blob: 3c2a7e69e1841aa587b6fd6a2e7bf2d4f3f7650b [file] [log] [blame]
Kyungmin Park961df832008-11-19 16:25:44 +01001/*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
Wolfgang Denk1a459662013-07-08 09:37:19 +02004 * SPDX-License-Identifier: GPL-2.0+
Kyungmin Park961df832008-11-19 16:25:44 +01005 *
6 * Author: Artem Bityutskiy (Битюцкий Артём)
7 */
8
9/*
Heiko Schocherff94bc42014-06-24 10:10:04 +020010 * The UBI Eraseblock Association (EBA) sub-system.
Kyungmin Park961df832008-11-19 16:25:44 +010011 *
Heiko Schocherff94bc42014-06-24 10:10:04 +020012 * This sub-system is responsible for I/O to/from logical eraseblock.
Kyungmin Park961df832008-11-19 16:25:44 +010013 *
14 * Although in this implementation the EBA table is fully kept and managed in
15 * RAM, which assumes poor scalability, it might be (partially) maintained on
16 * flash in future implementations.
17 *
Heiko Schocherff94bc42014-06-24 10:10:04 +020018 * The EBA sub-system implements per-logical eraseblock locking. Before
19 * accessing a logical eraseblock it is locked for reading or writing. The
20 * per-logical eraseblock locking is implemented by means of the lock tree. The
21 * lock tree is an RB-tree which refers all the currently locked logical
22 * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
23 * They are indexed by (@vol_id, @lnum) pairs.
Kyungmin Park961df832008-11-19 16:25:44 +010024 *
25 * EBA also maintains the global sequence counter which is incremented each
26 * time a logical eraseblock is mapped to a physical eraseblock and it is
27 * stored in the volume identifier header. This means that each VID header has
28 * a unique sequence number. The sequence number is only increased an we assume
29 * 64 bits is enough to never overflow.
30 */
31
Heiko Schocherff94bc42014-06-24 10:10:04 +020032#define __UBOOT__
33#ifndef __UBOOT__
Kyungmin Park961df832008-11-19 16:25:44 +010034#include <linux/slab.h>
35#include <linux/crc32.h>
Heiko Schocherff94bc42014-06-24 10:10:04 +020036#else
37#include <ubi_uboot.h>
Kyungmin Park961df832008-11-19 16:25:44 +010038#endif
39
Heiko Schocherff94bc42014-06-24 10:10:04 +020040#include <linux/err.h>
Kyungmin Park961df832008-11-19 16:25:44 +010041#include "ubi.h"
42
43/* Number of physical eraseblocks reserved for atomic LEB change operation */
44#define EBA_RESERVED_PEBS 1
45
46/**
47 * next_sqnum - get next sequence number.
48 * @ubi: UBI device description object
49 *
50 * This function returns next sequence number to use, which is just the current
51 * global sequence counter value. It also increases the global sequence
52 * counter.
53 */
Heiko Schocherff94bc42014-06-24 10:10:04 +020054unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
Kyungmin Park961df832008-11-19 16:25:44 +010055{
56 unsigned long long sqnum;
57
58 spin_lock(&ubi->ltree_lock);
59 sqnum = ubi->global_sqnum++;
60 spin_unlock(&ubi->ltree_lock);
61
62 return sqnum;
63}
64
65/**
66 * ubi_get_compat - get compatibility flags of a volume.
67 * @ubi: UBI device description object
68 * @vol_id: volume ID
69 *
70 * This function returns compatibility flags for an internal volume. User
71 * volumes have no compatibility flags, so %0 is returned.
72 */
73static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
74{
75 if (vol_id == UBI_LAYOUT_VOLUME_ID)
76 return UBI_LAYOUT_VOLUME_COMPAT;
77 return 0;
78}
79
80/**
81 * ltree_lookup - look up the lock tree.
82 * @ubi: UBI device description object
83 * @vol_id: volume ID
84 * @lnum: logical eraseblock number
85 *
86 * This function returns a pointer to the corresponding &struct ubi_ltree_entry
87 * object if the logical eraseblock is locked and %NULL if it is not.
88 * @ubi->ltree_lock has to be locked.
89 */
90static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
91 int lnum)
92{
93 struct rb_node *p;
94
95 p = ubi->ltree.rb_node;
96 while (p) {
97 struct ubi_ltree_entry *le;
98
99 le = rb_entry(p, struct ubi_ltree_entry, rb);
100
101 if (vol_id < le->vol_id)
102 p = p->rb_left;
103 else if (vol_id > le->vol_id)
104 p = p->rb_right;
105 else {
106 if (lnum < le->lnum)
107 p = p->rb_left;
108 else if (lnum > le->lnum)
109 p = p->rb_right;
110 else
111 return le;
112 }
113 }
114
115 return NULL;
116}
117
118/**
119 * ltree_add_entry - add new entry to the lock tree.
120 * @ubi: UBI device description object
121 * @vol_id: volume ID
122 * @lnum: logical eraseblock number
123 *
124 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
125 * lock tree. If such entry is already there, its usage counter is increased.
126 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
127 * failed.
128 */
129static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
130 int vol_id, int lnum)
131{
132 struct ubi_ltree_entry *le, *le1, *le_free;
133
134 le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
135 if (!le)
136 return ERR_PTR(-ENOMEM);
137
138 le->users = 0;
139 init_rwsem(&le->mutex);
140 le->vol_id = vol_id;
141 le->lnum = lnum;
142
143 spin_lock(&ubi->ltree_lock);
144 le1 = ltree_lookup(ubi, vol_id, lnum);
145
146 if (le1) {
147 /*
148 * This logical eraseblock is already locked. The newly
149 * allocated lock entry is not needed.
150 */
151 le_free = le;
152 le = le1;
153 } else {
154 struct rb_node **p, *parent = NULL;
155
156 /*
157 * No lock entry, add the newly allocated one to the
158 * @ubi->ltree RB-tree.
159 */
160 le_free = NULL;
161
162 p = &ubi->ltree.rb_node;
163 while (*p) {
164 parent = *p;
165 le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
166
167 if (vol_id < le1->vol_id)
168 p = &(*p)->rb_left;
169 else if (vol_id > le1->vol_id)
170 p = &(*p)->rb_right;
171 else {
172 ubi_assert(lnum != le1->lnum);
173 if (lnum < le1->lnum)
174 p = &(*p)->rb_left;
175 else
176 p = &(*p)->rb_right;
177 }
178 }
179
180 rb_link_node(&le->rb, parent, p);
181 rb_insert_color(&le->rb, &ubi->ltree);
182 }
183 le->users += 1;
184 spin_unlock(&ubi->ltree_lock);
185
Heiko Schocherff94bc42014-06-24 10:10:04 +0200186 kfree(le_free);
Kyungmin Park961df832008-11-19 16:25:44 +0100187 return le;
188}
189
190/**
191 * leb_read_lock - lock logical eraseblock for reading.
192 * @ubi: UBI device description object
193 * @vol_id: volume ID
194 * @lnum: logical eraseblock number
195 *
196 * This function locks a logical eraseblock for reading. Returns zero in case
197 * of success and a negative error code in case of failure.
198 */
199static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
200{
201 struct ubi_ltree_entry *le;
202
203 le = ltree_add_entry(ubi, vol_id, lnum);
204 if (IS_ERR(le))
205 return PTR_ERR(le);
206 down_read(&le->mutex);
207 return 0;
208}
209
210/**
211 * leb_read_unlock - unlock logical eraseblock.
212 * @ubi: UBI device description object
213 * @vol_id: volume ID
214 * @lnum: logical eraseblock number
215 */
216static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
217{
Kyungmin Park961df832008-11-19 16:25:44 +0100218 struct ubi_ltree_entry *le;
219
220 spin_lock(&ubi->ltree_lock);
221 le = ltree_lookup(ubi, vol_id, lnum);
222 le->users -= 1;
223 ubi_assert(le->users >= 0);
Heiko Schocherff94bc42014-06-24 10:10:04 +0200224 up_read(&le->mutex);
Kyungmin Park961df832008-11-19 16:25:44 +0100225 if (le->users == 0) {
226 rb_erase(&le->rb, &ubi->ltree);
Heiko Schocherff94bc42014-06-24 10:10:04 +0200227 kfree(le);
Kyungmin Park961df832008-11-19 16:25:44 +0100228 }
229 spin_unlock(&ubi->ltree_lock);
Kyungmin Park961df832008-11-19 16:25:44 +0100230}
231
232/**
233 * leb_write_lock - lock logical eraseblock for writing.
234 * @ubi: UBI device description object
235 * @vol_id: volume ID
236 * @lnum: logical eraseblock number
237 *
238 * This function locks a logical eraseblock for writing. Returns zero in case
239 * of success and a negative error code in case of failure.
240 */
241static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
242{
243 struct ubi_ltree_entry *le;
244
245 le = ltree_add_entry(ubi, vol_id, lnum);
246 if (IS_ERR(le))
247 return PTR_ERR(le);
248 down_write(&le->mutex);
249 return 0;
250}
251
252/**
253 * leb_write_lock - lock logical eraseblock for writing.
254 * @ubi: UBI device description object
255 * @vol_id: volume ID
256 * @lnum: logical eraseblock number
257 *
258 * This function locks a logical eraseblock for writing if there is no
259 * contention and does nothing if there is contention. Returns %0 in case of
260 * success, %1 in case of contention, and and a negative error code in case of
261 * failure.
262 */
263static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
264{
Kyungmin Park961df832008-11-19 16:25:44 +0100265 struct ubi_ltree_entry *le;
266
267 le = ltree_add_entry(ubi, vol_id, lnum);
268 if (IS_ERR(le))
269 return PTR_ERR(le);
270 if (down_write_trylock(&le->mutex))
271 return 0;
272
273 /* Contention, cancel */
274 spin_lock(&ubi->ltree_lock);
275 le->users -= 1;
276 ubi_assert(le->users >= 0);
277 if (le->users == 0) {
278 rb_erase(&le->rb, &ubi->ltree);
Kyungmin Park961df832008-11-19 16:25:44 +0100279 kfree(le);
Heiko Schocherff94bc42014-06-24 10:10:04 +0200280 }
281 spin_unlock(&ubi->ltree_lock);
Kyungmin Park961df832008-11-19 16:25:44 +0100282
283 return 1;
284}
285
286/**
287 * leb_write_unlock - unlock logical eraseblock.
288 * @ubi: UBI device description object
289 * @vol_id: volume ID
290 * @lnum: logical eraseblock number
291 */
292static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
293{
Kyungmin Park961df832008-11-19 16:25:44 +0100294 struct ubi_ltree_entry *le;
295
296 spin_lock(&ubi->ltree_lock);
297 le = ltree_lookup(ubi, vol_id, lnum);
298 le->users -= 1;
299 ubi_assert(le->users >= 0);
Heiko Schocherff94bc42014-06-24 10:10:04 +0200300 up_write(&le->mutex);
Kyungmin Park961df832008-11-19 16:25:44 +0100301 if (le->users == 0) {
302 rb_erase(&le->rb, &ubi->ltree);
Kyungmin Park961df832008-11-19 16:25:44 +0100303 kfree(le);
Heiko Schocherff94bc42014-06-24 10:10:04 +0200304 }
305 spin_unlock(&ubi->ltree_lock);
Kyungmin Park961df832008-11-19 16:25:44 +0100306}
307
308/**
309 * ubi_eba_unmap_leb - un-map logical eraseblock.
310 * @ubi: UBI device description object
311 * @vol: volume description object
312 * @lnum: logical eraseblock number
313 *
314 * This function un-maps logical eraseblock @lnum and schedules corresponding
315 * physical eraseblock for erasure. Returns zero in case of success and a
316 * negative error code in case of failure.
317 */
318int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
319 int lnum)
320{
321 int err, pnum, vol_id = vol->vol_id;
322
323 if (ubi->ro_mode)
324 return -EROFS;
325
326 err = leb_write_lock(ubi, vol_id, lnum);
327 if (err)
328 return err;
329
330 pnum = vol->eba_tbl[lnum];
331 if (pnum < 0)
332 /* This logical eraseblock is already unmapped */
333 goto out_unlock;
334
335 dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
336
Heiko Schocherff94bc42014-06-24 10:10:04 +0200337 down_read(&ubi->fm_sem);
Kyungmin Park961df832008-11-19 16:25:44 +0100338 vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
Heiko Schocherff94bc42014-06-24 10:10:04 +0200339 up_read(&ubi->fm_sem);
340 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
Kyungmin Park961df832008-11-19 16:25:44 +0100341
342out_unlock:
343 leb_write_unlock(ubi, vol_id, lnum);
344 return err;
345}
346
347/**
348 * ubi_eba_read_leb - read data.
349 * @ubi: UBI device description object
350 * @vol: volume description object
351 * @lnum: logical eraseblock number
352 * @buf: buffer to store the read data
353 * @offset: offset from where to read
354 * @len: how many bytes to read
355 * @check: data CRC check flag
356 *
357 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
358 * bytes. The @check flag only makes sense for static volumes and forces
359 * eraseblock data CRC checking.
360 *
361 * In case of success this function returns zero. In case of a static volume,
362 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
363 * returned for any volume type if an ECC error was detected by the MTD device
364 * driver. Other negative error cored may be returned in case of other errors.
365 */
366int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
367 void *buf, int offset, int len, int check)
368{
369 int err, pnum, scrub = 0, vol_id = vol->vol_id;
370 struct ubi_vid_hdr *vid_hdr;
371 uint32_t uninitialized_var(crc);
372
373 err = leb_read_lock(ubi, vol_id, lnum);
374 if (err)
375 return err;
376
377 pnum = vol->eba_tbl[lnum];
378 if (pnum < 0) {
379 /*
380 * The logical eraseblock is not mapped, fill the whole buffer
381 * with 0xFF bytes. The exception is static volumes for which
382 * it is an error to read unmapped logical eraseblocks.
383 */
384 dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
385 len, offset, vol_id, lnum);
386 leb_read_unlock(ubi, vol_id, lnum);
387 ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
388 memset(buf, 0xFF, len);
389 return 0;
390 }
391
392 dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
393 len, offset, vol_id, lnum, pnum);
394
395 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
396 check = 0;
397
398retry:
399 if (check) {
400 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
401 if (!vid_hdr) {
402 err = -ENOMEM;
403 goto out_unlock;
404 }
405
406 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
407 if (err && err != UBI_IO_BITFLIPS) {
408 if (err > 0) {
409 /*
410 * The header is either absent or corrupted.
411 * The former case means there is a bug -
412 * switch to read-only mode just in case.
413 * The latter case means a real corruption - we
414 * may try to recover data. FIXME: but this is
415 * not implemented.
416 */
Heiko Schocherff94bc42014-06-24 10:10:04 +0200417 if (err == UBI_IO_BAD_HDR_EBADMSG ||
418 err == UBI_IO_BAD_HDR) {
419 ubi_warn("corrupted VID header at PEB %d, LEB %d:%d",
420 pnum, vol_id, lnum);
Kyungmin Park961df832008-11-19 16:25:44 +0100421 err = -EBADMSG;
422 } else
423 ubi_ro_mode(ubi);
424 }
425 goto out_free;
426 } else if (err == UBI_IO_BITFLIPS)
427 scrub = 1;
428
429 ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
430 ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
431
432 crc = be32_to_cpu(vid_hdr->data_crc);
433 ubi_free_vid_hdr(ubi, vid_hdr);
434 }
435
436 err = ubi_io_read_data(ubi, buf, pnum, offset, len);
437 if (err) {
438 if (err == UBI_IO_BITFLIPS) {
439 scrub = 1;
440 err = 0;
Sergey Lapindfe64e22013-01-14 03:46:50 +0000441 } else if (mtd_is_eccerr(err)) {
Kyungmin Park961df832008-11-19 16:25:44 +0100442 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
443 goto out_unlock;
444 scrub = 1;
445 if (!check) {
446 ubi_msg("force data checking");
447 check = 1;
448 goto retry;
449 }
450 } else
451 goto out_unlock;
452 }
453
454 if (check) {
455 uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
456 if (crc1 != crc) {
457 ubi_warn("CRC error: calculated %#08x, must be %#08x",
458 crc1, crc);
459 err = -EBADMSG;
460 goto out_unlock;
461 }
462 }
463
464 if (scrub)
465 err = ubi_wl_scrub_peb(ubi, pnum);
466
467 leb_read_unlock(ubi, vol_id, lnum);
468 return err;
469
470out_free:
471 ubi_free_vid_hdr(ubi, vid_hdr);
472out_unlock:
473 leb_read_unlock(ubi, vol_id, lnum);
474 return err;
475}
476
477/**
478 * recover_peb - recover from write failure.
479 * @ubi: UBI device description object
480 * @pnum: the physical eraseblock to recover
481 * @vol_id: volume ID
482 * @lnum: logical eraseblock number
483 * @buf: data which was not written because of the write failure
484 * @offset: offset of the failed write
485 * @len: how many bytes should have been written
486 *
487 * This function is called in case of a write failure and moves all good data
488 * from the potentially bad physical eraseblock to a good physical eraseblock.
489 * This function also writes the data which was not written due to the failure.
490 * Returns new physical eraseblock number in case of success, and a negative
491 * error code in case of failure.
492 */
493static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
494 const void *buf, int offset, int len)
495{
496 int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
497 struct ubi_volume *vol = ubi->volumes[idx];
498 struct ubi_vid_hdr *vid_hdr;
499
500 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
Heiko Schocherff94bc42014-06-24 10:10:04 +0200501 if (!vid_hdr)
Kyungmin Park961df832008-11-19 16:25:44 +0100502 return -ENOMEM;
Kyungmin Park961df832008-11-19 16:25:44 +0100503
504retry:
Heiko Schocherff94bc42014-06-24 10:10:04 +0200505 new_pnum = ubi_wl_get_peb(ubi);
Kyungmin Park961df832008-11-19 16:25:44 +0100506 if (new_pnum < 0) {
Kyungmin Park961df832008-11-19 16:25:44 +0100507 ubi_free_vid_hdr(ubi, vid_hdr);
508 return new_pnum;
509 }
510
511 ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum);
512
513 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
514 if (err && err != UBI_IO_BITFLIPS) {
515 if (err > 0)
516 err = -EIO;
517 goto out_put;
518 }
519
Heiko Schocherff94bc42014-06-24 10:10:04 +0200520 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
Kyungmin Park961df832008-11-19 16:25:44 +0100521 err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
522 if (err)
523 goto write_error;
524
525 data_size = offset + len;
Heiko Schocherff94bc42014-06-24 10:10:04 +0200526 mutex_lock(&ubi->buf_mutex);
527 memset(ubi->peb_buf + offset, 0xFF, len);
Kyungmin Park961df832008-11-19 16:25:44 +0100528
529 /* Read everything before the area where the write failure happened */
530 if (offset > 0) {
Heiko Schocherff94bc42014-06-24 10:10:04 +0200531 err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
Kyungmin Park961df832008-11-19 16:25:44 +0100532 if (err && err != UBI_IO_BITFLIPS)
Heiko Schocherff94bc42014-06-24 10:10:04 +0200533 goto out_unlock;
Kyungmin Park961df832008-11-19 16:25:44 +0100534 }
535
Heiko Schocherff94bc42014-06-24 10:10:04 +0200536 memcpy(ubi->peb_buf + offset, buf, len);
Kyungmin Park961df832008-11-19 16:25:44 +0100537
Heiko Schocherff94bc42014-06-24 10:10:04 +0200538 err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
539 if (err) {
540 mutex_unlock(&ubi->buf_mutex);
Kyungmin Park961df832008-11-19 16:25:44 +0100541 goto write_error;
Heiko Schocherff94bc42014-06-24 10:10:04 +0200542 }
Kyungmin Park961df832008-11-19 16:25:44 +0100543
544 mutex_unlock(&ubi->buf_mutex);
545 ubi_free_vid_hdr(ubi, vid_hdr);
546
Heiko Schocherff94bc42014-06-24 10:10:04 +0200547 down_read(&ubi->fm_sem);
Kyungmin Park961df832008-11-19 16:25:44 +0100548 vol->eba_tbl[lnum] = new_pnum;
Heiko Schocherff94bc42014-06-24 10:10:04 +0200549 up_read(&ubi->fm_sem);
550 ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
Kyungmin Park961df832008-11-19 16:25:44 +0100551
552 ubi_msg("data was successfully recovered");
553 return 0;
554
Heiko Schocherff94bc42014-06-24 10:10:04 +0200555out_unlock:
Kyungmin Park961df832008-11-19 16:25:44 +0100556 mutex_unlock(&ubi->buf_mutex);
Heiko Schocherff94bc42014-06-24 10:10:04 +0200557out_put:
558 ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
Kyungmin Park961df832008-11-19 16:25:44 +0100559 ubi_free_vid_hdr(ubi, vid_hdr);
560 return err;
561
562write_error:
563 /*
564 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
565 * get another one.
566 */
567 ubi_warn("failed to write to PEB %d", new_pnum);
Heiko Schocherff94bc42014-06-24 10:10:04 +0200568 ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
Kyungmin Park961df832008-11-19 16:25:44 +0100569 if (++tries > UBI_IO_RETRIES) {
Kyungmin Park961df832008-11-19 16:25:44 +0100570 ubi_free_vid_hdr(ubi, vid_hdr);
571 return err;
572 }
573 ubi_msg("try again");
574 goto retry;
575}
576
577/**
578 * ubi_eba_write_leb - write data to dynamic volume.
579 * @ubi: UBI device description object
580 * @vol: volume description object
581 * @lnum: logical eraseblock number
582 * @buf: the data to write
583 * @offset: offset within the logical eraseblock where to write
584 * @len: how many bytes to write
Kyungmin Park961df832008-11-19 16:25:44 +0100585 *
586 * This function writes data to logical eraseblock @lnum of a dynamic volume
587 * @vol. Returns zero in case of success and a negative error code in case
588 * of failure. In case of error, it is possible that something was still
589 * written to the flash media, but may be some garbage.
590 */
591int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
Heiko Schocherff94bc42014-06-24 10:10:04 +0200592 const void *buf, int offset, int len)
Kyungmin Park961df832008-11-19 16:25:44 +0100593{
594 int err, pnum, tries = 0, vol_id = vol->vol_id;
595 struct ubi_vid_hdr *vid_hdr;
596
597 if (ubi->ro_mode)
598 return -EROFS;
599
600 err = leb_write_lock(ubi, vol_id, lnum);
601 if (err)
602 return err;
603
604 pnum = vol->eba_tbl[lnum];
605 if (pnum >= 0) {
606 dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
607 len, offset, vol_id, lnum, pnum);
608
609 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
610 if (err) {
611 ubi_warn("failed to write data to PEB %d", pnum);
612 if (err == -EIO && ubi->bad_allowed)
613 err = recover_peb(ubi, pnum, vol_id, lnum, buf,
614 offset, len);
615 if (err)
616 ubi_ro_mode(ubi);
617 }
618 leb_write_unlock(ubi, vol_id, lnum);
619 return err;
620 }
621
622 /*
623 * The logical eraseblock is not mapped. We have to get a free physical
624 * eraseblock and write the volume identifier header there first.
625 */
626 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
627 if (!vid_hdr) {
628 leb_write_unlock(ubi, vol_id, lnum);
629 return -ENOMEM;
630 }
631
632 vid_hdr->vol_type = UBI_VID_DYNAMIC;
Heiko Schocherff94bc42014-06-24 10:10:04 +0200633 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
Kyungmin Park961df832008-11-19 16:25:44 +0100634 vid_hdr->vol_id = cpu_to_be32(vol_id);
635 vid_hdr->lnum = cpu_to_be32(lnum);
636 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
637 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
638
639retry:
Heiko Schocherff94bc42014-06-24 10:10:04 +0200640 pnum = ubi_wl_get_peb(ubi);
Kyungmin Park961df832008-11-19 16:25:44 +0100641 if (pnum < 0) {
642 ubi_free_vid_hdr(ubi, vid_hdr);
643 leb_write_unlock(ubi, vol_id, lnum);
644 return pnum;
645 }
646
647 dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
648 len, offset, vol_id, lnum, pnum);
649
650 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
651 if (err) {
652 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
653 vol_id, lnum, pnum);
654 goto write_error;
655 }
656
657 if (len) {
658 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
659 if (err) {
Heiko Schocherff94bc42014-06-24 10:10:04 +0200660 ubi_warn("failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
661 len, offset, vol_id, lnum, pnum);
Kyungmin Park961df832008-11-19 16:25:44 +0100662 goto write_error;
663 }
664 }
665
Heiko Schocherff94bc42014-06-24 10:10:04 +0200666 down_read(&ubi->fm_sem);
Kyungmin Park961df832008-11-19 16:25:44 +0100667 vol->eba_tbl[lnum] = pnum;
Heiko Schocherff94bc42014-06-24 10:10:04 +0200668 up_read(&ubi->fm_sem);
Kyungmin Park961df832008-11-19 16:25:44 +0100669
670 leb_write_unlock(ubi, vol_id, lnum);
671 ubi_free_vid_hdr(ubi, vid_hdr);
672 return 0;
673
674write_error:
675 if (err != -EIO || !ubi->bad_allowed) {
676 ubi_ro_mode(ubi);
677 leb_write_unlock(ubi, vol_id, lnum);
678 ubi_free_vid_hdr(ubi, vid_hdr);
679 return err;
680 }
681
682 /*
683 * Fortunately, this is the first write operation to this physical
684 * eraseblock, so just put it and request a new one. We assume that if
685 * this physical eraseblock went bad, the erase code will handle that.
686 */
Heiko Schocherff94bc42014-06-24 10:10:04 +0200687 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
Kyungmin Park961df832008-11-19 16:25:44 +0100688 if (err || ++tries > UBI_IO_RETRIES) {
689 ubi_ro_mode(ubi);
690 leb_write_unlock(ubi, vol_id, lnum);
691 ubi_free_vid_hdr(ubi, vid_hdr);
692 return err;
693 }
694
Heiko Schocherff94bc42014-06-24 10:10:04 +0200695 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
Kyungmin Park961df832008-11-19 16:25:44 +0100696 ubi_msg("try another PEB");
697 goto retry;
698}
699
700/**
701 * ubi_eba_write_leb_st - write data to static volume.
702 * @ubi: UBI device description object
703 * @vol: volume description object
704 * @lnum: logical eraseblock number
705 * @buf: data to write
706 * @len: how many bytes to write
Kyungmin Park961df832008-11-19 16:25:44 +0100707 * @used_ebs: how many logical eraseblocks will this volume contain
708 *
709 * This function writes data to logical eraseblock @lnum of static volume
710 * @vol. The @used_ebs argument should contain total number of logical
711 * eraseblock in this static volume.
712 *
713 * When writing to the last logical eraseblock, the @len argument doesn't have
714 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
715 * to the real data size, although the @buf buffer has to contain the
716 * alignment. In all other cases, @len has to be aligned.
717 *
Heiko Schocherff94bc42014-06-24 10:10:04 +0200718 * It is prohibited to write more than once to logical eraseblocks of static
Kyungmin Park961df832008-11-19 16:25:44 +0100719 * volumes. This function returns zero in case of success and a negative error
720 * code in case of failure.
721 */
722int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
Heiko Schocherff94bc42014-06-24 10:10:04 +0200723 int lnum, const void *buf, int len, int used_ebs)
Kyungmin Park961df832008-11-19 16:25:44 +0100724{
725 int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
726 struct ubi_vid_hdr *vid_hdr;
727 uint32_t crc;
728
729 if (ubi->ro_mode)
730 return -EROFS;
731
732 if (lnum == used_ebs - 1)
733 /* If this is the last LEB @len may be unaligned */
734 len = ALIGN(data_size, ubi->min_io_size);
735 else
736 ubi_assert(!(len & (ubi->min_io_size - 1)));
737
738 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
739 if (!vid_hdr)
740 return -ENOMEM;
741
742 err = leb_write_lock(ubi, vol_id, lnum);
743 if (err) {
744 ubi_free_vid_hdr(ubi, vid_hdr);
745 return err;
746 }
747
Heiko Schocherff94bc42014-06-24 10:10:04 +0200748 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
Kyungmin Park961df832008-11-19 16:25:44 +0100749 vid_hdr->vol_id = cpu_to_be32(vol_id);
750 vid_hdr->lnum = cpu_to_be32(lnum);
751 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
752 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
753
754 crc = crc32(UBI_CRC32_INIT, buf, data_size);
755 vid_hdr->vol_type = UBI_VID_STATIC;
756 vid_hdr->data_size = cpu_to_be32(data_size);
757 vid_hdr->used_ebs = cpu_to_be32(used_ebs);
758 vid_hdr->data_crc = cpu_to_be32(crc);
759
760retry:
Heiko Schocherff94bc42014-06-24 10:10:04 +0200761 pnum = ubi_wl_get_peb(ubi);
Kyungmin Park961df832008-11-19 16:25:44 +0100762 if (pnum < 0) {
763 ubi_free_vid_hdr(ubi, vid_hdr);
764 leb_write_unlock(ubi, vol_id, lnum);
765 return pnum;
766 }
767
768 dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
769 len, vol_id, lnum, pnum, used_ebs);
770
771 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
772 if (err) {
773 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
774 vol_id, lnum, pnum);
775 goto write_error;
776 }
777
778 err = ubi_io_write_data(ubi, buf, pnum, 0, len);
779 if (err) {
780 ubi_warn("failed to write %d bytes of data to PEB %d",
781 len, pnum);
782 goto write_error;
783 }
784
785 ubi_assert(vol->eba_tbl[lnum] < 0);
Heiko Schocherff94bc42014-06-24 10:10:04 +0200786 down_read(&ubi->fm_sem);
Kyungmin Park961df832008-11-19 16:25:44 +0100787 vol->eba_tbl[lnum] = pnum;
Heiko Schocherff94bc42014-06-24 10:10:04 +0200788 up_read(&ubi->fm_sem);
Kyungmin Park961df832008-11-19 16:25:44 +0100789
790 leb_write_unlock(ubi, vol_id, lnum);
791 ubi_free_vid_hdr(ubi, vid_hdr);
792 return 0;
793
794write_error:
795 if (err != -EIO || !ubi->bad_allowed) {
796 /*
797 * This flash device does not admit of bad eraseblocks or
798 * something nasty and unexpected happened. Switch to read-only
799 * mode just in case.
800 */
801 ubi_ro_mode(ubi);
802 leb_write_unlock(ubi, vol_id, lnum);
803 ubi_free_vid_hdr(ubi, vid_hdr);
804 return err;
805 }
806
Heiko Schocherff94bc42014-06-24 10:10:04 +0200807 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
Kyungmin Park961df832008-11-19 16:25:44 +0100808 if (err || ++tries > UBI_IO_RETRIES) {
809 ubi_ro_mode(ubi);
810 leb_write_unlock(ubi, vol_id, lnum);
811 ubi_free_vid_hdr(ubi, vid_hdr);
812 return err;
813 }
814
Heiko Schocherff94bc42014-06-24 10:10:04 +0200815 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
Kyungmin Park961df832008-11-19 16:25:44 +0100816 ubi_msg("try another PEB");
817 goto retry;
818}
819
820/*
821 * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
822 * @ubi: UBI device description object
823 * @vol: volume description object
824 * @lnum: logical eraseblock number
825 * @buf: data to write
826 * @len: how many bytes to write
Kyungmin Park961df832008-11-19 16:25:44 +0100827 *
828 * This function changes the contents of a logical eraseblock atomically. @buf
829 * has to contain new logical eraseblock data, and @len - the length of the
830 * data, which has to be aligned. This function guarantees that in case of an
831 * unclean reboot the old contents is preserved. Returns zero in case of
832 * success and a negative error code in case of failure.
833 *
834 * UBI reserves one LEB for the "atomic LEB change" operation, so only one
835 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
836 */
837int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
Heiko Schocherff94bc42014-06-24 10:10:04 +0200838 int lnum, const void *buf, int len)
Kyungmin Park961df832008-11-19 16:25:44 +0100839{
840 int err, pnum, tries = 0, vol_id = vol->vol_id;
841 struct ubi_vid_hdr *vid_hdr;
842 uint32_t crc;
843
844 if (ubi->ro_mode)
845 return -EROFS;
846
847 if (len == 0) {
848 /*
849 * Special case when data length is zero. In this case the LEB
850 * has to be unmapped and mapped somewhere else.
851 */
852 err = ubi_eba_unmap_leb(ubi, vol, lnum);
853 if (err)
854 return err;
Heiko Schocherff94bc42014-06-24 10:10:04 +0200855 return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
Kyungmin Park961df832008-11-19 16:25:44 +0100856 }
857
858 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
859 if (!vid_hdr)
860 return -ENOMEM;
861
862 mutex_lock(&ubi->alc_mutex);
863 err = leb_write_lock(ubi, vol_id, lnum);
864 if (err)
865 goto out_mutex;
866
Heiko Schocherff94bc42014-06-24 10:10:04 +0200867 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
Kyungmin Park961df832008-11-19 16:25:44 +0100868 vid_hdr->vol_id = cpu_to_be32(vol_id);
869 vid_hdr->lnum = cpu_to_be32(lnum);
870 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
871 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
872
873 crc = crc32(UBI_CRC32_INIT, buf, len);
874 vid_hdr->vol_type = UBI_VID_DYNAMIC;
875 vid_hdr->data_size = cpu_to_be32(len);
876 vid_hdr->copy_flag = 1;
877 vid_hdr->data_crc = cpu_to_be32(crc);
878
879retry:
Heiko Schocherff94bc42014-06-24 10:10:04 +0200880 pnum = ubi_wl_get_peb(ubi);
Kyungmin Park961df832008-11-19 16:25:44 +0100881 if (pnum < 0) {
882 err = pnum;
883 goto out_leb_unlock;
884 }
885
886 dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
887 vol_id, lnum, vol->eba_tbl[lnum], pnum);
888
889 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
890 if (err) {
891 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
892 vol_id, lnum, pnum);
893 goto write_error;
894 }
895
896 err = ubi_io_write_data(ubi, buf, pnum, 0, len);
897 if (err) {
898 ubi_warn("failed to write %d bytes of data to PEB %d",
899 len, pnum);
900 goto write_error;
901 }
902
903 if (vol->eba_tbl[lnum] >= 0) {
Heiko Schocherff94bc42014-06-24 10:10:04 +0200904 err = ubi_wl_put_peb(ubi, vol_id, lnum, vol->eba_tbl[lnum], 0);
Kyungmin Park961df832008-11-19 16:25:44 +0100905 if (err)
906 goto out_leb_unlock;
907 }
908
Heiko Schocherff94bc42014-06-24 10:10:04 +0200909 down_read(&ubi->fm_sem);
Kyungmin Park961df832008-11-19 16:25:44 +0100910 vol->eba_tbl[lnum] = pnum;
Heiko Schocherff94bc42014-06-24 10:10:04 +0200911 up_read(&ubi->fm_sem);
Kyungmin Park961df832008-11-19 16:25:44 +0100912
913out_leb_unlock:
914 leb_write_unlock(ubi, vol_id, lnum);
915out_mutex:
916 mutex_unlock(&ubi->alc_mutex);
917 ubi_free_vid_hdr(ubi, vid_hdr);
918 return err;
919
920write_error:
921 if (err != -EIO || !ubi->bad_allowed) {
922 /*
923 * This flash device does not admit of bad eraseblocks or
924 * something nasty and unexpected happened. Switch to read-only
925 * mode just in case.
926 */
927 ubi_ro_mode(ubi);
928 goto out_leb_unlock;
929 }
930
Heiko Schocherff94bc42014-06-24 10:10:04 +0200931 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
Kyungmin Park961df832008-11-19 16:25:44 +0100932 if (err || ++tries > UBI_IO_RETRIES) {
933 ubi_ro_mode(ubi);
934 goto out_leb_unlock;
935 }
936
Heiko Schocherff94bc42014-06-24 10:10:04 +0200937 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
Kyungmin Park961df832008-11-19 16:25:44 +0100938 ubi_msg("try another PEB");
939 goto retry;
940}
941
942/**
Heiko Schocherff94bc42014-06-24 10:10:04 +0200943 * is_error_sane - check whether a read error is sane.
944 * @err: code of the error happened during reading
945 *
946 * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
947 * cannot read data from the target PEB (an error @err happened). If the error
948 * code is sane, then we treat this error as non-fatal. Otherwise the error is
949 * fatal and UBI will be switched to R/O mode later.
950 *
951 * The idea is that we try not to switch to R/O mode if the read error is
952 * something which suggests there was a real read problem. E.g., %-EIO. Or a
953 * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
954 * mode, simply because we do not know what happened at the MTD level, and we
955 * cannot handle this. E.g., the underlying driver may have become crazy, and
956 * it is safer to switch to R/O mode to preserve the data.
957 *
958 * And bear in mind, this is about reading from the target PEB, i.e. the PEB
959 * which we have just written.
960 */
961static int is_error_sane(int err)
962{
963 if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
964 err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
965 return 0;
966 return 1;
967}
968
969/**
Kyungmin Park961df832008-11-19 16:25:44 +0100970 * ubi_eba_copy_leb - copy logical eraseblock.
971 * @ubi: UBI device description object
972 * @from: physical eraseblock number from where to copy
973 * @to: physical eraseblock number where to copy
974 * @vid_hdr: VID header of the @from physical eraseblock
975 *
976 * This function copies logical eraseblock from physical eraseblock @from to
977 * physical eraseblock @to. The @vid_hdr buffer may be changed by this
978 * function. Returns:
Heiko Schocherff94bc42014-06-24 10:10:04 +0200979 * o %0 in case of success;
980 * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
981 * o a negative error code in case of failure.
Kyungmin Park961df832008-11-19 16:25:44 +0100982 */
983int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
984 struct ubi_vid_hdr *vid_hdr)
985{
986 int err, vol_id, lnum, data_size, aldata_size, idx;
987 struct ubi_volume *vol;
988 uint32_t crc;
989
990 vol_id = be32_to_cpu(vid_hdr->vol_id);
991 lnum = be32_to_cpu(vid_hdr->lnum);
992
Heiko Schocherff94bc42014-06-24 10:10:04 +0200993 dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
Kyungmin Park961df832008-11-19 16:25:44 +0100994
995 if (vid_hdr->vol_type == UBI_VID_STATIC) {
996 data_size = be32_to_cpu(vid_hdr->data_size);
997 aldata_size = ALIGN(data_size, ubi->min_io_size);
998 } else
999 data_size = aldata_size =
1000 ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
1001
1002 idx = vol_id2idx(ubi, vol_id);
1003 spin_lock(&ubi->volumes_lock);
1004 /*
1005 * Note, we may race with volume deletion, which means that the volume
1006 * this logical eraseblock belongs to might be being deleted. Since the
Heiko Schocherff94bc42014-06-24 10:10:04 +02001007 * volume deletion un-maps all the volume's logical eraseblocks, it will
Kyungmin Park961df832008-11-19 16:25:44 +01001008 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1009 */
1010 vol = ubi->volumes[idx];
Heiko Schocherff94bc42014-06-24 10:10:04 +02001011 spin_unlock(&ubi->volumes_lock);
Kyungmin Park961df832008-11-19 16:25:44 +01001012 if (!vol) {
1013 /* No need to do further work, cancel */
Heiko Schocherff94bc42014-06-24 10:10:04 +02001014 dbg_wl("volume %d is being removed, cancel", vol_id);
1015 return MOVE_CANCEL_RACE;
Kyungmin Park961df832008-11-19 16:25:44 +01001016 }
Kyungmin Park961df832008-11-19 16:25:44 +01001017
1018 /*
1019 * We do not want anybody to write to this logical eraseblock while we
1020 * are moving it, so lock it.
1021 *
1022 * Note, we are using non-waiting locking here, because we cannot sleep
1023 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1024 * unmapping the LEB which is mapped to the PEB we are going to move
1025 * (@from). This task locks the LEB and goes sleep in the
1026 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1027 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
Heiko Schocherff94bc42014-06-24 10:10:04 +02001028 * LEB is already locked, we just do not move it and return
1029 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1030 * we do not know the reasons of the contention - it may be just a
1031 * normal I/O on this LEB, so we want to re-try.
Kyungmin Park961df832008-11-19 16:25:44 +01001032 */
1033 err = leb_write_trylock(ubi, vol_id, lnum);
1034 if (err) {
Heiko Schocherff94bc42014-06-24 10:10:04 +02001035 dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
1036 return MOVE_RETRY;
Kyungmin Park961df832008-11-19 16:25:44 +01001037 }
1038
1039 /*
1040 * The LEB might have been put meanwhile, and the task which put it is
1041 * probably waiting on @ubi->move_mutex. No need to continue the work,
1042 * cancel it.
1043 */
1044 if (vol->eba_tbl[lnum] != from) {
Heiko Schocherff94bc42014-06-24 10:10:04 +02001045 dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
1046 vol_id, lnum, from, vol->eba_tbl[lnum]);
1047 err = MOVE_CANCEL_RACE;
Kyungmin Park961df832008-11-19 16:25:44 +01001048 goto out_unlock_leb;
1049 }
1050
1051 /*
Heiko Schocherff94bc42014-06-24 10:10:04 +02001052 * OK, now the LEB is locked and we can safely start moving it. Since
1053 * this function utilizes the @ubi->peb_buf buffer which is shared
1054 * with some other functions - we lock the buffer by taking the
Kyungmin Park961df832008-11-19 16:25:44 +01001055 * @ubi->buf_mutex.
1056 */
1057 mutex_lock(&ubi->buf_mutex);
Heiko Schocherff94bc42014-06-24 10:10:04 +02001058 dbg_wl("read %d bytes of data", aldata_size);
1059 err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
Kyungmin Park961df832008-11-19 16:25:44 +01001060 if (err && err != UBI_IO_BITFLIPS) {
1061 ubi_warn("error %d while reading data from PEB %d",
1062 err, from);
Heiko Schocherff94bc42014-06-24 10:10:04 +02001063 err = MOVE_SOURCE_RD_ERR;
Kyungmin Park961df832008-11-19 16:25:44 +01001064 goto out_unlock_buf;
1065 }
1066
1067 /*
Heiko Schocherff94bc42014-06-24 10:10:04 +02001068 * Now we have got to calculate how much data we have to copy. In
Kyungmin Park961df832008-11-19 16:25:44 +01001069 * case of a static volume it is fairly easy - the VID header contains
1070 * the data size. In case of a dynamic volume it is more difficult - we
1071 * have to read the contents, cut 0xFF bytes from the end and copy only
1072 * the first part. We must do this to avoid writing 0xFF bytes as it
1073 * may have some side-effects. And not only this. It is important not
1074 * to include those 0xFFs to CRC because later the they may be filled
1075 * by data.
1076 */
1077 if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1078 aldata_size = data_size =
Heiko Schocherff94bc42014-06-24 10:10:04 +02001079 ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
Kyungmin Park961df832008-11-19 16:25:44 +01001080
1081 cond_resched();
Heiko Schocherff94bc42014-06-24 10:10:04 +02001082 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
Kyungmin Park961df832008-11-19 16:25:44 +01001083 cond_resched();
1084
1085 /*
Heiko Schocherff94bc42014-06-24 10:10:04 +02001086 * It may turn out to be that the whole @from physical eraseblock
Kyungmin Park961df832008-11-19 16:25:44 +01001087 * contains only 0xFF bytes. Then we have to only write the VID header
1088 * and do not write any data. This also means we should not set
1089 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1090 */
1091 if (data_size > 0) {
1092 vid_hdr->copy_flag = 1;
1093 vid_hdr->data_size = cpu_to_be32(data_size);
1094 vid_hdr->data_crc = cpu_to_be32(crc);
1095 }
Heiko Schocherff94bc42014-06-24 10:10:04 +02001096 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
Kyungmin Park961df832008-11-19 16:25:44 +01001097
1098 err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
Heiko Schocherff94bc42014-06-24 10:10:04 +02001099 if (err) {
1100 if (err == -EIO)
1101 err = MOVE_TARGET_WR_ERR;
Kyungmin Park961df832008-11-19 16:25:44 +01001102 goto out_unlock_buf;
Heiko Schocherff94bc42014-06-24 10:10:04 +02001103 }
Kyungmin Park961df832008-11-19 16:25:44 +01001104
1105 cond_resched();
1106
1107 /* Read the VID header back and check if it was written correctly */
1108 err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
1109 if (err) {
Heiko Schocherff94bc42014-06-24 10:10:04 +02001110 if (err != UBI_IO_BITFLIPS) {
1111 ubi_warn("error %d while reading VID header back from PEB %d",
1112 err, to);
1113 if (is_error_sane(err))
1114 err = MOVE_TARGET_RD_ERR;
1115 } else
1116 err = MOVE_TARGET_BITFLIPS;
Kyungmin Park961df832008-11-19 16:25:44 +01001117 goto out_unlock_buf;
1118 }
1119
1120 if (data_size > 0) {
Heiko Schocherff94bc42014-06-24 10:10:04 +02001121 err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1122 if (err) {
1123 if (err == -EIO)
1124 err = MOVE_TARGET_WR_ERR;
Kyungmin Park961df832008-11-19 16:25:44 +01001125 goto out_unlock_buf;
Heiko Schocherff94bc42014-06-24 10:10:04 +02001126 }
Kyungmin Park961df832008-11-19 16:25:44 +01001127
1128 cond_resched();
1129
1130 /*
1131 * We've written the data and are going to read it back to make
1132 * sure it was written correctly.
1133 */
Heiko Schocherff94bc42014-06-24 10:10:04 +02001134 memset(ubi->peb_buf, 0xFF, aldata_size);
1135 err = ubi_io_read_data(ubi, ubi->peb_buf, to, 0, aldata_size);
Kyungmin Park961df832008-11-19 16:25:44 +01001136 if (err) {
Heiko Schocherff94bc42014-06-24 10:10:04 +02001137 if (err != UBI_IO_BITFLIPS) {
1138 ubi_warn("error %d while reading data back from PEB %d",
1139 err, to);
1140 if (is_error_sane(err))
1141 err = MOVE_TARGET_RD_ERR;
1142 } else
1143 err = MOVE_TARGET_BITFLIPS;
Kyungmin Park961df832008-11-19 16:25:44 +01001144 goto out_unlock_buf;
1145 }
1146
1147 cond_resched();
1148
Heiko Schocherff94bc42014-06-24 10:10:04 +02001149 if (crc != crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size)) {
1150 ubi_warn("read data back from PEB %d and it is different",
Kyungmin Park961df832008-11-19 16:25:44 +01001151 to);
Heiko Schocherff94bc42014-06-24 10:10:04 +02001152 err = -EINVAL;
Kyungmin Park961df832008-11-19 16:25:44 +01001153 goto out_unlock_buf;
1154 }
1155 }
1156
1157 ubi_assert(vol->eba_tbl[lnum] == from);
Heiko Schocherff94bc42014-06-24 10:10:04 +02001158 down_read(&ubi->fm_sem);
Kyungmin Park961df832008-11-19 16:25:44 +01001159 vol->eba_tbl[lnum] = to;
Heiko Schocherff94bc42014-06-24 10:10:04 +02001160 up_read(&ubi->fm_sem);
Kyungmin Park961df832008-11-19 16:25:44 +01001161
1162out_unlock_buf:
1163 mutex_unlock(&ubi->buf_mutex);
1164out_unlock_leb:
1165 leb_write_unlock(ubi, vol_id, lnum);
1166 return err;
1167}
1168
1169/**
Heiko Schocherff94bc42014-06-24 10:10:04 +02001170 * print_rsvd_warning - warn about not having enough reserved PEBs.
Kyungmin Park961df832008-11-19 16:25:44 +01001171 * @ubi: UBI device description object
Heiko Schocherff94bc42014-06-24 10:10:04 +02001172 *
1173 * This is a helper function for 'ubi_eba_init()' which is called when UBI
1174 * cannot reserve enough PEBs for bad block handling. This function makes a
1175 * decision whether we have to print a warning or not. The algorithm is as
1176 * follows:
1177 * o if this is a new UBI image, then just print the warning
1178 * o if this is an UBI image which has already been used for some time, print
1179 * a warning only if we can reserve less than 10% of the expected amount of
1180 * the reserved PEB.
1181 *
1182 * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1183 * of PEBs becomes smaller, which is normal and we do not want to scare users
1184 * with a warning every time they attach the MTD device. This was an issue
1185 * reported by real users.
1186 */
1187static void print_rsvd_warning(struct ubi_device *ubi,
1188 struct ubi_attach_info *ai)
1189{
1190 /*
1191 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1192 * large number to distinguish between newly flashed and used images.
1193 */
1194 if (ai->max_sqnum > (1 << 18)) {
1195 int min = ubi->beb_rsvd_level / 10;
1196
1197 if (!min)
1198 min = 1;
1199 if (ubi->beb_rsvd_pebs > min)
1200 return;
1201 }
1202
1203 ubi_warn("cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
1204 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1205 if (ubi->corr_peb_count)
1206 ubi_warn("%d PEBs are corrupted and not used",
1207 ubi->corr_peb_count);
1208}
1209
1210/**
1211 * self_check_eba - run a self check on the EBA table constructed by fastmap.
1212 * @ubi: UBI device description object
1213 * @ai_fastmap: UBI attach info object created by fastmap
1214 * @ai_scan: UBI attach info object created by scanning
1215 *
1216 * Returns < 0 in case of an internal error, 0 otherwise.
1217 * If a bad EBA table entry was found it will be printed out and
1218 * ubi_assert() triggers.
1219 */
1220int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
1221 struct ubi_attach_info *ai_scan)
1222{
1223 int i, j, num_volumes, ret = 0;
1224 int **scan_eba, **fm_eba;
1225 struct ubi_ainf_volume *av;
1226 struct ubi_volume *vol;
1227 struct ubi_ainf_peb *aeb;
1228 struct rb_node *rb;
1229
1230 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1231
1232 scan_eba = kmalloc(sizeof(*scan_eba) * num_volumes, GFP_KERNEL);
1233 if (!scan_eba)
1234 return -ENOMEM;
1235
1236 fm_eba = kmalloc(sizeof(*fm_eba) * num_volumes, GFP_KERNEL);
1237 if (!fm_eba) {
1238 kfree(scan_eba);
1239 return -ENOMEM;
1240 }
1241
1242 for (i = 0; i < num_volumes; i++) {
1243 vol = ubi->volumes[i];
1244 if (!vol)
1245 continue;
1246
1247 scan_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**scan_eba),
1248 GFP_KERNEL);
1249 if (!scan_eba[i]) {
1250 ret = -ENOMEM;
1251 goto out_free;
1252 }
1253
1254 fm_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**fm_eba),
1255 GFP_KERNEL);
1256 if (!fm_eba[i]) {
1257 ret = -ENOMEM;
1258 goto out_free;
1259 }
1260
1261 for (j = 0; j < vol->reserved_pebs; j++)
1262 scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
1263
1264 av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
1265 if (!av)
1266 continue;
1267
1268 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1269 scan_eba[i][aeb->lnum] = aeb->pnum;
1270
1271 av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
1272 if (!av)
1273 continue;
1274
1275 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1276 fm_eba[i][aeb->lnum] = aeb->pnum;
1277
1278 for (j = 0; j < vol->reserved_pebs; j++) {
1279 if (scan_eba[i][j] != fm_eba[i][j]) {
1280 if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
1281 fm_eba[i][j] == UBI_LEB_UNMAPPED)
1282 continue;
1283
1284 ubi_err("LEB:%i:%i is PEB:%i instead of %i!",
1285 vol->vol_id, i, fm_eba[i][j],
1286 scan_eba[i][j]);
1287 ubi_assert(0);
1288 }
1289 }
1290 }
1291
1292out_free:
1293 for (i = 0; i < num_volumes; i++) {
1294 if (!ubi->volumes[i])
1295 continue;
1296
1297 kfree(scan_eba[i]);
1298 kfree(fm_eba[i]);
1299 }
1300
1301 kfree(scan_eba);
1302 kfree(fm_eba);
1303 return ret;
1304}
1305
1306/**
1307 * ubi_eba_init - initialize the EBA sub-system using attaching information.
1308 * @ubi: UBI device description object
1309 * @ai: attaching information
Kyungmin Park961df832008-11-19 16:25:44 +01001310 *
1311 * This function returns zero in case of success and a negative error code in
1312 * case of failure.
1313 */
Heiko Schocherff94bc42014-06-24 10:10:04 +02001314int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
Kyungmin Park961df832008-11-19 16:25:44 +01001315{
1316 int i, j, err, num_volumes;
Heiko Schocherff94bc42014-06-24 10:10:04 +02001317 struct ubi_ainf_volume *av;
Kyungmin Park961df832008-11-19 16:25:44 +01001318 struct ubi_volume *vol;
Heiko Schocherff94bc42014-06-24 10:10:04 +02001319 struct ubi_ainf_peb *aeb;
Kyungmin Park961df832008-11-19 16:25:44 +01001320 struct rb_node *rb;
1321
Heiko Schocherff94bc42014-06-24 10:10:04 +02001322 dbg_eba("initialize EBA sub-system");
Kyungmin Park961df832008-11-19 16:25:44 +01001323
1324 spin_lock_init(&ubi->ltree_lock);
1325 mutex_init(&ubi->alc_mutex);
1326 ubi->ltree = RB_ROOT;
1327
Heiko Schocherff94bc42014-06-24 10:10:04 +02001328 ubi->global_sqnum = ai->max_sqnum + 1;
Kyungmin Park961df832008-11-19 16:25:44 +01001329 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1330
1331 for (i = 0; i < num_volumes; i++) {
1332 vol = ubi->volumes[i];
1333 if (!vol)
1334 continue;
1335
1336 cond_resched();
1337
1338 vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
1339 GFP_KERNEL);
1340 if (!vol->eba_tbl) {
1341 err = -ENOMEM;
1342 goto out_free;
1343 }
1344
1345 for (j = 0; j < vol->reserved_pebs; j++)
1346 vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
1347
Heiko Schocherff94bc42014-06-24 10:10:04 +02001348 av = ubi_find_av(ai, idx2vol_id(ubi, i));
1349 if (!av)
Kyungmin Park961df832008-11-19 16:25:44 +01001350 continue;
1351
Heiko Schocherff94bc42014-06-24 10:10:04 +02001352 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
1353 if (aeb->lnum >= vol->reserved_pebs)
Kyungmin Park961df832008-11-19 16:25:44 +01001354 /*
1355 * This may happen in case of an unclean reboot
1356 * during re-size.
1357 */
Heiko Schocherff94bc42014-06-24 10:10:04 +02001358 ubi_move_aeb_to_list(av, aeb, &ai->erase);
1359 vol->eba_tbl[aeb->lnum] = aeb->pnum;
Kyungmin Park961df832008-11-19 16:25:44 +01001360 }
1361 }
1362
1363 if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1364 ubi_err("no enough physical eraseblocks (%d, need %d)",
1365 ubi->avail_pebs, EBA_RESERVED_PEBS);
Heiko Schocherff94bc42014-06-24 10:10:04 +02001366 if (ubi->corr_peb_count)
1367 ubi_err("%d PEBs are corrupted and not used",
1368 ubi->corr_peb_count);
Kyungmin Park961df832008-11-19 16:25:44 +01001369 err = -ENOSPC;
1370 goto out_free;
1371 }
1372 ubi->avail_pebs -= EBA_RESERVED_PEBS;
1373 ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1374
1375 if (ubi->bad_allowed) {
1376 ubi_calculate_reserved(ubi);
1377
1378 if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1379 /* No enough free physical eraseblocks */
1380 ubi->beb_rsvd_pebs = ubi->avail_pebs;
Heiko Schocherff94bc42014-06-24 10:10:04 +02001381 print_rsvd_warning(ubi, ai);
Kyungmin Park961df832008-11-19 16:25:44 +01001382 } else
1383 ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1384
1385 ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1386 ubi->rsvd_pebs += ubi->beb_rsvd_pebs;
1387 }
1388
Heiko Schocherff94bc42014-06-24 10:10:04 +02001389 dbg_eba("EBA sub-system is initialized");
Kyungmin Park961df832008-11-19 16:25:44 +01001390 return 0;
1391
1392out_free:
1393 for (i = 0; i < num_volumes; i++) {
1394 if (!ubi->volumes[i])
1395 continue;
1396 kfree(ubi->volumes[i]->eba_tbl);
Heiko Schocherff94bc42014-06-24 10:10:04 +02001397 ubi->volumes[i]->eba_tbl = NULL;
Kyungmin Park961df832008-11-19 16:25:44 +01001398 }
1399 return err;
1400}