
2428 }
2429
2430 /* disable lplu d0 during driver init */
2431 ret_val = e1000_set_d0_lplu_state(hw, FALSE);
2432 if (ret_val) {
2433 DEBUGOUT("Error Disabling LPLU D0\n");
2434 return ret_val;
2435 }
2436 /* Configure mdi-mdix settings */
2437 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2438 if (ret_val)
2439 return ret_val;
2440
2441 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2442 hw->dsp_config_state = e1000_dsp_config_disabled;
2443 /* Force MDI for earlier revs of the IGP PHY */
2444 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2445 | IGP01E1000_PSCR_FORCE_MDI_MDIX);
2446 hw->mdix = 1;
2447
2448 } else {
2449 hw->dsp_config_state = e1000_dsp_config_enabled;
2450 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2451
2452 switch (hw->mdix) {
2453 case 1:
2454 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2455 break;
2456 case 2:
2457 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2458 break;
2459 case 0:
2460 default:
2461 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2462 break;
2463 }
2464 }
2465 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2466 if (ret_val)
2467 return ret_val;
2468
2469 /* set auto-master slave resolution settings */
2470 if (hw->autoneg) {
2471 e1000_ms_type phy_ms_setting = hw->master_slave;
2472
2473 if (hw->ffe_config_state == e1000_ffe_config_active)
2474 hw->ffe_config_state = e1000_ffe_config_enabled;
2475
2476 if (hw->dsp_config_state == e1000_dsp_config_activated)
2477 hw->dsp_config_state = e1000_dsp_config_enabled;
2478
2479 /* when autonegotiation advertisment is only 1000Mbps then we
2480 * should disable SmartSpeed and enable Auto MasterSlave
2481 * resolution as hardware default. */
2482 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2483 /* Disable SmartSpeed */
2484 ret_val = e1000_read_phy_reg(hw,
2485 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2486 if (ret_val)
2487 return ret_val;
2488 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2489 ret_val = e1000_write_phy_reg(hw,
2490 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2491 if (ret_val)
2492 return ret_val;
2493 /* Set auto Master/Slave resolution process */
2494 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2495 &phy_data);
2496 if (ret_val)
2497 return ret_val;
2498 phy_data &= ~CR_1000T_MS_ENABLE;
2499 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2500 phy_data);
2501 if (ret_val)
2502 return ret_val;
2503 }
2504
2505 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2506 if (ret_val)
2507 return ret_val;
2508
2509 /* load defaults for future use */
2510 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2511 ((phy_data & CR_1000T_MS_VALUE) ?
2512 e1000_ms_force_master :
2513 e1000_ms_force_slave) :
2514 e1000_ms_auto;
2515
2516 switch (phy_ms_setting) {
2517 case e1000_ms_force_master:
2518 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2519 break;
2520 case e1000_ms_force_slave:
2521 phy_data |= CR_1000T_MS_ENABLE;
2522 phy_data &= ~(CR_1000T_MS_VALUE);
2523 break;
2524 case e1000_ms_auto:
2525 phy_data &= ~CR_1000T_MS_ENABLE;
2526 default:
2527 break;
2528 }
2529 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2530 if (ret_val)
2531 return ret_val;
2532 }
2533
2534 return E1000_SUCCESS;
2535}
2536
2537/*****************************************************************************
2538 * This function checks the mode of the firmware.
2539 *
2540 * returns - TRUE when the mode is IAMT or FALSE.
2541 ****************************************************************************/
2542boolean_t
2543e1000_check_mng_mode(struct e1000_hw *hw)
2544{
2545 uint32_t fwsm;
2546 DEBUGFUNC();
2547
2548 fwsm = E1000_READ_REG(hw, FWSM);
2549
2550 if (hw->mac_type == e1000_ich8lan) {
2551 if ((fwsm & E1000_FWSM_MODE_MASK) ==
2552 (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2553 return TRUE;
2554 } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2555 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2556 return TRUE;
2557
2558 return FALSE;
2559}
2560
2561static int32_t
2562e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2563{
Kyle Moffett987b43a2010-09-13 05:52:22 +00002564 uint16_t swfw = E1000_SWFW_PHY0_SM;
Roy Zangaa070782009-07-31 13:34:02 +08002565 uint32_t reg_val;
Roy Zangaa070782009-07-31 13:34:02 +08002566 DEBUGFUNC();
2567
Kyle Moffett987b43a2010-09-13 05:52:22 +00002568 if (e1000_is_second_port(hw))
Roy Zangaa070782009-07-31 13:34:02 +08002569 swfw = E1000_SWFW_PHY1_SM;
Kyle Moffett987b43a2010-09-13 05:52:22 +00002570
Roy Zangaa070782009-07-31 13:34:02 +08002571 if (e1000_swfw_sync_acquire(hw, swfw))
2572 return -E1000_ERR_SWFW_SYNC;
2573
2574 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2575 & E1000_KUMCTRLSTA_OFFSET) | data;
2576 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2577 udelay(2);
2578
2579 return E1000_SUCCESS;
2580}
2581
2582static int32_t
2583e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2584{
Kyle Moffett987b43a2010-09-13 05:52:22 +00002585 uint16_t swfw = E1000_SWFW_PHY0_SM;
Roy Zangaa070782009-07-31 13:34:02 +08002586 uint32_t reg_val;
Roy Zangaa070782009-07-31 13:34:02 +08002587 DEBUGFUNC();
2588
Kyle Moffett987b43a2010-09-13 05:52:22 +00002589 if (e1000_is_second_port(hw))
Roy Zangaa070782009-07-31 13:34:02 +08002590 swfw = E1000_SWFW_PHY1_SM;
Kyle Moffett987b43a2010-09-13 05:52:22 +00002591
Roy Zangaa070782009-07-31 13:34:02 +08002592 if (e1000_swfw_sync_acquire(hw, swfw))
2593 return -E1000_ERR_SWFW_SYNC;
2594
2595 /* Write register address */
2596 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2597 E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2598 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2599 udelay(2);
2600
2601 /* Read the data returned */
2602 reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2603 *data = (uint16_t)reg_val;
2604
2605 return E1000_SUCCESS;
2606}
2607
2608/********************************************************************
2609* Copper link setup for e1000_phy_gg82563 series.
2610*
2611* hw - Struct containing variables accessed by shared code
2612*********************************************************************/
2613static int32_t
2614e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2615{
2616 int32_t ret_val;
2617 uint16_t phy_data;
2618 uint32_t reg_data;
2619
2620 DEBUGFUNC();
2621
2622 if (!hw->phy_reset_disable) {
2623 /* Enable CRS on TX for half-duplex operation. */
2624 ret_val = e1000_read_phy_reg(hw,
2625 GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2626 if (ret_val)
2627 return ret_val;
2628
2629 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2630 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2631 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2632
2633 ret_val = e1000_write_phy_reg(hw,
2634 GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2635 if (ret_val)
2636 return ret_val;
2637
2638 /* Options:
2639 * MDI/MDI-X = 0 (default)
2640 * 0 - Auto for all speeds
2641 * 1 - MDI mode
2642 * 2 - MDI-X mode
2643 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2644 */
2645 ret_val = e1000_read_phy_reg(hw,
2646 GG82563_PHY_SPEC_CTRL, &phy_data);
2647 if (ret_val)
2648 return ret_val;
2649
2650 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2651
2652 switch (hw->mdix) {
2653 case 1:
2654 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2655 break;
2656 case 2:
2657 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2658 break;
2659 case 0:
2660 default:
2661 phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2662 break;
2663 }
2664
2665 /* Options:
2666 * disable_polarity_correction = 0 (default)
2667 * Automatic Correction for Reversed Cable Polarity
2668 * 0 - Disabled
2669 * 1 - Enabled
2670 */
2671 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2672 ret_val = e1000_write_phy_reg(hw,
2673 GG82563_PHY_SPEC_CTRL, phy_data);
2674
2675 if (ret_val)
2676 return ret_val;
2677
2678 /* SW Reset the PHY so all changes take effect */
2679 ret_val = e1000_phy_reset(hw);
2680 if (ret_val) {
2681 DEBUGOUT("Error Resetting the PHY\n");
2682 return ret_val;
2683 }
2684 } /* phy_reset_disable */
2685
2686 if (hw->mac_type == e1000_80003es2lan) {
2687 /* Bypass RX and TX FIFO's */
2688 ret_val = e1000_write_kmrn_reg(hw,
2689 E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2690 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2691 | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2692 if (ret_val)
2693 return ret_val;
2694
2695 ret_val = e1000_read_phy_reg(hw,
2696 GG82563_PHY_SPEC_CTRL_2, &phy_data);
2697 if (ret_val)
2698 return ret_val;
2699
2700 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2701 ret_val = e1000_write_phy_reg(hw,
2702 GG82563_PHY_SPEC_CTRL_2, phy_data);
2703
2704 if (ret_val)
2705 return ret_val;
2706
2707 reg_data = E1000_READ_REG(hw, CTRL_EXT);
2708 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2709 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2710
2711 ret_val = e1000_read_phy_reg(hw,
2712 GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2713 if (ret_val)
2714 return ret_val;
2715
2716 /* Do not init these registers when the HW is in IAMT mode, since the
2717 * firmware will have already initialized them. We only initialize
2718 * them if the HW is not in IAMT mode.
2719 */
2720 if (e1000_check_mng_mode(hw) == FALSE) {
2721 /* Enable Electrical Idle on the PHY */
2722 phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2723 ret_val = e1000_write_phy_reg(hw,
2724 GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2725 if (ret_val)
2726 return ret_val;
2727
2728 ret_val = e1000_read_phy_reg(hw,
2729 GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2730 if (ret_val)
2731 return ret_val;
2732
2733 phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2734 ret_val = e1000_write_phy_reg(hw,
2735 GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2736
2737 if (ret_val)
2738 return ret_val;
2739 }
2740
2741 /* Workaround: Disable padding in Kumeran interface in the MAC
2742 * and in the PHY to avoid CRC errors.
2743 */
2744 ret_val = e1000_read_phy_reg(hw,
2745 GG82563_PHY_INBAND_CTRL, &phy_data);
2746 if (ret_val)
2747 return ret_val;
2748 phy_data |= GG82563_ICR_DIS_PADDING;
2749 ret_val = e1000_write_phy_reg(hw,
2750 GG82563_PHY_INBAND_CTRL, phy_data);
2751 if (ret_val)
2752 return ret_val;
2753 }
2754 return E1000_SUCCESS;
2755}
2756
2757/********************************************************************
2758* Copper link setup for e1000_phy_m88 series.
2759*
2760* hw - Struct containing variables accessed by shared code
2761*********************************************************************/
2762static int32_t
2763e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2764{
2765 int32_t ret_val;
2766 uint16_t phy_data;
2767
2768 DEBUGFUNC();
2769
2770 if (hw->phy_reset_disable)
2771 return E1000_SUCCESS;
2772
2773 /* Enable CRS on TX. This must be set for half-duplex operation. */
2774 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2775 if (ret_val)
2776 return ret_val;
2777
wdenk682011f2003-06-03 23:54:09 +00002778 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2779
wdenk682011f2003-06-03 23:54:09 +00002780 /* Options:
2781 * MDI/MDI-X = 0 (default)
2782 * 0 - Auto for all speeds
2783 * 1 - MDI mode
2784 * 2 - MDI-X mode
2785 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2786 */
2787 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
Roy Zangaa070782009-07-31 13:34:02 +08002788
wdenk682011f2003-06-03 23:54:09 +00002789 switch (hw->mdix) {
2790 case 1:
2791 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2792 break;
2793 case 2:
2794 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2795 break;
2796 case 3:
2797 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2798 break;
2799 case 0:
2800 default:
2801 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2802 break;
2803 }
wdenk682011f2003-06-03 23:54:09 +00002804
wdenk682011f2003-06-03 23:54:09 +00002805 /* Options:
2806 * disable_polarity_correction = 0 (default)
Roy Zangaa070782009-07-31 13:34:02 +08002807 * Automatic Correction for Reversed Cable Polarity
wdenk682011f2003-06-03 23:54:09 +00002808 * 0 - Disabled
2809 * 1 - Enabled
2810 */
2811 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
Roy Zangaa070782009-07-31 13:34:02 +08002812 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2813 if (ret_val)
2814 return ret_val;
wdenk682011f2003-06-03 23:54:09 +00002815
Roy Zangaa070782009-07-31 13:34:02 +08002816 if (hw->phy_revision < M88E1011_I_REV_4) {
2817 /* Force TX_CLK in the Extended PHY Specific Control Register
2818 * to 25MHz clock.
2819 */
2820 ret_val = e1000_read_phy_reg(hw,
2821 M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2822 if (ret_val)
2823 return ret_val;
2824
2825 phy_data |= M88E1000_EPSCR_TX_CLK_25;
2826
2827 if ((hw->phy_revision == E1000_REVISION_2) &&
2828 (hw->phy_id == M88E1111_I_PHY_ID)) {
2829 /* Vidalia Phy, set the downshift counter to 5x */
2830 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2831 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2832 ret_val = e1000_write_phy_reg(hw,
2833 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2834 if (ret_val)
2835 return ret_val;
2836 } else {
2837 /* Configure Master and Slave downshift values */
2838 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2839 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2840 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2841 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2842 ret_val = e1000_write_phy_reg(hw,
2843 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2844 if (ret_val)
2845 return ret_val;
2846 }
wdenk682011f2003-06-03 23:54:09 +00002847 }
2848
2849 /* SW Reset the PHY so all changes take effect */
2850 ret_val = e1000_phy_reset(hw);
Roy Zangaa070782009-07-31 13:34:02 +08002851 if (ret_val) {
wdenk682011f2003-06-03 23:54:09 +00002852 DEBUGOUT("Error Resetting the PHY\n");
2853 return ret_val;
2854 }
2855
Roy Zangaa070782009-07-31 13:34:02 +08002856 return E1000_SUCCESS;
2857}
wdenk682011f2003-06-03 23:54:09 +00002858
Roy Zangaa070782009-07-31 13:34:02 +08002859/********************************************************************
2860* Setup auto-negotiation and flow control advertisements,
2861* and then perform auto-negotiation.
2862*
2863* hw - Struct containing variables accessed by shared code
2864*********************************************************************/
2865static int32_t
2866e1000_copper_link_autoneg(struct e1000_hw *hw)
2867{
2868 int32_t ret_val;
2869 uint16_t phy_data;
2870
2871 DEBUGFUNC();
2872
wdenk682011f2003-06-03 23:54:09 +00002873 /* Perform some bounds checking on the hw->autoneg_advertised
2874 * parameter. If this variable is zero, then set it to the default.
2875 */
2876 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2877
2878 /* If autoneg_advertised is zero, we assume it was not defaulted
2879 * by the calling code so we set to advertise full capability.
2880 */
2881 if (hw->autoneg_advertised == 0)
2882 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2883
Roy Zangaa070782009-07-31 13:34:02 +08002884 /* IFE phy only supports 10/100 */
2885 if (hw->phy_type == e1000_phy_ife)
2886 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2887
wdenk682011f2003-06-03 23:54:09 +00002888 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2889 ret_val = e1000_phy_setup_autoneg(hw);
Roy Zangaa070782009-07-31 13:34:02 +08002890 if (ret_val) {
wdenk682011f2003-06-03 23:54:09 +00002891 DEBUGOUT("Error Setting up Auto-Negotiation\n");
2892 return ret_val;
2893 }
2894 DEBUGOUT("Restarting Auto-Neg\n");
2895
2896 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
2897 * the Auto Neg Restart bit in the PHY control register.
2898 */
Roy Zangaa070782009-07-31 13:34:02 +08002899 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2900 if (ret_val)
2901 return ret_val;
2902
wdenk682011f2003-06-03 23:54:09 +00002903 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
Roy Zangaa070782009-07-31 13:34:02 +08002904 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2905 if (ret_val)
2906 return ret_val;
2907
wdenk682011f2003-06-03 23:54:09 +00002908 /* Does the user want to wait for Auto-Neg to complete here, or
2909 * check at a later time (for example, callback routine).
2910 */
Roy Zangaa070782009-07-31 13:34:02 +08002911 /* If we do not wait for autonegtation to complete I
2912 * do not see a valid link status.
2913 * wait_autoneg_complete = 1 .
2914 */
wdenk682011f2003-06-03 23:54:09 +00002915 if (hw->wait_autoneg_complete) {
2916 ret_val = e1000_wait_autoneg(hw);
Roy Zangaa070782009-07-31 13:34:02 +08002917 if (ret_val) {
2918 DEBUGOUT("Error while waiting for autoneg"
2919 "to complete\n");
wdenk682011f2003-06-03 23:54:09 +00002920 return ret_val;
2921 }
2922 }
Roy Zangaa070782009-07-31 13:34:02 +08002923
2924 hw->get_link_status = TRUE;
2925
2926 return E1000_SUCCESS;
2927}
2928
2929/******************************************************************************
2930* Config the MAC and the PHY after link is up.
2931* 1) Set up the MAC to the current PHY speed/duplex
2932* if we are on 82543. If we
2933* are on newer silicon, we only need to configure
2934* collision distance in the Transmit Control Register.
2935* 2) Set up flow control on the MAC to that established with
2936* the link partner.
2937* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
2938*
2939* hw - Struct containing variables accessed by shared code
2940******************************************************************************/
2941static int32_t
2942e1000_copper_link_postconfig(struct e1000_hw *hw)
2943{
2944 int32_t ret_val;
2945 DEBUGFUNC();
2946
2947 if (hw->mac_type >= e1000_82544) {
2948 e1000_config_collision_dist(hw);
2949 } else {
2950 ret_val = e1000_config_mac_to_phy(hw);
2951 if (ret_val) {
2952 DEBUGOUT("Error configuring MAC to PHY settings\n");
2953 return ret_val;
2954 }
2955 }
2956 ret_val = e1000_config_fc_after_link_up(hw);
2957 if (ret_val) {
2958 DEBUGOUT("Error Configuring Flow Control\n");
wdenk682011f2003-06-03 23:54:09 +00002959 return ret_val;
2960 }
Roy Zangaa070782009-07-31 13:34:02 +08002961 return E1000_SUCCESS;
2962}
2963
2964/******************************************************************************
2965* Detects which PHY is present and setup the speed and duplex
2966*
2967* hw - Struct containing variables accessed by shared code
2968******************************************************************************/
2969static int
2970e1000_setup_copper_link(struct eth_device *nic)
2971{
2972 struct e1000_hw *hw = nic->priv;
2973 int32_t ret_val;
2974 uint16_t i;
2975 uint16_t phy_data;
2976 uint16_t reg_data;
2977
2978 DEBUGFUNC();
2979
2980 switch (hw->mac_type) {
2981 case e1000_80003es2lan:
2982 case e1000_ich8lan:
2983 /* Set the mac to wait the maximum time between each
2984 * iteration and increase the max iterations when
2985 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
2986 ret_val = e1000_write_kmrn_reg(hw,
2987 GG82563_REG(0x34, 4), 0xFFFF);
2988 if (ret_val)
2989 return ret_val;
2990 ret_val = e1000_read_kmrn_reg(hw,
2991 GG82563_REG(0x34, 9), &reg_data);
2992 if (ret_val)
2993 return ret_val;
2994 reg_data |= 0x3F;
2995 ret_val = e1000_write_kmrn_reg(hw,
2996 GG82563_REG(0x34, 9), reg_data);
2997 if (ret_val)
2998 return ret_val;
2999 default:
3000 break;
3001 }
3002
3003 /* Check if it is a valid PHY and set PHY mode if necessary. */
3004 ret_val = e1000_copper_link_preconfig(hw);
3005 if (ret_val)
3006 return ret_val;
3007 switch (hw->mac_type) {
3008 case e1000_80003es2lan:
3009 /* Kumeran registers are written-only */
3010 reg_data =
3011 E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
3012 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
3013 ret_val = e1000_write_kmrn_reg(hw,
3014 E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
3015 if (ret_val)
3016 return ret_val;
3017 break;
3018 default:
3019 break;
3020 }
3021
3022 if (hw->phy_type == e1000_phy_igp ||
3023 hw->phy_type == e1000_phy_igp_3 ||
3024 hw->phy_type == e1000_phy_igp_2) {
3025 ret_val = e1000_copper_link_igp_setup(hw);
3026 if (ret_val)
3027 return ret_val;
3028 } else if (hw->phy_type == e1000_phy_m88) {
3029 ret_val = e1000_copper_link_mgp_setup(hw);
3030 if (ret_val)
3031 return ret_val;
3032 } else if (hw->phy_type == e1000_phy_gg82563) {
3033 ret_val = e1000_copper_link_ggp_setup(hw);
3034 if (ret_val)
3035 return ret_val;
3036 }
3037
3038 /* always auto */
3039 /* Setup autoneg and flow control advertisement
3040 * and perform autonegotiation */
3041 ret_val = e1000_copper_link_autoneg(hw);
3042 if (ret_val)
3043 return ret_val;
wdenk682011f2003-06-03 23:54:09 +00003044
3045 /* Check link status. Wait up to 100 microseconds for link to become
3046 * valid.
3047 */
3048 for (i = 0; i < 10; i++) {
Roy Zangaa070782009-07-31 13:34:02 +08003049 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3050 if (ret_val)
3051 return ret_val;
3052 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3053 if (ret_val)
3054 return ret_val;
3055
wdenk682011f2003-06-03 23:54:09 +00003056 if (phy_data & MII_SR_LINK_STATUS) {
Roy Zangaa070782009-07-31 13:34:02 +08003057 /* Config the MAC and PHY after link is up */
3058 ret_val = e1000_copper_link_postconfig(hw);
3059 if (ret_val)
wdenk682011f2003-06-03 23:54:09 +00003060 return ret_val;
Roy Zangaa070782009-07-31 13:34:02 +08003061
wdenk682011f2003-06-03 23:54:09 +00003062 DEBUGOUT("Valid link established!!!\n");
Roy Zangaa070782009-07-31 13:34:02 +08003063 return E1000_SUCCESS;
wdenk682011f2003-06-03 23:54:09 +00003064 }
3065 udelay(10);
3066 }
3067
3068 DEBUGOUT("Unable to establish link!!!\n");
Roy Zangaa070782009-07-31 13:34:02 +08003069 return E1000_SUCCESS;
wdenk682011f2003-06-03 23:54:09 +00003070}
3071
3072/******************************************************************************
3073* Configures PHY autoneg and flow control advertisement settings
3074*
3075* hw - Struct containing variables accessed by shared code
3076******************************************************************************/
Roy Zangaa070782009-07-31 13:34:02 +08003077int32_t
wdenk682011f2003-06-03 23:54:09 +00003078e1000_phy_setup_autoneg(struct e1000_hw *hw)
3079{
Roy Zangaa070782009-07-31 13:34:02 +08003080 int32_t ret_val;
wdenk682011f2003-06-03 23:54:09 +00003081 uint16_t mii_autoneg_adv_reg;
3082 uint16_t mii_1000t_ctrl_reg;
3083
3084 DEBUGFUNC();
3085
3086 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
Roy Zangaa070782009-07-31 13:34:02 +08003087 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3088 if (ret_val)
3089 return ret_val;
wdenk682011f2003-06-03 23:54:09 +00003090
Roy Zangaa070782009-07-31 13:34:02 +08003091 if (hw->phy_type != e1000_phy_ife) {
3092 /* Read the MII 1000Base-T Control Register (Address 9). */
3093 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3094 &mii_1000t_ctrl_reg);
3095 if (ret_val)
3096 return ret_val;
3097 } else
3098 mii_1000t_ctrl_reg = 0;
wdenk682011f2003-06-03 23:54:09 +00003099
3100 /* Need to parse both autoneg_advertised and fc and set up
3101 * the appropriate PHY registers. First we will parse for
3102 * autoneg_advertised software override. Since we can advertise
3103 * a plethora of combinations, we need to check each bit
3104 * individually.
3105 */
3106
3107 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
3108 * Advertisement Register (Address 4) and the 1000 mb speed bits in
Roy Zangaa070782009-07-31 13:34:02 +08003109 * the 1000Base-T Control Register (Address 9).
wdenk682011f2003-06-03 23:54:09 +00003110 */
3111 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3112 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3113
3114 DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3115
3116 /* Do we want to advertise 10 Mb Half Duplex? */
3117 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3118 DEBUGOUT("Advertise 10mb Half duplex\n");
3119 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3120 }
3121
3122 /* Do we want to advertise 10 Mb Full Duplex? */
3123 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3124 DEBUGOUT("Advertise 10mb Full duplex\n");
3125 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3126 }
3127
3128 /* Do we want to advertise 100 Mb Half Duplex? */
3129 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3130 DEBUGOUT("Advertise 100mb Half duplex\n");
3131 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3132 }
3133
3134 /* Do we want to advertise 100 Mb Full Duplex? */
3135 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3136 DEBUGOUT("Advertise 100mb Full duplex\n");
3137 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3138 }
3139
3140 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3141 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3142 DEBUGOUT
3143 ("Advertise 1000mb Half duplex requested, request denied!\n");
3144 }
3145
3146 /* Do we want to advertise 1000 Mb Full Duplex? */
3147 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3148 DEBUGOUT("Advertise 1000mb Full duplex\n");
3149 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3150 }
3151
3152 /* Check for a software override of the flow control settings, and
3153 * setup the PHY advertisement registers accordingly. If
3154 * auto-negotiation is enabled, then software will have to set the
3155 * "PAUSE" bits to the correct value in the Auto-Negotiation
3156 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3157 *
3158 * The possible values of the "fc" parameter are:
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07003159 * 0: Flow control is completely disabled
3160 * 1: Rx flow control is enabled (we can receive pause frames
3161 * but not send pause frames).
3162 * 2: Tx flow control is enabled (we can send pause frames
3163 * but we do not support receiving pause frames).
3164 * 3: Both Rx and TX flow control (symmetric) are enabled.
wdenk682011f2003-06-03 23:54:09 +00003165 * other: No software override. The flow control configuration
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07003166 * in the EEPROM is used.
wdenk682011f2003-06-03 23:54:09 +00003167 */
3168 switch (hw->fc) {
3169 case e1000_fc_none: /* 0 */
3170 /* Flow control (RX & TX) is completely disabled by a
3171 * software over-ride.
3172 */
3173 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3174 break;
3175 case e1000_fc_rx_pause: /* 1 */
3176 /* RX Flow control is enabled, and TX Flow control is
3177 * disabled, by a software over-ride.
3178 */
3179 /* Since there really isn't a way to advertise that we are
3180 * capable of RX Pause ONLY, we will advertise that we
3181 * support both symmetric and asymmetric RX PAUSE. Later
3182 * (in e1000_config_fc_after_link_up) we will disable the
3183 *hw's ability to send PAUSE frames.
3184 */
3185 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3186 break;
3187 case e1000_fc_tx_pause: /* 2 */
3188 /* TX Flow control is enabled, and RX Flow control is
3189 * disabled, by a software over-ride.
3190 */
3191 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3192 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3193 break;
3194 case e1000_fc_full: /* 3 */
3195 /* Flow control (both RX and TX) is enabled by a software
3196 * over-ride.
3197 */
3198 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3199 break;
3200 default:
3201 DEBUGOUT("Flow control param set incorrectly\n");
3202 return -E1000_ERR_CONFIG;
3203 }
3204
Roy Zangaa070782009-07-31 13:34:02 +08003205 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3206 if (ret_val)
3207 return ret_val;
wdenk682011f2003-06-03 23:54:09 +00003208
3209 DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3210
Roy Zangaa070782009-07-31 13:34:02 +08003211 if (hw->phy_type != e1000_phy_ife) {
3212 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3213 mii_1000t_ctrl_reg);
3214 if (ret_val)
3215 return ret_val;
wdenk682011f2003-06-03 23:54:09 +00003216 }
Roy Zangaa070782009-07-31 13:34:02 +08003217
3218 return E1000_SUCCESS;
wdenk682011f2003-06-03 23:54:09 +00003219}
3220
3221/******************************************************************************
3222* Sets the collision distance in the Transmit Control register
3223*
3224* hw - Struct containing variables accessed by shared code
3225*
3226* Link should have been established previously. Reads the speed and duplex
3227* information from the Device Status register.
3228******************************************************************************/
3229static void
3230e1000_config_collision_dist(struct e1000_hw *hw)
3231{
Roy Zangaa070782009-07-31 13:34:02 +08003232 uint32_t tctl, coll_dist;
3233
3234 DEBUGFUNC();
3235
3236 if (hw->mac_type < e1000_82543)
3237 coll_dist = E1000_COLLISION_DISTANCE_82542;
3238 else
3239 coll_dist = E1000_COLLISION_DISTANCE;
wdenk682011f2003-06-03 23:54:09 +00003240
3241 tctl = E1000_READ_REG(hw, TCTL);
3242
3243 tctl &= ~E1000_TCTL_COLD;
Roy Zangaa070782009-07-31 13:34:02 +08003244 tctl |= coll_dist << E1000_COLD_SHIFT;
wdenk682011f2003-06-03 23:54:09 +00003245
3246 E1000_WRITE_REG(hw, TCTL, tctl);
3247 E1000_WRITE_FLUSH(hw);
3248}
3249
3250/******************************************************************************
3251* Sets MAC speed and duplex settings to reflect the those in the PHY
3252*
3253* hw - Struct containing variables accessed by shared code
3254* mii_reg - data to write to the MII control register
3255*
3256* The contents of the PHY register containing the needed information need to
3257* be passed in.
3258******************************************************************************/
3259static int
3260e1000_config_mac_to_phy(struct e1000_hw *hw)
3261{
3262 uint32_t ctrl;
3263 uint16_t phy_data;
3264
3265 DEBUGFUNC();
3266
3267 /* Read the Device Control Register and set the bits to Force Speed
3268 * and Duplex.
3269 */
3270 ctrl = E1000_READ_REG(hw, CTRL);
3271 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3272 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
3273
3274 /* Set up duplex in the Device Control and Transmit Control
3275 * registers depending on negotiated values.
3276 */
3277 if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3278 DEBUGOUT("PHY Read Error\n");
3279 return -E1000_ERR_PHY;
3280 }
3281 if (phy_data & M88E1000_PSSR_DPLX)
3282 ctrl |= E1000_CTRL_FD;
3283 else
3284 ctrl &= ~E1000_CTRL_FD;
3285
3286 e1000_config_collision_dist(hw);
3287
3288 /* Set up speed in the Device Control register depending on
3289 * negotiated values.
3290 */
3291 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3292 ctrl |= E1000_CTRL_SPD_1000;
3293 else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3294 ctrl |= E1000_CTRL_SPD_100;
3295 /* Write the configured values back to the Device Control Reg. */
3296 E1000_WRITE_REG(hw, CTRL, ctrl);
3297 return 0;
3298}
3299
3300/******************************************************************************
3301 * Forces the MAC's flow control settings.
wdenk8bde7f72003-06-27 21:31:46 +00003302 *
wdenk682011f2003-06-03 23:54:09 +00003303 * hw - Struct containing variables accessed by shared code
3304 *
3305 * Sets the TFCE and RFCE bits in the device control register to reflect
3306 * the adapter settings. TFCE and RFCE need to be explicitly set by
3307 * software when a Copper PHY is used because autonegotiation is managed
3308 * by the PHY rather than the MAC. Software must also configure these
3309 * bits when link is forced on a fiber connection.
3310 *****************************************************************************/
3311static int
3312e1000_force_mac_fc(struct e1000_hw *hw)
3313{
3314 uint32_t ctrl;
3315
3316 DEBUGFUNC();
3317
3318 /* Get the current configuration of the Device Control Register */
3319 ctrl = E1000_READ_REG(hw, CTRL);
3320
3321 /* Because we didn't get link via the internal auto-negotiation
3322 * mechanism (we either forced link or we got link via PHY
3323 * auto-neg), we have to manually enable/disable transmit an
3324 * receive flow control.
3325 *
3326 * The "Case" statement below enables/disable flow control
3327 * according to the "hw->fc" parameter.
3328 *
3329 * The possible values of the "fc" parameter are:
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07003330 * 0: Flow control is completely disabled
3331 * 1: Rx flow control is enabled (we can receive pause
3332 * frames but not send pause frames).
3333 * 2: Tx flow control is enabled (we can send pause frames
3334 * frames but we do not receive pause frames).
3335 * 3: Both Rx and TX flow control (symmetric) is enabled.
wdenk682011f2003-06-03 23:54:09 +00003336 * other: No other values should be possible at this point.
3337 */
3338
3339 switch (hw->fc) {
3340 case e1000_fc_none:
3341 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3342 break;
3343 case e1000_fc_rx_pause:
3344 ctrl &= (~E1000_CTRL_TFCE);
3345 ctrl |= E1000_CTRL_RFCE;
3346 break;
3347 case e1000_fc_tx_pause:
3348 ctrl &= (~E1000_CTRL_RFCE);
3349 ctrl |= E1000_CTRL_TFCE;
3350 break;
3351 case e1000_fc_full:
3352 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3353 break;
3354 default:
3355 DEBUGOUT("Flow control param set incorrectly\n");
3356 return -E1000_ERR_CONFIG;
3357 }
3358
3359 /* Disable TX Flow Control for 82542 (rev 2.0) */
3360 if (hw->mac_type == e1000_82542_rev2_0)
3361 ctrl &= (~E1000_CTRL_TFCE);
3362
3363 E1000_WRITE_REG(hw, CTRL, ctrl);
3364 return 0;
3365}
3366
3367/******************************************************************************
3368 * Configures flow control settings after link is established
wdenk8bde7f72003-06-27 21:31:46 +00003369 *
wdenk682011f2003-06-03 23:54:09 +00003370 * hw - Struct containing variables accessed by shared code
3371 *
3372 * Should be called immediately after a valid link has been established.
3373 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3374 * and autonegotiation is enabled, the MAC flow control settings will be set
3375 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3376 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3377 *****************************************************************************/
Roy Zangaa070782009-07-31 13:34:02 +08003378static int32_t
wdenk682011f2003-06-03 23:54:09 +00003379e1000_config_fc_after_link_up(struct e1000_hw *hw)
3380{
3381 int32_t ret_val;
3382 uint16_t mii_status_reg;
3383 uint16_t mii_nway_adv_reg;
3384 uint16_t mii_nway_lp_ability_reg;
3385 uint16_t speed;
3386 uint16_t duplex;
3387
3388 DEBUGFUNC();
3389
3390 /* Check for the case where we have fiber media and auto-neg failed
3391 * so we had to force link. In this case, we need to force the
3392 * configuration of the MAC to match the "fc" parameter.
3393 */
Roy Zangaa070782009-07-31 13:34:02 +08003394 if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3395 || ((hw->media_type == e1000_media_type_internal_serdes)
3396 && (hw->autoneg_failed))
3397 || ((hw->media_type == e1000_media_type_copper)
3398 && (!hw->autoneg))) {
wdenk682011f2003-06-03 23:54:09 +00003399 ret_val = e1000_force_mac_fc(hw);
3400 if (ret_val < 0) {
3401 DEBUGOUT("Error forcing flow control settings\n");
3402 return ret_val;
3403 }
3404 }
3405
3406 /* Check for the case where we have copper media and auto-neg is
3407 * enabled. In this case, we need to check and see if Auto-Neg
3408 * has completed, and if so, how the PHY and link partner has
3409 * flow control configured.
3410 */
3411 if (hw->media_type == e1000_media_type_copper) {
3412 /* Read the MII Status Register and check to see if AutoNeg
3413 * has completed. We read this twice because this reg has
3414 * some "sticky" (latched) bits.
3415 */
3416 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3417 DEBUGOUT("PHY Read Error \n");
3418 return -E1000_ERR_PHY;
3419 }
3420 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3421 DEBUGOUT("PHY Read Error \n");
3422 return -E1000_ERR_PHY;
3423 }
3424
3425 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3426 /* The AutoNeg process has completed, so we now need to
3427 * read both the Auto Negotiation Advertisement Register
3428 * (Address 4) and the Auto_Negotiation Base Page Ability
3429 * Register (Address 5) to determine how flow control was
3430 * negotiated.
3431 */
3432 if (e1000_read_phy_reg
3433 (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3434 DEBUGOUT("PHY Read Error\n");
3435 return -E1000_ERR_PHY;
3436 }
3437 if (e1000_read_phy_reg
3438 (hw, PHY_LP_ABILITY,
3439 &mii_nway_lp_ability_reg) < 0) {
3440 DEBUGOUT("PHY Read Error\n");
3441 return -E1000_ERR_PHY;
3442 }
3443
3444 /* Two bits in the Auto Negotiation Advertisement Register
3445 * (Address 4) and two bits in the Auto Negotiation Base
3446 * Page Ability Register (Address 5) determine flow control
3447 * for both the PHY and the link partner. The following
3448 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3449 * 1999, describes these PAUSE resolution bits and how flow
3450 * control is determined based upon these settings.
3451 * NOTE: DC = Don't Care
3452 *
3453 * LOCAL DEVICE | LINK PARTNER
3454 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3455 *-------|---------|-------|---------|--------------------
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07003456 * 0 | 0 | DC | DC | e1000_fc_none
3457 * 0 | 1 | 0 | DC | e1000_fc_none
3458 * 0 | 1 | 1 | 0 | e1000_fc_none
3459 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
3460 * 1 | 0 | 0 | DC | e1000_fc_none
3461 * 1 | DC | 1 | DC | e1000_fc_full
3462 * 1 | 1 | 0 | 0 | e1000_fc_none
3463 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
wdenk682011f2003-06-03 23:54:09 +00003464 *
3465 */
3466 /* Are both PAUSE bits set to 1? If so, this implies
3467 * Symmetric Flow Control is enabled at both ends. The
3468 * ASM_DIR bits are irrelevant per the spec.
3469 *
3470 * For Symmetric Flow Control:
3471 *
3472 * LOCAL DEVICE | LINK PARTNER
3473 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3474 *-------|---------|-------|---------|--------------------
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07003475 * 1 | DC | 1 | DC | e1000_fc_full
wdenk682011f2003-06-03 23:54:09 +00003476 *
3477 */
3478 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3479 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3480 /* Now we need to check if the user selected RX ONLY
3481 * of pause frames. In this case, we had to advertise
3482 * FULL flow control because we could not advertise RX
3483 * ONLY. Hence, we must now check to see if we need to
3484 * turn OFF the TRANSMISSION of PAUSE frames.
3485 */
3486 if (hw->original_fc == e1000_fc_full) {
3487 hw->fc = e1000_fc_full;
3488 DEBUGOUT("Flow Control = FULL.\r\n");
3489 } else {
3490 hw->fc = e1000_fc_rx_pause;
3491 DEBUGOUT
3492 ("Flow Control = RX PAUSE frames only.\r\n");
3493 }
3494 }
3495 /* For receiving PAUSE frames ONLY.
3496 *
3497 * LOCAL DEVICE | LINK PARTNER
3498 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3499 *-------|---------|-------|---------|--------------------
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07003500 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
wdenk682011f2003-06-03 23:54:09 +00003501 *
3502 */
3503 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3504 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3505 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3506 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3507 {
3508 hw->fc = e1000_fc_tx_pause;
3509 DEBUGOUT
3510 ("Flow Control = TX PAUSE frames only.\r\n");
3511 }
3512 /* For transmitting PAUSE frames ONLY.
3513 *
3514 * LOCAL DEVICE | LINK PARTNER
3515 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3516 *-------|---------|-------|---------|--------------------
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07003517 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
wdenk682011f2003-06-03 23:54:09 +00003518 *
3519 */
3520 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3521 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3522 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3523 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3524 {
3525 hw->fc = e1000_fc_rx_pause;
3526 DEBUGOUT
3527 ("Flow Control = RX PAUSE frames only.\r\n");
3528 }
3529 /* Per the IEEE spec, at this point flow control should be
3530 * disabled. However, we want to consider that we could
3531 * be connected to a legacy switch that doesn't advertise
3532 * desired flow control, but can be forced on the link
3533 * partner. So if we advertised no flow control, that is
3534 * what we will resolve to. If we advertised some kind of
3535 * receive capability (Rx Pause Only or Full Flow Control)
3536 * and the link partner advertised none, we will configure
3537 * ourselves to enable Rx Flow Control only. We can do
3538 * this safely for two reasons: If the link partner really
3539 * didn't want flow control enabled, and we enable Rx, no
3540 * harm done since we won't be receiving any PAUSE frames
3541 * anyway. If the intent on the link partner was to have
3542 * flow control enabled, then by us enabling RX only, we
3543 * can at least receive pause frames and process them.
3544 * This is a good idea because in most cases, since we are
3545 * predominantly a server NIC, more times than not we will
3546 * be asked to delay transmission of packets than asking
3547 * our link partner to pause transmission of frames.
3548 */
3549 else if (hw->original_fc == e1000_fc_none ||
3550 hw->original_fc == e1000_fc_tx_pause) {
3551 hw->fc = e1000_fc_none;
3552 DEBUGOUT("Flow Control = NONE.\r\n");
3553 } else {
3554 hw->fc = e1000_fc_rx_pause;
3555 DEBUGOUT
3556 ("Flow Control = RX PAUSE frames only.\r\n");
3557 }
3558
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07003559 /* Now we need to do one last check... If we auto-
wdenk682011f2003-06-03 23:54:09 +00003560 * negotiated to HALF DUPLEX, flow control should not be
3561 * enabled per IEEE 802.3 spec.
3562 */
3563 e1000_get_speed_and_duplex(hw, &speed, &duplex);
3564
3565 if (duplex == HALF_DUPLEX)
3566 hw->fc = e1000_fc_none;
3567
3568 /* Now we call a subroutine to actually force the MAC
3569 * controller to use the correct flow control settings.
3570 */
3571 ret_val = e1000_force_mac_fc(hw);
3572 if (ret_val < 0) {
3573 DEBUGOUT
3574 ("Error forcing flow control settings\n");
3575 return ret_val;
3576 }
3577 } else {
3578 DEBUGOUT
3579 ("Copper PHY and Auto Neg has not completed.\r\n");
3580 }
3581 }
Roy Zangaa070782009-07-31 13:34:02 +08003582 return E1000_SUCCESS;
wdenk682011f2003-06-03 23:54:09 +00003583}
3584
3585/******************************************************************************
3586 * Checks to see if the link status of the hardware has changed.
3587 *
3588 * hw - Struct containing variables accessed by shared code
3589 *
3590 * Called by any function that needs to check the link status of the adapter.
3591 *****************************************************************************/
3592static int
3593e1000_check_for_link(struct eth_device *nic)
3594{
3595 struct e1000_hw *hw = nic->priv;
3596 uint32_t rxcw;
3597 uint32_t ctrl;
3598 uint32_t status;
3599 uint32_t rctl;
3600 uint32_t signal;
3601 int32_t ret_val;
3602 uint16_t phy_data;
3603 uint16_t lp_capability;
3604
3605 DEBUGFUNC();
3606
wdenk8bde7f72003-06-27 21:31:46 +00003607 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3608 * set when the optics detect a signal. On older adapters, it will be
wdenk682011f2003-06-03 23:54:09 +00003609 * cleared when there is a signal
3610 */
3611 ctrl = E1000_READ_REG(hw, CTRL);
3612 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3613 signal = E1000_CTRL_SWDPIN1;
3614 else
3615 signal = 0;
3616
3617 status = E1000_READ_REG(hw, STATUS);
3618 rxcw = E1000_READ_REG(hw, RXCW);
3619 DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3620
3621 /* If we have a copper PHY then we only want to go out to the PHY
3622 * registers to see if Auto-Neg has completed and/or if our link
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07003623 * status has changed. The get_link_status flag will be set if we
wdenk682011f2003-06-03 23:54:09 +00003624 * receive a Link Status Change interrupt or we have Rx Sequence
3625 * Errors.
3626 */
3627 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3628 /* First we want to see if the MII Status Register reports
3629 * link. If so, then we want to get the current speed/duplex
3630 * of the PHY.
3631 * Read the register twice since the link bit is sticky.
3632 */
3633 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3634 DEBUGOUT("PHY Read Error\n");
3635 return -E1000_ERR_PHY;
3636 }
3637 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3638 DEBUGOUT("PHY Read Error\n");
3639 return -E1000_ERR_PHY;
3640 }
3641
3642 if (phy_data & MII_SR_LINK_STATUS) {
3643 hw->get_link_status = FALSE;
3644 } else {
3645 /* No link detected */
3646 return -E1000_ERR_NOLINK;
3647 }
3648
3649 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
3650 * have Si on board that is 82544 or newer, Auto
3651 * Speed Detection takes care of MAC speed/duplex
3652 * configuration. So we only need to configure Collision
3653 * Distance in the MAC. Otherwise, we need to force
3654 * speed/duplex on the MAC to the current PHY speed/duplex
3655 * settings.
3656 */
3657 if (hw->mac_type >= e1000_82544)
3658 e1000_config_collision_dist(hw);
3659 else {
3660 ret_val = e1000_config_mac_to_phy(hw);
3661 if (ret_val < 0) {
3662 DEBUGOUT
3663 ("Error configuring MAC to PHY settings\n");
3664 return ret_val;
3665 }
3666 }
3667
wdenk8bde7f72003-06-27 21:31:46 +00003668 /* Configure Flow Control now that Auto-Neg has completed. First, we
wdenk682011f2003-06-03 23:54:09 +00003669 * need to restore the desired flow control settings because we may
3670 * have had to re-autoneg with a different link partner.
3671 */
3672 ret_val = e1000_config_fc_after_link_up(hw);
3673 if (ret_val < 0) {
3674 DEBUGOUT("Error configuring flow control\n");
3675 return ret_val;
3676 }
3677
3678 /* At this point we know that we are on copper and we have
3679 * auto-negotiated link. These are conditions for checking the link
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07003680 * parter capability register. We use the link partner capability to
wdenk682011f2003-06-03 23:54:09 +00003681 * determine if TBI Compatibility needs to be turned on or off. If
3682 * the link partner advertises any speed in addition to Gigabit, then
3683 * we assume that they are GMII-based, and TBI compatibility is not
3684 * needed. If no other speeds are advertised, we assume the link
3685 * partner is TBI-based, and we turn on TBI Compatibility.
3686 */
3687 if (hw->tbi_compatibility_en) {
3688 if (e1000_read_phy_reg
3689 (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3690 DEBUGOUT("PHY Read Error\n");
3691 return -E1000_ERR_PHY;
3692 }
3693 if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3694 NWAY_LPAR_10T_FD_CAPS |
3695 NWAY_LPAR_100TX_HD_CAPS |
3696 NWAY_LPAR_100TX_FD_CAPS |
3697 NWAY_LPAR_100T4_CAPS)) {
wdenk8bde7f72003-06-27 21:31:46 +00003698 /* If our link partner advertises anything in addition to
wdenk682011f2003-06-03 23:54:09 +00003699 * gigabit, we do not need to enable TBI compatibility.
3700 */
3701 if (hw->tbi_compatibility_on) {
3702 /* If we previously were in the mode, turn it off. */
3703 rctl = E1000_READ_REG(hw, RCTL);
3704 rctl &= ~E1000_RCTL_SBP;
3705 E1000_WRITE_REG(hw, RCTL, rctl);
3706 hw->tbi_compatibility_on = FALSE;
3707 }
3708 } else {
3709 /* If TBI compatibility is was previously off, turn it on. For
3710 * compatibility with a TBI link partner, we will store bad
3711 * packets. Some frames have an additional byte on the end and
3712 * will look like CRC errors to to the hardware.
3713 */
3714 if (!hw->tbi_compatibility_on) {
3715 hw->tbi_compatibility_on = TRUE;
3716 rctl = E1000_READ_REG(hw, RCTL);
3717 rctl |= E1000_RCTL_SBP;
3718 E1000_WRITE_REG(hw, RCTL, rctl);
3719 }
3720 }
3721 }
3722 }
3723 /* If we don't have link (auto-negotiation failed or link partner cannot
3724 * auto-negotiate), the cable is plugged in (we have signal), and our
3725 * link partner is not trying to auto-negotiate with us (we are receiving
3726 * idles or data), we need to force link up. We also need to give
3727 * auto-negotiation time to complete, in case the cable was just plugged
3728 * in. The autoneg_failed flag does this.
3729 */
3730 else if ((hw->media_type == e1000_media_type_fiber) &&
3731 (!(status & E1000_STATUS_LU)) &&
3732 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3733 (!(rxcw & E1000_RXCW_C))) {
3734 if (hw->autoneg_failed == 0) {
3735 hw->autoneg_failed = 1;
3736 return 0;
3737 }
3738 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3739
3740 /* Disable auto-negotiation in the TXCW register */
3741 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3742
3743 /* Force link-up and also force full-duplex. */
3744 ctrl = E1000_READ_REG(hw, CTRL);
3745 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3746 E1000_WRITE_REG(hw, CTRL, ctrl);
3747
3748 /* Configure Flow Control after forcing link up. */
3749 ret_val = e1000_config_fc_after_link_up(hw);
3750 if (ret_val < 0) {
3751 DEBUGOUT("Error configuring flow control\n");
3752 return ret_val;
3753 }
3754 }
3755 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3756 * auto-negotiation in the TXCW register and disable forced link in the
3757 * Device Control register in an attempt to auto-negotiate with our link
3758 * partner.
3759 */
3760 else if ((hw->media_type == e1000_media_type_fiber) &&
3761 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3762 DEBUGOUT
3763 ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3764 E1000_WRITE_REG(hw, TXCW, hw->txcw);
3765 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3766 }
3767 return 0;
3768}
3769
3770/******************************************************************************
Roy Zangaa070782009-07-31 13:34:02 +08003771* Configure the MAC-to-PHY interface for 10/100Mbps
3772*
3773* hw - Struct containing variables accessed by shared code
3774******************************************************************************/
3775static int32_t
3776e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3777{
3778 int32_t ret_val = E1000_SUCCESS;
3779 uint32_t tipg;
3780 uint16_t reg_data;
3781
3782 DEBUGFUNC();
3783
3784 reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3785 ret_val = e1000_write_kmrn_reg(hw,
3786 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3787 if (ret_val)
3788 return ret_val;
3789
3790 /* Configure Transmit Inter-Packet Gap */
3791 tipg = E1000_READ_REG(hw, TIPG);
3792 tipg &= ~E1000_TIPG_IPGT_MASK;
3793 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3794 E1000_WRITE_REG(hw, TIPG, tipg);
3795
3796 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3797
3798 if (ret_val)
3799 return ret_val;
3800
3801 if (duplex == HALF_DUPLEX)
3802 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3803 else
3804 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3805
3806 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3807
3808 return ret_val;
3809}
3810
3811static int32_t
3812e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3813{
3814 int32_t ret_val = E1000_SUCCESS;
3815 uint16_t reg_data;
3816 uint32_t tipg;
3817
3818 DEBUGFUNC();
3819
3820 reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3821 ret_val = e1000_write_kmrn_reg(hw,
3822 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3823 if (ret_val)
3824 return ret_val;
3825
3826 /* Configure Transmit Inter-Packet Gap */
3827 tipg = E1000_READ_REG(hw, TIPG);
3828 tipg &= ~E1000_TIPG_IPGT_MASK;
3829 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3830 E1000_WRITE_REG(hw, TIPG, tipg);
3831
3832 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3833
3834 if (ret_val)
3835 return ret_val;
3836
3837 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3838 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3839
3840 return ret_val;
3841}
3842
3843/******************************************************************************
wdenk682011f2003-06-03 23:54:09 +00003844 * Detects the current speed and duplex settings of the hardware.
3845 *
3846 * hw - Struct containing variables accessed by shared code
3847 * speed - Speed of the connection
3848 * duplex - Duplex setting of the connection
3849 *****************************************************************************/
Roy Zangaa070782009-07-31 13:34:02 +08003850static int
3851e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3852 uint16_t *duplex)
wdenk682011f2003-06-03 23:54:09 +00003853{
3854 uint32_t status;
Roy Zangaa070782009-07-31 13:34:02 +08003855 int32_t ret_val;
3856 uint16_t phy_data;
wdenk682011f2003-06-03 23:54:09 +00003857
3858 DEBUGFUNC();
3859
3860 if (hw->mac_type >= e1000_82543) {
3861 status = E1000_READ_REG(hw, STATUS);
3862 if (status & E1000_STATUS_SPEED_1000) {
3863 *speed = SPEED_1000;
3864 DEBUGOUT("1000 Mbs, ");
3865 } else if (status & E1000_STATUS_SPEED_100) {
3866 *speed = SPEED_100;
3867 DEBUGOUT("100 Mbs, ");
3868 } else {
3869 *speed = SPEED_10;
3870 DEBUGOUT("10 Mbs, ");
3871 }
3872
3873 if (status & E1000_STATUS_FD) {
3874 *duplex = FULL_DUPLEX;
3875 DEBUGOUT("Full Duplex\r\n");
3876 } else {
3877 *duplex = HALF_DUPLEX;
3878 DEBUGOUT(" Half Duplex\r\n");
3879 }
3880 } else {
3881 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3882 *speed = SPEED_1000;
3883 *duplex = FULL_DUPLEX;
3884 }
Roy Zangaa070782009-07-31 13:34:02 +08003885
3886 /* IGP01 PHY may advertise full duplex operation after speed downgrade
3887 * even if it is operating at half duplex. Here we set the duplex
3888 * settings to match the duplex in the link partner's capabilities.
3889 */
3890 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3891 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3892 if (ret_val)
3893 return ret_val;
3894
3895 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3896 *duplex = HALF_DUPLEX;
3897 else {
3898 ret_val = e1000_read_phy_reg(hw,
3899 PHY_LP_ABILITY, &phy_data);
3900 if (ret_val)
3901 return ret_val;
3902 if ((*speed == SPEED_100 &&
3903 !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3904 || (*speed == SPEED_10
3905 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3906 *duplex = HALF_DUPLEX;
3907 }
3908 }
3909
3910 if ((hw->mac_type == e1000_80003es2lan) &&
3911 (hw->media_type == e1000_media_type_copper)) {
3912 if (*speed == SPEED_1000)
3913 ret_val = e1000_configure_kmrn_for_1000(hw);
3914 else
3915 ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3916 if (ret_val)
3917 return ret_val;
3918 }
3919 return E1000_SUCCESS;
wdenk682011f2003-06-03 23:54:09 +00003920}
3921
3922/******************************************************************************
3923* Blocks until autoneg completes or times out (~4.5 seconds)
3924*
3925* hw - Struct containing variables accessed by shared code
3926******************************************************************************/
3927static int
3928e1000_wait_autoneg(struct e1000_hw *hw)
3929{
3930 uint16_t i;
3931 uint16_t phy_data;
3932
3933 DEBUGFUNC();
3934 DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3935
3936 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
3937 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
3938 /* Read the MII Status Register and wait for Auto-Neg
3939 * Complete bit to be set.
3940 */
3941 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3942 DEBUGOUT("PHY Read Error\n");
3943 return -E1000_ERR_PHY;
3944 }
3945 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3946 DEBUGOUT("PHY Read Error\n");
3947 return -E1000_ERR_PHY;
3948 }
3949 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
3950 DEBUGOUT("Auto-Neg complete.\n");
3951 return 0;
3952 }
3953 mdelay(100);
3954 }
3955 DEBUGOUT("Auto-Neg timedout.\n");
3956 return -E1000_ERR_TIMEOUT;
3957}
3958
3959/******************************************************************************
3960* Raises the Management Data Clock
3961*
3962* hw - Struct containing variables accessed by shared code
3963* ctrl - Device control register's current value
3964******************************************************************************/
3965static void
3966e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3967{
3968 /* Raise the clock input to the Management Data Clock (by setting the MDC
3969 * bit), and then delay 2 microseconds.
3970 */
3971 E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
3972 E1000_WRITE_FLUSH(hw);
3973 udelay(2);
3974}
3975
3976/******************************************************************************
3977* Lowers the Management Data Clock
3978*
3979* hw - Struct containing variables accessed by shared code
3980* ctrl - Device control register's current value
3981******************************************************************************/
3982static void
3983e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3984{
3985 /* Lower the clock input to the Management Data Clock (by clearing the MDC
3986 * bit), and then delay 2 microseconds.
3987 */
3988 E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
3989 E1000_WRITE_FLUSH(hw);
3990 udelay(2);
3991}
3992
3993/******************************************************************************
3994* Shifts data bits out to the PHY
3995*
3996* hw - Struct containing variables accessed by shared code
3997* data - Data to send out to the PHY
3998* count - Number of bits to shift out
3999*
4000* Bits are shifted out in MSB to LSB order.
4001******************************************************************************/
4002static void
4003e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
4004{
4005 uint32_t ctrl;
4006 uint32_t mask;
4007
4008 /* We need to shift "count" number of bits out to the PHY. So, the value
wdenk8bde7f72003-06-27 21:31:46 +00004009 * in the "data" parameter will be shifted out to the PHY one bit at a
wdenk682011f2003-06-03 23:54:09 +00004010 * time. In order to do this, "data" must be broken down into bits.
4011 */
4012 mask = 0x01;
4013 mask <<= (count - 1);
4014
4015 ctrl = E1000_READ_REG(hw, CTRL);
4016
4017 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
4018 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
4019
4020 while (mask) {
4021 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
4022 * then raising and lowering the Management Data Clock. A "0" is
4023 * shifted out to the PHY by setting the MDIO bit to "0" and then
4024 * raising and lowering the clock.
4025 */
4026 if (data & mask)
4027 ctrl |= E1000_CTRL_MDIO;
4028 else
4029 ctrl &= ~E1000_CTRL_MDIO;
4030
4031 E1000_WRITE_REG(hw, CTRL, ctrl);
4032 E1000_WRITE_FLUSH(hw);
4033
4034 udelay(2);
4035
4036 e1000_raise_mdi_clk(hw, &ctrl);
4037 e1000_lower_mdi_clk(hw, &ctrl);
4038
4039 mask = mask >> 1;
4040 }
4041}
4042
4043/******************************************************************************
4044* Shifts data bits in from the PHY
4045*
4046* hw - Struct containing variables accessed by shared code
4047*
wdenk8bde7f72003-06-27 21:31:46 +00004048* Bits are shifted in in MSB to LSB order.
wdenk682011f2003-06-03 23:54:09 +00004049******************************************************************************/
4050static uint16_t
4051e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4052{
4053 uint32_t ctrl;
4054 uint16_t data = 0;
4055 uint8_t i;
4056
4057 /* In order to read a register from the PHY, we need to shift in a total
4058 * of 18 bits from the PHY. The first two bit (turnaround) times are used
4059 * to avoid contention on the MDIO pin when a read operation is performed.
4060 * These two bits are ignored by us and thrown away. Bits are "shifted in"
4061 * by raising the input to the Management Data Clock (setting the MDC bit),
4062 * and then reading the value of the MDIO bit.
4063 */
4064 ctrl = E1000_READ_REG(hw, CTRL);
4065
4066 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4067 ctrl &= ~E1000_CTRL_MDIO_DIR;
4068 ctrl &= ~E1000_CTRL_MDIO;
4069
4070 E1000_WRITE_REG(hw, CTRL, ctrl);
4071 E1000_WRITE_FLUSH(hw);
4072
4073 /* Raise and Lower the clock before reading in the data. This accounts for
4074 * the turnaround bits. The first clock occurred when we clocked out the
4075 * last bit of the Register Address.
4076 */
4077 e1000_raise_mdi_clk(hw, &ctrl);
4078 e1000_lower_mdi_clk(hw, &ctrl);
4079
4080 for (data = 0, i = 0; i < 16; i++) {
4081 data = data << 1;
4082 e1000_raise_mdi_clk(hw, &ctrl);
4083 ctrl = E1000_READ_REG(hw, CTRL);
4084 /* Check to see if we shifted in a "1". */
4085 if (ctrl & E1000_CTRL_MDIO)
4086 data |= 1;
4087 e1000_lower_mdi_clk(hw, &ctrl);
4088 }
4089
4090 e1000_raise_mdi_clk(hw, &ctrl);
4091 e1000_lower_mdi_clk(hw, &ctrl);
4092
4093 return data;
4094}
4095
4096/*****************************************************************************
4097* Reads the value from a PHY register
4098*
4099* hw - Struct containing variables accessed by shared code
4100* reg_addr - address of the PHY register to read
4101******************************************************************************/
4102static int
4103e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4104{
4105 uint32_t i;
4106 uint32_t mdic = 0;
4107 const uint32_t phy_addr = 1;
4108
4109 if (reg_addr > MAX_PHY_REG_ADDRESS) {
4110 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4111 return -E1000_ERR_PARAM;
4112 }
4113
4114 if (hw->mac_type > e1000_82543) {
4115 /* Set up Op-code, Phy Address, and register address in the MDI
4116 * Control register. The MAC will take care of interfacing with the
4117 * PHY to retrieve the desired data.
4118 */
4119 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4120 (phy_addr << E1000_MDIC_PHY_SHIFT) |
4121 (E1000_MDIC_OP_READ));
4122
4123 E1000_WRITE_REG(hw, MDIC, mdic);
4124
4125 /* Poll the ready bit to see if the MDI read completed */
4126 for (i = 0; i < 64; i++) {
4127 udelay(10);
4128 mdic = E1000_READ_REG(hw, MDIC);
4129 if (mdic & E1000_MDIC_READY)
4130 break;
4131 }
4132 if (!(mdic & E1000_MDIC_READY)) {
4133 DEBUGOUT("MDI Read did not complete\n");
4134 return -E1000_ERR_PHY;
4135 }
4136 if (mdic & E1000_MDIC_ERROR) {
4137 DEBUGOUT("MDI Error\n");
4138 return -E1000_ERR_PHY;
4139 }
4140 *phy_data = (uint16_t) mdic;
4141 } else {
4142 /* We must first send a preamble through the MDIO pin to signal the
4143 * beginning of an MII instruction. This is done by sending 32
4144 * consecutive "1" bits.
4145 */
4146 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4147
4148 /* Now combine the next few fields that are required for a read
4149 * operation. We use this method instead of calling the
4150 * e1000_shift_out_mdi_bits routine five different times. The format of
4151 * a MII read instruction consists of a shift out of 14 bits and is
4152 * defined as follows:
4153 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4154 * followed by a shift in of 18 bits. This first two bits shifted in
4155 * are TurnAround bits used to avoid contention on the MDIO pin when a
4156 * READ operation is performed. These two bits are thrown away
4157 * followed by a shift in of 16 bits which contains the desired data.
4158 */
4159 mdic = ((reg_addr) | (phy_addr << 5) |
4160 (PHY_OP_READ << 10) | (PHY_SOF << 12));
4161
4162 e1000_shift_out_mdi_bits(hw, mdic, 14);
4163
4164 /* Now that we've shifted out the read command to the MII, we need to
4165 * "shift in" the 16-bit value (18 total bits) of the requested PHY
4166 * register address.
4167 */
4168 *phy_data = e1000_shift_in_mdi_bits(hw);
4169 }
4170 return 0;
4171}
4172
4173/******************************************************************************
4174* Writes a value to a PHY register
4175*
4176* hw - Struct containing variables accessed by shared code
4177* reg_addr - address of the PHY register to write
4178* data - data to write to the PHY
4179******************************************************************************/
4180static int
4181e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4182{
4183 uint32_t i;
4184 uint32_t mdic = 0;
4185 const uint32_t phy_addr = 1;
4186
4187 if (reg_addr > MAX_PHY_REG_ADDRESS) {
4188 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4189 return -E1000_ERR_PARAM;
4190 }
4191
4192 if (hw->mac_type > e1000_82543) {
4193 /* Set up Op-code, Phy Address, register address, and data intended
4194 * for the PHY register in the MDI Control register. The MAC will take
4195 * care of interfacing with the PHY to send the desired data.
4196 */
4197 mdic = (((uint32_t) phy_data) |
4198 (reg_addr << E1000_MDIC_REG_SHIFT) |
4199 (phy_addr << E1000_MDIC_PHY_SHIFT) |
4200 (E1000_MDIC_OP_WRITE));
4201
4202 E1000_WRITE_REG(hw, MDIC, mdic);
4203
4204 /* Poll the ready bit to see if the MDI read completed */
4205 for (i = 0; i < 64; i++) {
4206 udelay(10);
4207 mdic = E1000_READ_REG(hw, MDIC);
4208 if (mdic & E1000_MDIC_READY)
4209 break;
4210 }
4211 if (!(mdic & E1000_MDIC_READY)) {
4212 DEBUGOUT("MDI Write did not complete\n");
4213 return -E1000_ERR_PHY;
4214 }
4215 } else {
4216 /* We'll need to use the SW defined pins to shift the write command
4217 * out to the PHY. We first send a preamble to the PHY to signal the
wdenk8bde7f72003-06-27 21:31:46 +00004218 * beginning of the MII instruction. This is done by sending 32
wdenk682011f2003-06-03 23:54:09 +00004219 * consecutive "1" bits.
4220 */
4221 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4222
wdenk8bde7f72003-06-27 21:31:46 +00004223 /* Now combine the remaining required fields that will indicate a
wdenk682011f2003-06-03 23:54:09 +00004224 * write operation. We use this method instead of calling the
4225 * e1000_shift_out_mdi_bits routine for each field in the command. The
4226 * format of a MII write instruction is as follows:
4227 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4228 */
4229 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4230 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4231 mdic <<= 16;
4232 mdic |= (uint32_t) phy_data;
4233
4234 e1000_shift_out_mdi_bits(hw, mdic, 32);
4235 }
4236 return 0;
4237}
4238
4239/******************************************************************************
Roy Zangaa070782009-07-31 13:34:02 +08004240 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4241 * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
4242 * the caller to figure out how to deal with it.
4243 *
4244 * hw - Struct containing variables accessed by shared code
4245 *
4246 * returns: - E1000_BLK_PHY_RESET
4247 * E1000_SUCCESS
4248 *
4249 *****************************************************************************/
4250int32_t
4251e1000_check_phy_reset_block(struct e1000_hw *hw)
4252{
4253 uint32_t manc = 0;
4254 uint32_t fwsm = 0;
4255
4256 if (hw->mac_type == e1000_ich8lan) {
4257 fwsm = E1000_READ_REG(hw, FWSM);
4258 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4259 : E1000_BLK_PHY_RESET;
4260 }
4261
4262 if (hw->mac_type > e1000_82547_rev_2)
4263 manc = E1000_READ_REG(hw, MANC);
4264 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4265 E1000_BLK_PHY_RESET : E1000_SUCCESS;
4266}
4267
4268/***************************************************************************
4269 * Checks if the PHY configuration is done
4270 *
4271 * hw: Struct containing variables accessed by shared code
4272 *
4273 * returns: - E1000_ERR_RESET if fail to reset MAC
4274 * E1000_SUCCESS at any other case.
4275 *
4276 ***************************************************************************/
4277static int32_t
4278e1000_get_phy_cfg_done(struct e1000_hw *hw)
4279{
4280 int32_t timeout = PHY_CFG_TIMEOUT;
4281 uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4282
4283 DEBUGFUNC();
4284
4285 switch (hw->mac_type) {
4286 default:
4287 mdelay(10);
4288 break;
Kyle Moffett987b43a2010-09-13 05:52:22 +00004289
Roy Zangaa070782009-07-31 13:34:02 +08004290 case e1000_80003es2lan:
4291 /* Separate *_CFG_DONE_* bit for each port */
Kyle Moffett987b43a2010-09-13 05:52:22 +00004292 if (e1000_is_second_port(hw))
Roy Zangaa070782009-07-31 13:34:02 +08004293 cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
Kyle Moffett987b43a2010-09-13 05:52:22 +00004294 /* Fall Through */
4295
Roy Zangaa070782009-07-31 13:34:02 +08004296 case e1000_82571:
4297 case e1000_82572:
4298 while (timeout) {
4299 if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4300 break;
4301 else
4302 mdelay(1);
4303 timeout--;
4304 }
4305 if (!timeout) {
4306 DEBUGOUT("MNG configuration cycle has not "
4307 "completed.\n");
4308 return -E1000_ERR_RESET;
4309 }
4310 break;
4311 }
4312
4313 return E1000_SUCCESS;
4314}
4315
4316/******************************************************************************
wdenk682011f2003-06-03 23:54:09 +00004317* Returns the PHY to the power-on reset state
4318*
4319* hw - Struct containing variables accessed by shared code
4320******************************************************************************/
Roy Zangaa070782009-07-31 13:34:02 +08004321int32_t
wdenk682011f2003-06-03 23:54:09 +00004322e1000_phy_hw_reset(struct e1000_hw *hw)
4323{
Kyle Moffett987b43a2010-09-13 05:52:22 +00004324 uint16_t swfw = E1000_SWFW_PHY0_SM;
Roy Zangaa070782009-07-31 13:34:02 +08004325 uint32_t ctrl, ctrl_ext;
4326 uint32_t led_ctrl;
4327 int32_t ret_val;
wdenk682011f2003-06-03 23:54:09 +00004328
4329 DEBUGFUNC();
4330
Roy Zangaa070782009-07-31 13:34:02 +08004331 /* In the case of the phy reset being blocked, it's not an error, we
4332 * simply return success without performing the reset. */
4333 ret_val = e1000_check_phy_reset_block(hw);
4334 if (ret_val)
4335 return E1000_SUCCESS;
4336
wdenk682011f2003-06-03 23:54:09 +00004337 DEBUGOUT("Resetting Phy...\n");
4338
4339 if (hw->mac_type > e1000_82543) {
Kyle Moffett987b43a2010-09-13 05:52:22 +00004340 if (e1000_is_second_port(hw))
Roy Zangaa070782009-07-31 13:34:02 +08004341 swfw = E1000_SWFW_PHY1_SM;
Kyle Moffett987b43a2010-09-13 05:52:22 +00004342
Roy Zangaa070782009-07-31 13:34:02 +08004343 if (e1000_swfw_sync_acquire(hw, swfw)) {
4344 DEBUGOUT("Unable to acquire swfw sync\n");
4345 return -E1000_ERR_SWFW_SYNC;
4346 }
Kyle Moffett987b43a2010-09-13 05:52:22 +00004347
wdenk682011f2003-06-03 23:54:09 +00004348 /* Read the device control register and assert the E1000_CTRL_PHY_RST
4349 * bit. Then, take it out of reset.
4350 */
4351 ctrl = E1000_READ_REG(hw, CTRL);
4352 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4353 E1000_WRITE_FLUSH(hw);
Roy Zangaa070782009-07-31 13:34:02 +08004354
4355 if (hw->mac_type < e1000_82571)
4356 udelay(10);
4357 else
4358 udelay(100);
4359
wdenk682011f2003-06-03 23:54:09 +00004360 E1000_WRITE_REG(hw, CTRL, ctrl);
4361 E1000_WRITE_FLUSH(hw);
Roy Zangaa070782009-07-31 13:34:02 +08004362
4363 if (hw->mac_type >= e1000_82571)
4364 mdelay(10);
4365
wdenk682011f2003-06-03 23:54:09 +00004366 } else {
4367 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4368 * bit to put the PHY into reset. Then, take it out of reset.
4369 */
4370 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4371 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4372 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4373 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4374 E1000_WRITE_FLUSH(hw);
4375 mdelay(10);
4376 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4377 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4378 E1000_WRITE_FLUSH(hw);
4379 }
4380 udelay(150);
Roy Zangaa070782009-07-31 13:34:02 +08004381
4382 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4383 /* Configure activity LED after PHY reset */
4384 led_ctrl = E1000_READ_REG(hw, LEDCTL);
4385 led_ctrl &= IGP_ACTIVITY_LED_MASK;
4386 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4387 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4388 }
4389
4390 /* Wait for FW to finish PHY configuration. */
4391 ret_val = e1000_get_phy_cfg_done(hw);
4392 if (ret_val != E1000_SUCCESS)
4393 return ret_val;
4394
4395 return ret_val;
4396}
4397
4398/******************************************************************************
4399 * IGP phy init script - initializes the GbE PHY
4400 *
4401 * hw - Struct containing variables accessed by shared code
4402 *****************************************************************************/
4403static void
4404e1000_phy_init_script(struct e1000_hw *hw)
4405{
4406 uint32_t ret_val;
4407 uint16_t phy_saved_data;
4408 DEBUGFUNC();
4409
4410 if (hw->phy_init_script) {
4411 mdelay(20);
4412
4413 /* Save off the current value of register 0x2F5B to be
4414 * restored at the end of this routine. */
4415 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4416
4417 /* Disabled the PHY transmitter */
4418 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4419
4420 mdelay(20);
4421
4422 e1000_write_phy_reg(hw, 0x0000, 0x0140);
4423
4424 mdelay(5);
4425
4426 switch (hw->mac_type) {
4427 case e1000_82541:
4428 case e1000_82547:
4429 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4430
4431 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4432
4433 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4434
4435 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4436
4437 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4438
4439 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4440
4441 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4442
4443 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4444
4445 e1000_write_phy_reg(hw, 0x2010, 0x0008);
4446 break;
4447
4448 case e1000_82541_rev_2:
4449 case e1000_82547_rev_2:
4450 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4451 break;
4452 default:
4453 break;
4454 }
4455
4456 e1000_write_phy_reg(hw, 0x0000, 0x3300);
4457
4458 mdelay(20);
4459
4460 /* Now enable the transmitter */
4461 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4462
4463 if (hw->mac_type == e1000_82547) {
4464 uint16_t fused, fine, coarse;
4465
4466 /* Move to analog registers page */
4467 e1000_read_phy_reg(hw,
4468 IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4469
4470 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4471 e1000_read_phy_reg(hw,
4472 IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4473
4474 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4475 coarse = fused
4476 & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4477
4478 if (coarse >
4479 IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4480 coarse -=
4481 IGP01E1000_ANALOG_FUSE_COARSE_10;
4482 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4483 } else if (coarse
4484 == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4485 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4486
4487 fused = (fused
4488 & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4489 (fine
4490 & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4491 (coarse
4492 & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4493
4494 e1000_write_phy_reg(hw,
4495 IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4496 e1000_write_phy_reg(hw,
4497 IGP01E1000_ANALOG_FUSE_BYPASS,
4498 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4499 }
4500 }
4501 }
wdenk682011f2003-06-03 23:54:09 +00004502}
4503
4504/******************************************************************************
4505* Resets the PHY
4506*
4507* hw - Struct containing variables accessed by shared code
4508*
Roy Zangaa070782009-07-31 13:34:02 +08004509* Sets bit 15 of the MII Control register
wdenk682011f2003-06-03 23:54:09 +00004510******************************************************************************/
Roy Zangaa070782009-07-31 13:34:02 +08004511int32_t
wdenk682011f2003-06-03 23:54:09 +00004512e1000_phy_reset(struct e1000_hw *hw)
4513{
Roy Zangaa070782009-07-31 13:34:02 +08004514 int32_t ret_val;
wdenk682011f2003-06-03 23:54:09 +00004515 uint16_t phy_data;
4516
4517 DEBUGFUNC();
4518
Roy Zangaa070782009-07-31 13:34:02 +08004519 /* In the case of the phy reset being blocked, it's not an error, we
4520 * simply return success without performing the reset. */
4521 ret_val = e1000_check_phy_reset_block(hw);
4522 if (ret_val)
4523 return E1000_SUCCESS;
4524
4525 switch (hw->phy_type) {
4526 case e1000_phy_igp:
4527 case e1000_phy_igp_2:
4528 case e1000_phy_igp_3:
4529 case e1000_phy_ife:
4530 ret_val = e1000_phy_hw_reset(hw);
4531 if (ret_val)
4532 return ret_val;
4533 break;
4534 default:
4535 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4536 if (ret_val)
4537 return ret_val;
4538
4539 phy_data |= MII_CR_RESET;
4540 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4541 if (ret_val)
4542 return ret_val;
4543
4544 udelay(1);
4545 break;
wdenk682011f2003-06-03 23:54:09 +00004546 }
Roy Zangaa070782009-07-31 13:34:02 +08004547
4548 if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4549 e1000_phy_init_script(hw);
4550
4551 return E1000_SUCCESS;
wdenk682011f2003-06-03 23:54:09 +00004552}
4553
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07004554static int e1000_set_phy_type (struct e1000_hw *hw)
Andre Schwarzac3315c2008-03-06 16:45:44 +01004555{
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07004556 DEBUGFUNC ();
Andre Schwarzac3315c2008-03-06 16:45:44 +01004557
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07004558 if (hw->mac_type == e1000_undefined)
4559 return -E1000_ERR_PHY_TYPE;
Andre Schwarzac3315c2008-03-06 16:45:44 +01004560
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07004561 switch (hw->phy_id) {
4562 case M88E1000_E_PHY_ID:
4563 case M88E1000_I_PHY_ID:
4564 case M88E1011_I_PHY_ID:
Roy Zangaa070782009-07-31 13:34:02 +08004565 case M88E1111_I_PHY_ID:
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07004566 hw->phy_type = e1000_phy_m88;
4567 break;
4568 case IGP01E1000_I_PHY_ID:
4569 if (hw->mac_type == e1000_82541 ||
Roy Zangaa070782009-07-31 13:34:02 +08004570 hw->mac_type == e1000_82541_rev_2 ||
4571 hw->mac_type == e1000_82547 ||
4572 hw->mac_type == e1000_82547_rev_2) {
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07004573 hw->phy_type = e1000_phy_igp;
Roy Zangaa070782009-07-31 13:34:02 +08004574 hw->phy_type = e1000_phy_igp;
4575 break;
4576 }
4577 case IGP03E1000_E_PHY_ID:
4578 hw->phy_type = e1000_phy_igp_3;
4579 break;
4580 case IFE_E_PHY_ID:
4581 case IFE_PLUS_E_PHY_ID:
4582 case IFE_C_E_PHY_ID:
4583 hw->phy_type = e1000_phy_ife;
4584 break;
4585 case GG82563_E_PHY_ID:
4586 if (hw->mac_type == e1000_80003es2lan) {
4587 hw->phy_type = e1000_phy_gg82563;
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07004588 break;
4589 }
Roy Zang2c2668f2011-01-21 11:29:38 +08004590 case BME1000_E_PHY_ID:
4591 hw->phy_type = e1000_phy_bm;
4592 break;
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07004593 /* Fall Through */
4594 default:
4595 /* Should never have loaded on this device */
4596 hw->phy_type = e1000_phy_undefined;
4597 return -E1000_ERR_PHY_TYPE;
4598 }
Andre Schwarzac3315c2008-03-06 16:45:44 +01004599
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07004600 return E1000_SUCCESS;
Andre Schwarzac3315c2008-03-06 16:45:44 +01004601}
4602
wdenk682011f2003-06-03 23:54:09 +00004603/******************************************************************************
4604* Probes the expected PHY address for known PHY IDs
4605*
4606* hw - Struct containing variables accessed by shared code
4607******************************************************************************/
Roy Zangaa070782009-07-31 13:34:02 +08004608static int32_t
wdenk682011f2003-06-03 23:54:09 +00004609e1000_detect_gig_phy(struct e1000_hw *hw)
4610{
Roy Zangaa070782009-07-31 13:34:02 +08004611 int32_t phy_init_status, ret_val;
wdenk682011f2003-06-03 23:54:09 +00004612 uint16_t phy_id_high, phy_id_low;
Roy Zangaa070782009-07-31 13:34:02 +08004613 boolean_t match = FALSE;
wdenk682011f2003-06-03 23:54:09 +00004614
4615 DEBUGFUNC();
4616
Roy Zangaa070782009-07-31 13:34:02 +08004617 /* The 82571 firmware may still be configuring the PHY. In this
4618 * case, we cannot access the PHY until the configuration is done. So
4619 * we explicitly set the PHY values. */
4620 if (hw->mac_type == e1000_82571 ||
4621 hw->mac_type == e1000_82572) {
4622 hw->phy_id = IGP01E1000_I_PHY_ID;
4623 hw->phy_type = e1000_phy_igp_2;
4624 return E1000_SUCCESS;
4625 }
4626
4627 /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4628 * work- around that forces PHY page 0 to be set or the reads fail.
4629 * The rest of the code in this routine uses e1000_read_phy_reg to
4630 * read the PHY ID. So for ESB-2 we need to have this set so our
4631 * reads won't fail. If the attached PHY is not a e1000_phy_gg82563,
4632 * the routines below will figure this out as well. */
4633 if (hw->mac_type == e1000_80003es2lan)
4634 hw->phy_type = e1000_phy_gg82563;
4635
wdenk682011f2003-06-03 23:54:09 +00004636 /* Read the PHY ID Registers to identify which PHY is onboard. */
Roy Zangaa070782009-07-31 13:34:02 +08004637 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4638 if (ret_val)
4639 return ret_val;
4640
wdenk682011f2003-06-03 23:54:09 +00004641 hw->phy_id = (uint32_t) (phy_id_high << 16);
Roy Zangaa070782009-07-31 13:34:02 +08004642 udelay(20);
4643 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4644 if (ret_val)
4645 return ret_val;
4646
wdenk682011f2003-06-03 23:54:09 +00004647 hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
Roy Zangaa070782009-07-31 13:34:02 +08004648 hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
wdenk682011f2003-06-03 23:54:09 +00004649
4650 switch (hw->mac_type) {
4651 case e1000_82543:
4652 if (hw->phy_id == M88E1000_E_PHY_ID)
4653 match = TRUE;
4654 break;
4655 case e1000_82544:
4656 if (hw->phy_id == M88E1000_I_PHY_ID)
4657 match = TRUE;
4658 break;
4659 case e1000_82540:
4660 case e1000_82545:
Roy Zangaa070782009-07-31 13:34:02 +08004661 case e1000_82545_rev_3:
wdenk682011f2003-06-03 23:54:09 +00004662 case e1000_82546:
Roy Zangaa070782009-07-31 13:34:02 +08004663 case e1000_82546_rev_3:
wdenk682011f2003-06-03 23:54:09 +00004664 if (hw->phy_id == M88E1011_I_PHY_ID)
4665 match = TRUE;
4666 break;
Roy Zangaa070782009-07-31 13:34:02 +08004667 case e1000_82541:
Andre Schwarzac3315c2008-03-06 16:45:44 +01004668 case e1000_82541_rev_2:
Roy Zangaa070782009-07-31 13:34:02 +08004669 case e1000_82547:
4670 case e1000_82547_rev_2:
Andre Schwarzac3315c2008-03-06 16:45:44 +01004671 if(hw->phy_id == IGP01E1000_I_PHY_ID)
4672 match = TRUE;
4673
4674 break;
Roy Zangaa070782009-07-31 13:34:02 +08004675 case e1000_82573:
4676 if (hw->phy_id == M88E1111_I_PHY_ID)
4677 match = TRUE;
4678 break;
Roy Zang2c2668f2011-01-21 11:29:38 +08004679 case e1000_82574:
4680 if (hw->phy_id == BME1000_E_PHY_ID)
4681 match = TRUE;
4682 break;
Roy Zangaa070782009-07-31 13:34:02 +08004683 case e1000_80003es2lan:
4684 if (hw->phy_id == GG82563_E_PHY_ID)
4685 match = TRUE;
4686 break;
4687 case e1000_ich8lan:
4688 if (hw->phy_id == IGP03E1000_E_PHY_ID)
4689 match = TRUE;
4690 if (hw->phy_id == IFE_E_PHY_ID)
4691 match = TRUE;
4692 if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4693 match = TRUE;
4694 if (hw->phy_id == IFE_C_E_PHY_ID)
4695 match = TRUE;
4696 break;
wdenk682011f2003-06-03 23:54:09 +00004697 default:
4698 DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4699 return -E1000_ERR_CONFIG;
4700 }
Andre Schwarzac3315c2008-03-06 16:45:44 +01004701
4702 phy_init_status = e1000_set_phy_type(hw);
4703
4704 if ((match) && (phy_init_status == E1000_SUCCESS)) {
wdenk682011f2003-06-03 23:54:09 +00004705 DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4706 return 0;
4707 }
4708 DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4709 return -E1000_ERR_PHY;
4710}
4711
Roy Zangaa070782009-07-31 13:34:02 +08004712/*****************************************************************************
4713 * Set media type and TBI compatibility.
4714 *
4715 * hw - Struct containing variables accessed by shared code
4716 * **************************************************************************/
4717void
4718e1000_set_media_type(struct e1000_hw *hw)
4719{
4720 uint32_t status;
4721
4722 DEBUGFUNC();
4723
4724 if (hw->mac_type != e1000_82543) {
4725 /* tbi_compatibility is only valid on 82543 */
4726 hw->tbi_compatibility_en = FALSE;
4727 }
4728
4729 switch (hw->device_id) {
4730 case E1000_DEV_ID_82545GM_SERDES:
4731 case E1000_DEV_ID_82546GB_SERDES:
4732 case E1000_DEV_ID_82571EB_SERDES:
4733 case E1000_DEV_ID_82571EB_SERDES_DUAL:
4734 case E1000_DEV_ID_82571EB_SERDES_QUAD:
4735 case E1000_DEV_ID_82572EI_SERDES:
4736 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4737 hw->media_type = e1000_media_type_internal_serdes;
4738 break;
4739 default:
4740 switch (hw->mac_type) {
4741 case e1000_82542_rev2_0:
4742 case e1000_82542_rev2_1:
4743 hw->media_type = e1000_media_type_fiber;
4744 break;
4745 case e1000_ich8lan:
4746 case e1000_82573:
Roy Zang2c2668f2011-01-21 11:29:38 +08004747 case e1000_82574:
Roy Zangaa070782009-07-31 13:34:02 +08004748 /* The STATUS_TBIMODE bit is reserved or reused
4749 * for the this device.
4750 */
4751 hw->media_type = e1000_media_type_copper;
4752 break;
4753 default:
4754 status = E1000_READ_REG(hw, STATUS);
4755 if (status & E1000_STATUS_TBIMODE) {
4756 hw->media_type = e1000_media_type_fiber;
4757 /* tbi_compatibility not valid on fiber */
4758 hw->tbi_compatibility_en = FALSE;
4759 } else {
4760 hw->media_type = e1000_media_type_copper;
4761 }
4762 break;
4763 }
4764 }
4765}
4766
wdenk682011f2003-06-03 23:54:09 +00004767/**
4768 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4769 *
4770 * e1000_sw_init initializes the Adapter private data structure.
4771 * Fields are initialized based on PCI device information and
4772 * OS network device settings (MTU size).
4773 **/
4774
4775static int
Kyle Moffettd60626f82011-10-18 11:05:26 +00004776e1000_sw_init(struct eth_device *nic)
wdenk682011f2003-06-03 23:54:09 +00004777{
4778 struct e1000_hw *hw = (typeof(hw)) nic->priv;
4779 int result;
4780
4781 /* PCI config space info */
4782 pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4783 pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4784 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4785 &hw->subsystem_vendor_id);
4786 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4787
4788 pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4789 pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4790
4791 /* identify the MAC */
4792 result = e1000_set_mac_type(hw);
4793 if (result) {
Kyle Moffettd60626f82011-10-18 11:05:26 +00004794 E1000_ERR(hw->nic, "Unknown MAC Type\n");
wdenk682011f2003-06-03 23:54:09 +00004795 return result;
4796 }
4797
Roy Zangaa070782009-07-31 13:34:02 +08004798 switch (hw->mac_type) {
4799 default:
4800 break;
4801 case e1000_82541:
4802 case e1000_82547:
4803 case e1000_82541_rev_2:
4804 case e1000_82547_rev_2:
4805 hw->phy_init_script = 1;
4806 break;
4807 }
4808
wdenk682011f2003-06-03 23:54:09 +00004809 /* flow control settings */
4810 hw->fc_high_water = E1000_FC_HIGH_THRESH;
4811 hw->fc_low_water = E1000_FC_LOW_THRESH;
4812 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4813 hw->fc_send_xon = 1;
4814
4815 /* Media type - copper or fiber */
Roy Zangaa070782009-07-31 13:34:02 +08004816 e1000_set_media_type(hw);
wdenk682011f2003-06-03 23:54:09 +00004817
4818 if (hw->mac_type >= e1000_82543) {
4819 uint32_t status = E1000_READ_REG(hw, STATUS);
4820
4821 if (status & E1000_STATUS_TBIMODE) {
4822 DEBUGOUT("fiber interface\n");
4823 hw->media_type = e1000_media_type_fiber;
4824 } else {
4825 DEBUGOUT("copper interface\n");
4826 hw->media_type = e1000_media_type_copper;
4827 }
4828 } else {
4829 hw->media_type = e1000_media_type_fiber;
4830 }
4831
Roy Zangaa070782009-07-31 13:34:02 +08004832 hw->tbi_compatibility_en = TRUE;
4833 hw->wait_autoneg_complete = TRUE;
wdenk682011f2003-06-03 23:54:09 +00004834 if (hw->mac_type < e1000_82543)
4835 hw->report_tx_early = 0;
4836 else
4837 hw->report_tx_early = 1;
4838
wdenk682011f2003-06-03 23:54:09 +00004839 return E1000_SUCCESS;
4840}
4841
4842void
4843fill_rx(struct e1000_hw *hw)
4844{
4845 struct e1000_rx_desc *rd;
4846
4847 rx_last = rx_tail;
4848 rd = rx_base + rx_tail;
4849 rx_tail = (rx_tail + 1) % 8;
4850 memset(rd, 0, 16);
4851 rd->buffer_addr = cpu_to_le64((u32) & packet);
4852 E1000_WRITE_REG(hw, RDT, rx_tail);
4853}
4854
4855/**
4856 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4857 * @adapter: board private structure
4858 *
4859 * Configure the Tx unit of the MAC after a reset.
4860 **/
4861
4862static void
4863e1000_configure_tx(struct e1000_hw *hw)
4864{
4865 unsigned long ptr;
4866 unsigned long tctl;
Roy Zangaa070782009-07-31 13:34:02 +08004867 unsigned long tipg, tarc;
4868 uint32_t ipgr1, ipgr2;
wdenk682011f2003-06-03 23:54:09 +00004869
4870 ptr = (u32) tx_pool;
4871 if (ptr & 0xf)
4872 ptr = (ptr + 0x10) & (~0xf);
4873
4874 tx_base = (typeof(tx_base)) ptr;
4875
4876 E1000_WRITE_REG(hw, TDBAL, (u32) tx_base);
4877 E1000_WRITE_REG(hw, TDBAH, 0);
4878
4879 E1000_WRITE_REG(hw, TDLEN, 128);
4880
4881 /* Setup the HW Tx Head and Tail descriptor pointers */
4882 E1000_WRITE_REG(hw, TDH, 0);
4883 E1000_WRITE_REG(hw, TDT, 0);
4884 tx_tail = 0;
4885
4886 /* Set the default values for the Tx Inter Packet Gap timer */
Roy Zangaa070782009-07-31 13:34:02 +08004887 if (hw->mac_type <= e1000_82547_rev_2 &&
4888 (hw->media_type == e1000_media_type_fiber ||
4889 hw->media_type == e1000_media_type_internal_serdes))
4890 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4891 else
4892 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
4893
4894 /* Set the default values for the Tx Inter Packet Gap timer */
wdenk682011f2003-06-03 23:54:09 +00004895 switch (hw->mac_type) {
4896 case e1000_82542_rev2_0:
4897 case e1000_82542_rev2_1:
4898 tipg = DEFAULT_82542_TIPG_IPGT;
Roy Zangaa070782009-07-31 13:34:02 +08004899 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
4900 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
4901 break;
4902 case e1000_80003es2lan:
4903 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4904 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
wdenk682011f2003-06-03 23:54:09 +00004905 break;
4906 default:
Roy Zangaa070782009-07-31 13:34:02 +08004907 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4908 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
4909 break;
wdenk682011f2003-06-03 23:54:09 +00004910 }
Roy Zangaa070782009-07-31 13:34:02 +08004911 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
4912 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
wdenk682011f2003-06-03 23:54:09 +00004913 E1000_WRITE_REG(hw, TIPG, tipg);
wdenk682011f2003-06-03 23:54:09 +00004914 /* Program the Transmit Control Register */
4915 tctl = E1000_READ_REG(hw, TCTL);
4916 tctl &= ~E1000_TCTL_CT;
4917 tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
4918 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
Roy Zangaa070782009-07-31 13:34:02 +08004919
4920 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
4921 tarc = E1000_READ_REG(hw, TARC0);
4922 /* set the speed mode bit, we'll clear it if we're not at
4923 * gigabit link later */
4924 /* git bit can be set to 1*/
4925 } else if (hw->mac_type == e1000_80003es2lan) {
4926 tarc = E1000_READ_REG(hw, TARC0);
4927 tarc |= 1;
4928 E1000_WRITE_REG(hw, TARC0, tarc);
4929 tarc = E1000_READ_REG(hw, TARC1);
4930 tarc |= 1;
4931 E1000_WRITE_REG(hw, TARC1, tarc);
4932 }
4933
wdenk682011f2003-06-03 23:54:09 +00004934
4935 e1000_config_collision_dist(hw);
Roy Zangaa070782009-07-31 13:34:02 +08004936 /* Setup Transmit Descriptor Settings for eop descriptor */
4937 hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
wdenk682011f2003-06-03 23:54:09 +00004938
Roy Zangaa070782009-07-31 13:34:02 +08004939 /* Need to set up RS bit */
4940 if (hw->mac_type < e1000_82543)
4941 hw->txd_cmd |= E1000_TXD_CMD_RPS;
wdenk682011f2003-06-03 23:54:09 +00004942 else
Roy Zangaa070782009-07-31 13:34:02 +08004943 hw->txd_cmd |= E1000_TXD_CMD_RS;
4944 E1000_WRITE_REG(hw, TCTL, tctl);
wdenk682011f2003-06-03 23:54:09 +00004945}
4946
4947/**
4948 * e1000_setup_rctl - configure the receive control register
4949 * @adapter: Board private structure
4950 **/
4951static void
4952e1000_setup_rctl(struct e1000_hw *hw)
4953{
4954 uint32_t rctl;
4955
4956 rctl = E1000_READ_REG(hw, RCTL);
4957
4958 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4959
Roy Zangaa070782009-07-31 13:34:02 +08004960 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
4961 | E1000_RCTL_RDMTS_HALF; /* |
4962 (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
wdenk682011f2003-06-03 23:54:09 +00004963
4964 if (hw->tbi_compatibility_on == 1)
4965 rctl |= E1000_RCTL_SBP;
4966 else
4967 rctl &= ~E1000_RCTL_SBP;
4968
4969 rctl &= ~(E1000_RCTL_SZ_4096);
wdenk682011f2003-06-03 23:54:09 +00004970 rctl |= E1000_RCTL_SZ_2048;
4971 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
wdenk682011f2003-06-03 23:54:09 +00004972 E1000_WRITE_REG(hw, RCTL, rctl);
4973}
4974
4975/**
4976 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
4977 * @adapter: board private structure
4978 *
4979 * Configure the Rx unit of the MAC after a reset.
4980 **/
4981static void
4982e1000_configure_rx(struct e1000_hw *hw)
4983{
4984 unsigned long ptr;
Roy Zangaa070782009-07-31 13:34:02 +08004985 unsigned long rctl, ctrl_ext;
wdenk682011f2003-06-03 23:54:09 +00004986 rx_tail = 0;
4987 /* make sure receives are disabled while setting up the descriptors */
4988 rctl = E1000_READ_REG(hw, RCTL);
4989 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
wdenk682011f2003-06-03 23:54:09 +00004990 if (hw->mac_type >= e1000_82540) {
wdenk682011f2003-06-03 23:54:09 +00004991 /* Set the interrupt throttling rate. Value is calculated
4992 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07004993#define MAX_INTS_PER_SEC 8000
4994#define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
wdenk682011f2003-06-03 23:54:09 +00004995 E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
4996 }
4997
Roy Zangaa070782009-07-31 13:34:02 +08004998 if (hw->mac_type >= e1000_82571) {
4999 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
5000 /* Reset delay timers after every interrupt */
5001 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
5002 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
5003 E1000_WRITE_FLUSH(hw);
5004 }
wdenk682011f2003-06-03 23:54:09 +00005005 /* Setup the Base and Length of the Rx Descriptor Ring */
5006 ptr = (u32) rx_pool;
5007 if (ptr & 0xf)
5008 ptr = (ptr + 0x10) & (~0xf);
5009 rx_base = (typeof(rx_base)) ptr;
5010 E1000_WRITE_REG(hw, RDBAL, (u32) rx_base);
5011 E1000_WRITE_REG(hw, RDBAH, 0);
5012
5013 E1000_WRITE_REG(hw, RDLEN, 128);
5014
5015 /* Setup the HW Rx Head and Tail Descriptor Pointers */
5016 E1000_WRITE_REG(hw, RDH, 0);
5017 E1000_WRITE_REG(hw, RDT, 0);
wdenk682011f2003-06-03 23:54:09 +00005018 /* Enable Receives */
5019
5020 E1000_WRITE_REG(hw, RCTL, rctl);
5021 fill_rx(hw);
5022}
5023
5024/**************************************************************************
5025POLL - Wait for a frame
5026***************************************************************************/
5027static int
5028e1000_poll(struct eth_device *nic)
5029{
5030 struct e1000_hw *hw = nic->priv;
5031 struct e1000_rx_desc *rd;
5032 /* return true if there's an ethernet packet ready to read */
5033 rd = rx_base + rx_last;
5034 if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
5035 return 0;
5036 /*DEBUGOUT("recv: packet len=%d \n", rd->length); */
Wolfgang Denk77ddac92005-10-13 16:45:02 +02005037 NetReceive((uchar *)packet, le32_to_cpu(rd->length));
wdenk682011f2003-06-03 23:54:09 +00005038 fill_rx(hw);
5039 return 1;
5040}
5041
5042/**************************************************************************
5043TRANSMIT - Transmit a frame
5044***************************************************************************/
5045static int
5046e1000_transmit(struct eth_device *nic, volatile void *packet, int length)
5047{
Wolfgang Denk8aa858c2010-11-22 09:48:45 +01005048 void * nv_packet = (void *)packet;
wdenk682011f2003-06-03 23:54:09 +00005049 struct e1000_hw *hw = nic->priv;
5050 struct e1000_tx_desc *txp;
5051 int i = 0;
5052
5053 txp = tx_base + tx_tail;
5054 tx_tail = (tx_tail + 1) % 8;
5055
Wolfgang Denk8aa858c2010-11-22 09:48:45 +01005056 txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
Roy Zangaa070782009-07-31 13:34:02 +08005057 txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
wdenk682011f2003-06-03 23:54:09 +00005058 txp->upper.data = 0;
5059 E1000_WRITE_REG(hw, TDT, tx_tail);
5060
Roy Zangaa070782009-07-31 13:34:02 +08005061 E1000_WRITE_FLUSH(hw);
wdenk682011f2003-06-03 23:54:09 +00005062 while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) {
5063 if (i++ > TOUT_LOOP) {
5064 DEBUGOUT("e1000: tx timeout\n");
5065 return 0;
5066 }
5067 udelay(10); /* give the nic a chance to write to the register */
5068 }
5069 return 1;
5070}
5071
5072/*reset function*/
5073static inline int
5074e1000_reset(struct eth_device *nic)
5075{
5076 struct e1000_hw *hw = nic->priv;
5077
5078 e1000_reset_hw(hw);
5079 if (hw->mac_type >= e1000_82544) {
5080 E1000_WRITE_REG(hw, WUC, 0);
5081 }
5082 return e1000_init_hw(nic);
5083}
5084
5085/**************************************************************************
5086DISABLE - Turn off ethernet interface
5087***************************************************************************/
5088static void
5089e1000_disable(struct eth_device *nic)
5090{
5091 struct e1000_hw *hw = nic->priv;
5092
5093 /* Turn off the ethernet interface */
5094 E1000_WRITE_REG(hw, RCTL, 0);
5095 E1000_WRITE_REG(hw, TCTL, 0);
5096
5097 /* Clear the transmit ring */
5098 E1000_WRITE_REG(hw, TDH, 0);
5099 E1000_WRITE_REG(hw, TDT, 0);
5100
5101 /* Clear the receive ring */
5102 E1000_WRITE_REG(hw, RDH, 0);
5103 E1000_WRITE_REG(hw, RDT, 0);
5104
5105 /* put the card in its initial state */
5106#if 0
5107 E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
5108#endif
5109 mdelay(10);
5110
5111}
5112
5113/**************************************************************************
5114INIT - set up ethernet interface(s)
5115***************************************************************************/
5116static int
5117e1000_init(struct eth_device *nic, bd_t * bis)
5118{
5119 struct e1000_hw *hw = nic->priv;
5120 int ret_val = 0;
5121
5122 ret_val = e1000_reset(nic);
5123 if (ret_val < 0) {
5124 if ((ret_val == -E1000_ERR_NOLINK) ||
5125 (ret_val == -E1000_ERR_TIMEOUT)) {
Kyle Moffettd60626f82011-10-18 11:05:26 +00005126 E1000_ERR(hw->nic, "Valid Link not detected\n");
wdenk682011f2003-06-03 23:54:09 +00005127 } else {
Kyle Moffettd60626f82011-10-18 11:05:26 +00005128 E1000_ERR(hw->nic, "Hardware Initialization Failed\n");
wdenk682011f2003-06-03 23:54:09 +00005129 }
5130 return 0;
5131 }
5132 e1000_configure_tx(hw);
5133 e1000_setup_rctl(hw);
5134 e1000_configure_rx(hw);
5135 return 1;
5136}
5137
Roy Zangaa070782009-07-31 13:34:02 +08005138/******************************************************************************
5139 * Gets the current PCI bus type of hardware
5140 *
5141 * hw - Struct containing variables accessed by shared code
5142 *****************************************************************************/
5143void e1000_get_bus_type(struct e1000_hw *hw)
5144{
5145 uint32_t status;
5146
5147 switch (hw->mac_type) {
5148 case e1000_82542_rev2_0:
5149 case e1000_82542_rev2_1:
5150 hw->bus_type = e1000_bus_type_pci;
5151 break;
5152 case e1000_82571:
5153 case e1000_82572:
5154 case e1000_82573:
Roy Zang2c2668f2011-01-21 11:29:38 +08005155 case e1000_82574:
Roy Zangaa070782009-07-31 13:34:02 +08005156 case e1000_80003es2lan:
5157 hw->bus_type = e1000_bus_type_pci_express;
5158 break;
5159 case e1000_ich8lan:
5160 hw->bus_type = e1000_bus_type_pci_express;
5161 break;
5162 default:
5163 status = E1000_READ_REG(hw, STATUS);
5164 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5165 e1000_bus_type_pcix : e1000_bus_type_pci;
5166 break;
5167 }
5168}
5169
wdenk682011f2003-06-03 23:54:09 +00005170/**************************************************************************
5171PROBE - Look for an adapter, this routine's visible to the outside
5172You should omit the last argument struct pci_device * for a non-PCI NIC
5173***************************************************************************/
5174int
5175e1000_initialize(bd_t * bis)
5176{
Kyle Moffettd60626f82011-10-18 11:05:26 +00005177 unsigned int i;
wdenk682011f2003-06-03 23:54:09 +00005178 pci_dev_t devno;
wdenk682011f2003-06-03 23:54:09 +00005179
Timur Tabif81ecb52009-08-17 15:55:38 -05005180 DEBUGFUNC();
5181
Kyle Moffettd60626f82011-10-18 11:05:26 +00005182 /* Find and probe all the matching PCI devices */
5183 for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
5184 u32 val;
wdenk682011f2003-06-03 23:54:09 +00005185
Kyle Moffettd60626f82011-10-18 11:05:26 +00005186 /*
5187 * These will never get freed due to errors, this allows us to
5188 * perform SPI EEPROM programming from U-boot, for example.
5189 */
5190 struct eth_device *nic = malloc(sizeof(*nic));
5191 struct e1000_hw *hw = malloc(sizeof(*hw));
5192 if (!nic || !hw) {
5193 printf("e1000#%u: Out of Memory!\n", i);
Kumar Gala4b29bdb2010-11-12 04:13:06 -06005194 free(nic);
Kyle Moffettd60626f82011-10-18 11:05:26 +00005195 free(hw);
5196 continue;
Kumar Gala4b29bdb2010-11-12 04:13:06 -06005197 }
5198
Kyle Moffettd60626f82011-10-18 11:05:26 +00005199 /* Make sure all of the fields are initially zeroed */
Matthew McClintockf7ac99f2010-11-15 18:02:53 -06005200 memset(nic, 0, sizeof(*nic));
Kumar Gala4b29bdb2010-11-12 04:13:06 -06005201 memset(hw, 0, sizeof(*hw));
5202
Kyle Moffettd60626f82011-10-18 11:05:26 +00005203 /* Assign the passed-in values */
5204 hw->cardnum = i;
wdenk682011f2003-06-03 23:54:09 +00005205 hw->pdev = devno;
Kyle Moffettd60626f82011-10-18 11:05:26 +00005206 hw->nic = nic;
wdenk682011f2003-06-03 23:54:09 +00005207 nic->priv = hw;
wdenk682011f2003-06-03 23:54:09 +00005208
Kyle Moffettd60626f82011-10-18 11:05:26 +00005209 /* Generate a card name */
5210 sprintf(nic->name, "e1000#%u", hw->cardnum);
5211
5212 /* Print a debug message with the IO base address */
5213 pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
5214 E1000_DBG(nic, "iobase 0x%08x\n", val & 0xfffffff0);
5215
5216 /* Try to enable I/O accesses and bus-mastering */
5217 val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
5218 pci_write_config_dword(devno, PCI_COMMAND, val);
5219
5220 /* Make sure it worked */
5221 pci_read_config_dword(devno, PCI_COMMAND, &val);
5222 if (!(val & PCI_COMMAND_MEMORY)) {
5223 E1000_ERR(nic, "Can't enable I/O memory\n");
5224 continue;
5225 }
5226 if (!(val & PCI_COMMAND_MASTER)) {
5227 E1000_ERR(nic, "Can't enable bus-mastering\n");
5228 continue;
5229 }
wdenk682011f2003-06-03 23:54:09 +00005230
5231 /* Are these variables needed? */
wdenk682011f2003-06-03 23:54:09 +00005232 hw->fc = e1000_fc_default;
5233 hw->original_fc = e1000_fc_default;
wdenk682011f2003-06-03 23:54:09 +00005234 hw->autoneg_failed = 0;
Roy Zangaa070782009-07-31 13:34:02 +08005235 hw->autoneg = 1;
wdenk682011f2003-06-03 23:54:09 +00005236 hw->get_link_status = TRUE;
Kyle Moffettd60626f82011-10-18 11:05:26 +00005237 hw->hw_addr = pci_map_bar(devno, PCI_BASE_ADDRESS_0,
5238 PCI_REGION_MEM);
wdenk682011f2003-06-03 23:54:09 +00005239 hw->mac_type = e1000_undefined;
5240
5241 /* MAC and Phy settings */
Kyle Moffettd60626f82011-10-18 11:05:26 +00005242 if (e1000_sw_init(nic) < 0) {
5243 E1000_ERR(nic, "Software init failed\n");
5244 continue;
wdenk682011f2003-06-03 23:54:09 +00005245 }
Roy Zangaa070782009-07-31 13:34:02 +08005246 if (e1000_check_phy_reset_block(hw))
Kyle Moffettd60626f82011-10-18 11:05:26 +00005247 E1000_ERR(nic, "PHY Reset is blocked!\n");
5248
5249 /* Basic init was OK, reset the hardware */
Roy Zangaa070782009-07-31 13:34:02 +08005250 e1000_reset_hw(hw);
Kyle Moffettd60626f82011-10-18 11:05:26 +00005251
5252 /* Validate the EEPROM and get chipset information */
Andre Schwarzac3315c2008-03-06 16:45:44 +01005253#if !(defined(CONFIG_AP1000) || defined(CONFIG_MVBC_1G))
Roy Zangaa070782009-07-31 13:34:02 +08005254 if (e1000_init_eeprom_params(hw)) {
Kyle Moffettd60626f82011-10-18 11:05:26 +00005255 E1000_ERR(nic, "EEPROM is invalid!\n");
5256 continue;
Roy Zangaa070782009-07-31 13:34:02 +08005257 }
Kyle Moffett114d7fc2011-10-18 11:05:27 +00005258 if (e1000_validate_eeprom_checksum(hw))
Kyle Moffettd60626f82011-10-18 11:05:26 +00005259 continue;
Wolfgang Denk7521af12005-10-09 01:04:33 +02005260#endif
wdenk682011f2003-06-03 23:54:09 +00005261 e1000_read_mac_addr(nic);
Roy Zangaa070782009-07-31 13:34:02 +08005262 e1000_get_bus_type(hw);
wdenk682011f2003-06-03 23:54:09 +00005263
Kyle Moffettd60626f82011-10-18 11:05:26 +00005264 printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n ",
wdenk682011f2003-06-03 23:54:09 +00005265 nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
5266 nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
5267
Kyle Moffettd60626f82011-10-18 11:05:26 +00005268 /* Set up the function pointers and register the device */
wdenk682011f2003-06-03 23:54:09 +00005269 nic->init = e1000_init;
5270 nic->recv = e1000_poll;
5271 nic->send = e1000_transmit;
5272 nic->halt = e1000_disable;
wdenk682011f2003-06-03 23:54:09 +00005273 eth_register(nic);
wdenk682011f2003-06-03 23:54:09 +00005274 }
Kyle Moffettd60626f82011-10-18 11:05:26 +00005275
5276 return i;
wdenk682011f2003-06-03 23:54:09 +00005277}