blob: 5bbec48be2600b39748ac70a2d6ee304273241fc [file] [log] [blame]
Dirk Behme12201a12008-12-14 09:47:16 +01001/*
2 * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
3 * Rohit Choraria <rohitkc@ti.com>
4 *
5 * See file CREDITS for list of people who contributed to this
6 * project.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21 * MA 02111-1307 USA
22 */
23
24#include <common.h>
25#include <asm/io.h>
26#include <asm/errno.h>
27#include <asm/arch/mem.h>
28#include <asm/arch/omap_gpmc.h>
29#include <linux/mtd/nand_ecc.h>
30#include <nand.h>
31
32static uint8_t cs;
Dirk Behme12201a12008-12-14 09:47:16 +010033static struct nand_ecclayout hw_nand_oob = GPMC_NAND_HW_ECC_LAYOUT;
34
35/*
36 * omap_nand_hwcontrol - Set the address pointers corretly for the
37 * following address/data/command operation
38 */
39static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
40 uint32_t ctrl)
41{
42 register struct nand_chip *this = mtd->priv;
43
44 /*
45 * Point the IO_ADDR to DATA and ADDRESS registers instead
46 * of chip address
47 */
48 switch (ctrl) {
49 case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
Dirk Behme89411352009-08-08 09:30:22 +020050 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
Dirk Behme12201a12008-12-14 09:47:16 +010051 break;
52 case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
Dirk Behme89411352009-08-08 09:30:22 +020053 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
Dirk Behme12201a12008-12-14 09:47:16 +010054 break;
55 case NAND_CTRL_CHANGE | NAND_NCE:
Dirk Behme89411352009-08-08 09:30:22 +020056 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
Dirk Behme12201a12008-12-14 09:47:16 +010057 break;
58 }
59
60 if (cmd != NAND_CMD_NONE)
61 writeb(cmd, this->IO_ADDR_W);
62}
63
Simon Schwarz12c2f1e2011-09-14 15:30:16 -040064#ifdef CONFIG_SPL_BUILD
65/* Check wait pin as dev ready indicator */
66int omap_spl_dev_ready(struct mtd_info *mtd)
67{
68 return gpmc_cfg->status & (1 << 8);
69}
70#endif
71
Dirk Behme12201a12008-12-14 09:47:16 +010072/*
73 * omap_hwecc_init - Initialize the Hardware ECC for NAND flash in
74 * GPMC controller
75 * @mtd: MTD device structure
76 *
77 */
78static void omap_hwecc_init(struct nand_chip *chip)
79{
80 /*
81 * Init ECC Control Register
82 * Clear all ECC | Enable Reg1
83 */
Dirk Behme89411352009-08-08 09:30:22 +020084 writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
85 writel(ECCSIZE1 | ECCSIZE0 | ECCSIZE0SEL, &gpmc_cfg->ecc_size_config);
Dirk Behme12201a12008-12-14 09:47:16 +010086}
87
88/*
89 * gen_true_ecc - This function will generate true ECC value, which
90 * can be used when correcting data read from NAND flash memory core
91 *
92 * @ecc_buf: buffer to store ecc code
93 *
94 * @return: re-formatted ECC value
95 */
96static uint32_t gen_true_ecc(uint8_t *ecc_buf)
97{
98 return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
99 ((ecc_buf[2] & 0x0F) << 8);
100}
101
102/*
103 * omap_correct_data - Compares the ecc read from nand spare area with ECC
104 * registers values and corrects one bit error if it has occured
105 * Further details can be had from OMAP TRM and the following selected links:
106 * http://en.wikipedia.org/wiki/Hamming_code
107 * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
108 *
109 * @mtd: MTD device structure
110 * @dat: page data
111 * @read_ecc: ecc read from nand flash
112 * @calc_ecc: ecc read from ECC registers
113 *
114 * @return 0 if data is OK or corrected, else returns -1
115 */
116static int omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
117 uint8_t *read_ecc, uint8_t *calc_ecc)
118{
119 uint32_t orig_ecc, new_ecc, res, hm;
120 uint16_t parity_bits, byte;
121 uint8_t bit;
122
123 /* Regenerate the orginal ECC */
124 orig_ecc = gen_true_ecc(read_ecc);
125 new_ecc = gen_true_ecc(calc_ecc);
126 /* Get the XOR of real ecc */
127 res = orig_ecc ^ new_ecc;
128 if (res) {
129 /* Get the hamming width */
130 hm = hweight32(res);
131 /* Single bit errors can be corrected! */
132 if (hm == 12) {
133 /* Correctable data! */
134 parity_bits = res >> 16;
135 bit = (parity_bits & 0x7);
136 byte = (parity_bits >> 3) & 0x1FF;
137 /* Flip the bit to correct */
138 dat[byte] ^= (0x1 << bit);
139 } else if (hm == 1) {
140 printf("Error: Ecc is wrong\n");
141 /* ECC itself is corrupted */
142 return 2;
143 } else {
144 /*
145 * hm distance != parity pairs OR one, could mean 2 bit
146 * error OR potentially be on a blank page..
147 * orig_ecc: contains spare area data from nand flash.
148 * new_ecc: generated ecc while reading data area.
149 * Note: if the ecc = 0, all data bits from which it was
150 * generated are 0xFF.
151 * The 3 byte(24 bits) ecc is generated per 512byte
152 * chunk of a page. If orig_ecc(from spare area)
153 * is 0xFF && new_ecc(computed now from data area)=0x0,
154 * this means that data area is 0xFF and spare area is
155 * 0xFF. A sure sign of a erased page!
156 */
157 if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
158 return 0;
159 printf("Error: Bad compare! failed\n");
160 /* detected 2 bit error */
161 return -1;
162 }
163 }
164 return 0;
165}
166
167/*
168 * omap_calculate_ecc - Generate non-inverted ECC bytes.
169 *
170 * Using noninverted ECC can be considered ugly since writing a blank
171 * page ie. padding will clear the ECC bytes. This is no problem as
172 * long nobody is trying to write data on the seemingly unused page.
173 * Reading an erased page will produce an ECC mismatch between
174 * generated and read ECC bytes that has to be dealt with separately.
175 * E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
176 * is used, the result of read will be 0x0 while the ECC offsets of the
177 * spare area will be 0xFF which will result in an ECC mismatch.
178 * @mtd: MTD structure
179 * @dat: unused
180 * @ecc_code: ecc_code buffer
181 */
182static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
183 uint8_t *ecc_code)
184{
185 u_int32_t val;
186
187 /* Start Reading from HW ECC1_Result = 0x200 */
Dirk Behme89411352009-08-08 09:30:22 +0200188 val = readl(&gpmc_cfg->ecc1_result);
Dirk Behme12201a12008-12-14 09:47:16 +0100189
190 ecc_code[0] = val & 0xFF;
191 ecc_code[1] = (val >> 16) & 0xFF;
192 ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
193
194 /*
195 * Stop reading anymore ECC vals and clear old results
196 * enable will be called if more reads are required
197 */
Dirk Behme89411352009-08-08 09:30:22 +0200198 writel(0x000, &gpmc_cfg->ecc_config);
Dirk Behme12201a12008-12-14 09:47:16 +0100199
200 return 0;
201}
202
203/*
204 * omap_enable_ecc - This function enables the hardware ecc functionality
205 * @mtd: MTD device structure
206 * @mode: Read/Write mode
207 */
208static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
209{
210 struct nand_chip *chip = mtd->priv;
211 uint32_t val, dev_width = (chip->options & NAND_BUSWIDTH_16) >> 1;
212
213 switch (mode) {
214 case NAND_ECC_READ:
215 case NAND_ECC_WRITE:
216 /* Clear the ecc result registers, select ecc reg as 1 */
Dirk Behme89411352009-08-08 09:30:22 +0200217 writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
Dirk Behme12201a12008-12-14 09:47:16 +0100218
219 /*
220 * Size 0 = 0xFF, Size1 is 0xFF - both are 512 bytes
221 * tell all regs to generate size0 sized regs
222 * we just have a single ECC engine for all CS
223 */
224 writel(ECCSIZE1 | ECCSIZE0 | ECCSIZE0SEL,
Dirk Behme89411352009-08-08 09:30:22 +0200225 &gpmc_cfg->ecc_size_config);
Dirk Behme12201a12008-12-14 09:47:16 +0100226 val = (dev_width << 7) | (cs << 1) | (0x1);
Dirk Behme89411352009-08-08 09:30:22 +0200227 writel(val, &gpmc_cfg->ecc_config);
Dirk Behme12201a12008-12-14 09:47:16 +0100228 break;
229 default:
230 printf("Error: Unrecognized Mode[%d]!\n", mode);
231 break;
232 }
233}
234
Simon Schwarz12c2f1e2011-09-14 15:30:16 -0400235#ifndef CONFIG_SPL_BUILD
Dirk Behme12201a12008-12-14 09:47:16 +0100236/*
237 * omap_nand_switch_ecc - switch the ECC operation b/w h/w ecc and s/w ecc.
238 * The default is to come up on s/w ecc
239 *
240 * @hardware - 1 -switch to h/w ecc, 0 - s/w ecc
241 *
242 */
243void omap_nand_switch_ecc(int32_t hardware)
244{
245 struct nand_chip *nand;
246 struct mtd_info *mtd;
247
248 if (nand_curr_device < 0 ||
249 nand_curr_device >= CONFIG_SYS_MAX_NAND_DEVICE ||
250 !nand_info[nand_curr_device].name) {
251 printf("Error: Can't switch ecc, no devices available\n");
252 return;
253 }
254
255 mtd = &nand_info[nand_curr_device];
256 nand = mtd->priv;
257
258 nand->options |= NAND_OWN_BUFFERS;
259
260 /* Reset ecc interface */
261 nand->ecc.read_page = NULL;
262 nand->ecc.write_page = NULL;
263 nand->ecc.read_oob = NULL;
264 nand->ecc.write_oob = NULL;
265 nand->ecc.hwctl = NULL;
266 nand->ecc.correct = NULL;
267 nand->ecc.calculate = NULL;
268
269 /* Setup the ecc configurations again */
270 if (hardware) {
271 nand->ecc.mode = NAND_ECC_HW;
272 nand->ecc.layout = &hw_nand_oob;
273 nand->ecc.size = 512;
274 nand->ecc.bytes = 3;
275 nand->ecc.hwctl = omap_enable_hwecc;
276 nand->ecc.correct = omap_correct_data;
277 nand->ecc.calculate = omap_calculate_ecc;
278 omap_hwecc_init(nand);
279 printf("HW ECC selected\n");
280 } else {
281 nand->ecc.mode = NAND_ECC_SOFT;
282 /* Use mtd default settings */
283 nand->ecc.layout = NULL;
284 printf("SW ECC selected\n");
285 }
286
287 /* Update NAND handling after ECC mode switch */
288 nand_scan_tail(mtd);
289
290 nand->options &= ~NAND_OWN_BUFFERS;
291}
Simon Schwarz12c2f1e2011-09-14 15:30:16 -0400292#endif /* CONFIG_SPL_BUILD */
Dirk Behme12201a12008-12-14 09:47:16 +0100293
294/*
295 * Board-specific NAND initialization. The following members of the
296 * argument are board-specific:
297 * - IO_ADDR_R: address to read the 8 I/O lines of the flash device
298 * - IO_ADDR_W: address to write the 8 I/O lines of the flash device
299 * - cmd_ctrl: hardwarespecific function for accesing control-lines
300 * - waitfunc: hardwarespecific function for accesing device ready/busy line
301 * - ecc.hwctl: function to enable (reset) hardware ecc generator
302 * - ecc.mode: mode of ecc, see defines
303 * - chip_delay: chip dependent delay for transfering data from array to
304 * read regs (tR)
305 * - options: various chip options. They can partly be set to inform
306 * nand_scan about special functionality. See the defines for further
307 * explanation
308 */
309int board_nand_init(struct nand_chip *nand)
310{
311 int32_t gpmc_config = 0;
312 cs = 0;
313
314 /*
315 * xloader/Uboot's gpmc configuration would have configured GPMC for
316 * nand type of memory. The following logic scans and latches on to the
317 * first CS with NAND type memory.
318 * TBD: need to make this logic generic to handle multiple CS NAND
319 * devices.
320 */
321 while (cs < GPMC_MAX_CS) {
Dirk Behme12201a12008-12-14 09:47:16 +0100322 /* Check if NAND type is set */
Dirk Behme89411352009-08-08 09:30:22 +0200323 if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
Dirk Behme12201a12008-12-14 09:47:16 +0100324 /* Found it!! */
325 break;
326 }
327 cs++;
328 }
329 if (cs >= GPMC_MAX_CS) {
330 printf("NAND: Unable to find NAND settings in "
331 "GPMC Configuration - quitting\n");
332 return -ENODEV;
333 }
334
Dirk Behme89411352009-08-08 09:30:22 +0200335 gpmc_config = readl(&gpmc_cfg->config);
Dirk Behme12201a12008-12-14 09:47:16 +0100336 /* Disable Write protect */
337 gpmc_config |= 0x10;
Dirk Behme89411352009-08-08 09:30:22 +0200338 writel(gpmc_config, &gpmc_cfg->config);
Dirk Behme12201a12008-12-14 09:47:16 +0100339
Dirk Behme89411352009-08-08 09:30:22 +0200340 nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
341 nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
Dirk Behme12201a12008-12-14 09:47:16 +0100342
343 nand->cmd_ctrl = omap_nand_hwcontrol;
344 nand->options = NAND_NO_PADDING | NAND_CACHEPRG | NAND_NO_AUTOINCR;
345 /* If we are 16 bit dev, our gpmc config tells us that */
Dirk Behme89411352009-08-08 09:30:22 +0200346 if ((readl(&gpmc_cfg->cs[cs].config1) & 0x3000) == 0x1000)
Dirk Behme12201a12008-12-14 09:47:16 +0100347 nand->options |= NAND_BUSWIDTH_16;
348
349 nand->chip_delay = 100;
350 /* Default ECC mode */
Simon Schwarz12c2f1e2011-09-14 15:30:16 -0400351#ifndef CONFIG_SPL_BUILD
Dirk Behme12201a12008-12-14 09:47:16 +0100352 nand->ecc.mode = NAND_ECC_SOFT;
Simon Schwarz12c2f1e2011-09-14 15:30:16 -0400353#else
354 nand->ecc.mode = NAND_ECC_HW;
355 nand->ecc.layout = &hw_nand_oob;
356 nand->ecc.size = CONFIG_SYS_NAND_ECCSIZE;
357 nand->ecc.bytes = CONFIG_SYS_NAND_ECCBYTES;
358 nand->ecc.hwctl = omap_enable_hwecc;
359 nand->ecc.correct = omap_correct_data;
360 nand->ecc.calculate = omap_calculate_ecc;
361 omap_hwecc_init(nand);
362
363 if (nand->options & NAND_BUSWIDTH_16)
364 nand->read_buf = nand_read_buf16;
365 else
366 nand->read_buf = nand_read_buf;
367 nand->dev_ready = omap_spl_dev_ready;
368#endif
Dirk Behme12201a12008-12-14 09:47:16 +0100369
370 return 0;
371}