wdenk | c609719 | 2002-11-03 00:24:07 +0000 | [diff] [blame] | 1 | /*****************************************************************************/ |
| 2 | /* I2C Bus interface initialisation and I2C Commands */ |
| 3 | /* for PPC405GP */ |
| 4 | /* Author : AS HARNOIS */ |
| 5 | /* Date : 13.Dec.00 */ |
| 6 | /*****************************************************************************/ |
| 7 | |
| 8 | #include <common.h> |
| 9 | #include <ppc4xx.h> |
| 10 | #if defined(CONFIG_440) |
| 11 | # include <440_i2c.h> |
| 12 | #else |
| 13 | # include <405gp_i2c.h> |
| 14 | #endif |
| 15 | #include <i2c.h> |
| 16 | |
| 17 | #ifdef CONFIG_HARD_I2C |
| 18 | |
| 19 | #define IIC_OK 0 |
| 20 | #define IIC_NOK 1 |
| 21 | #define IIC_NOK_LA 2 /* Lost arbitration */ |
| 22 | #define IIC_NOK_ICT 3 /* Incomplete transfer */ |
| 23 | #define IIC_NOK_XFRA 4 /* Transfer aborted */ |
| 24 | #define IIC_NOK_DATA 5 /* No data in buffer */ |
| 25 | #define IIC_NOK_TOUT 6 /* Transfer timeout */ |
| 26 | |
| 27 | #define IIC_TIMEOUT 1 /* 1 seconde */ |
| 28 | |
| 29 | |
| 30 | static void _i2c_bus_reset (void) |
| 31 | { |
| 32 | int i, status; |
| 33 | |
| 34 | /* Reset status register */ |
| 35 | /* write 1 in SCMP and IRQA to clear these fields */ |
| 36 | out8 (IIC_STS, 0x0A); |
| 37 | |
| 38 | /* write 1 in IRQP IRQD LA ICT XFRA to clear these fields */ |
| 39 | out8 (IIC_EXTSTS, 0x8F); |
| 40 | __asm__ volatile ("eieio"); |
| 41 | |
| 42 | /* |
| 43 | * Get current state, reset bus |
| 44 | * only if no transfers are pending. |
| 45 | */ |
| 46 | i = 10; |
| 47 | do { |
| 48 | /* Get status */ |
| 49 | status = in8 (IIC_STS); |
| 50 | udelay (500); /* 500us */ |
| 51 | i--; |
| 52 | } while ((status & IIC_STS_PT) && (i > 0)); |
| 53 | /* Soft reset controller */ |
| 54 | status = in8 (IIC_XTCNTLSS); |
| 55 | out8 (IIC_XTCNTLSS, (status | IIC_XTCNTLSS_SRST)); |
| 56 | __asm__ volatile ("eieio"); |
| 57 | |
| 58 | /* make sure where in initial state, data hi, clock hi */ |
| 59 | out8 (IIC_DIRECTCNTL, 0xC); |
| 60 | for (i = 0; i < 10; i++) { |
| 61 | if ((in8 (IIC_DIRECTCNTL) & 0x3) != 0x3) { |
| 62 | /* clock until we get to known state */ |
| 63 | out8 (IIC_DIRECTCNTL, 0x8); /* clock lo */ |
| 64 | udelay (100); /* 100us */ |
| 65 | out8 (IIC_DIRECTCNTL, 0xC); /* clock hi */ |
| 66 | udelay (100); /* 100us */ |
| 67 | } else { |
| 68 | break; |
| 69 | } |
| 70 | } |
| 71 | /* send start condition */ |
| 72 | out8 (IIC_DIRECTCNTL, 0x4); |
| 73 | udelay (1000); /* 1ms */ |
| 74 | /* send stop condition */ |
| 75 | out8 (IIC_DIRECTCNTL, 0xC); |
| 76 | udelay (1000); /* 1ms */ |
| 77 | /* Unreset controller */ |
| 78 | out8 (IIC_XTCNTLSS, (status & ~IIC_XTCNTLSS_SRST)); |
| 79 | udelay (1000); /* 1ms */ |
| 80 | } |
| 81 | |
| 82 | void i2c_init (int speed, int slaveadd) |
| 83 | { |
| 84 | sys_info_t sysInfo; |
| 85 | unsigned long freqOPB; |
| 86 | int val, divisor; |
| 87 | |
| 88 | /* Handle possible failed I2C state */ |
| 89 | _i2c_bus_reset (); |
| 90 | |
| 91 | /* clear lo master address */ |
| 92 | out8 (IIC_LMADR, 0); |
| 93 | |
| 94 | /* clear hi master address */ |
| 95 | out8 (IIC_HMADR, 0); |
| 96 | |
| 97 | /* clear lo slave address */ |
| 98 | out8 (IIC_LSADR, 0); |
| 99 | |
| 100 | /* clear hi slave address */ |
| 101 | out8 (IIC_HSADR, 0); |
| 102 | |
| 103 | /* Clock divide Register */ |
| 104 | /* get OPB frequency */ |
| 105 | get_sys_info (&sysInfo); |
| 106 | freqOPB = sysInfo.freqPLB / sysInfo.pllOpbDiv; |
| 107 | /* set divisor according to freqOPB */ |
| 108 | divisor = (freqOPB - 1) / 10000000; |
| 109 | if (divisor == 0) |
| 110 | divisor = 1; |
| 111 | out8 (IIC_CLKDIV, divisor); |
| 112 | |
| 113 | /* no interrupts */ |
| 114 | out8 (IIC_INTRMSK, 0); |
| 115 | |
| 116 | /* clear transfer count */ |
| 117 | out8 (IIC_XFRCNT, 0); |
| 118 | |
| 119 | /* clear extended control & stat */ |
| 120 | /* write 1 in SRC SRS SWC SWS to clear these fields */ |
| 121 | out8 (IIC_XTCNTLSS, 0xF0); |
| 122 | |
| 123 | /* Mode Control Register |
| 124 | Flush Slave/Master data buffer */ |
| 125 | out8 (IIC_MDCNTL, IIC_MDCNTL_FSDB | IIC_MDCNTL_FMDB); |
| 126 | __asm__ volatile ("eieio"); |
| 127 | |
| 128 | |
| 129 | val = in8(IIC_MDCNTL); |
| 130 | __asm__ volatile ("eieio"); |
| 131 | |
| 132 | /* Ignore General Call, slave transfers are ignored, |
| 133 | disable interrupts, exit unknown bus state, enable hold |
| 134 | SCL |
| 135 | 100kHz normaly or FastMode for 400kHz and above |
| 136 | */ |
| 137 | |
| 138 | val |= IIC_MDCNTL_EUBS|IIC_MDCNTL_HSCL; |
| 139 | if( speed >= 400000 ){ |
| 140 | val |= IIC_MDCNTL_FSM; |
| 141 | } |
| 142 | out8 (IIC_MDCNTL, val); |
| 143 | |
| 144 | /* clear control reg */ |
| 145 | out8 (IIC_CNTL, 0x00); |
| 146 | __asm__ volatile ("eieio"); |
| 147 | |
| 148 | } |
| 149 | |
| 150 | /* |
| 151 | This code tries to use the features of the 405GP i2c |
| 152 | controller. It will transfer up to 4 bytes in one pass |
| 153 | on the loop. It only does out8(lbz) to the buffer when it |
| 154 | is possible to do out16(lhz) transfers. |
| 155 | |
| 156 | cmd_type is 0 for write 1 for read. |
| 157 | |
| 158 | addr_len can take any value from 0-255, it is only limited |
| 159 | by the char, we could make it larger if needed. If it is |
| 160 | 0 we skip the address write cycle. |
| 161 | |
| 162 | Typical case is a Write of an addr followd by a Read. The |
| 163 | IBM FAQ does not cover this. On the last byte of the write |
| 164 | we don't set the creg CHT bit, and on the first bytes of the |
| 165 | read we set the RPST bit. |
| 166 | |
| 167 | It does not support address only transfers, there must be |
| 168 | a data part. If you want to write the address yourself, put |
| 169 | it in the data pointer. |
| 170 | |
| 171 | It does not support transfer to/from address 0. |
| 172 | |
| 173 | It does not check XFRCNT. |
| 174 | */ |
| 175 | static |
| 176 | int i2c_transfer(unsigned char cmd_type, |
| 177 | unsigned char chip, |
| 178 | unsigned char addr[], |
| 179 | unsigned char addr_len, |
| 180 | unsigned char data[], |
| 181 | unsigned short data_len ) |
| 182 | { |
| 183 | unsigned char* ptr; |
| 184 | int reading; |
| 185 | int tran,cnt; |
| 186 | int result; |
| 187 | int status; |
| 188 | int i; |
| 189 | uchar creg; |
| 190 | |
| 191 | if( data == 0 || data_len == 0 ){ |
| 192 | /*Don't support data transfer of no length or to address 0*/ |
| 193 | printf( "i2c_transfer: bad call\n" ); |
| 194 | return IIC_NOK; |
| 195 | } |
| 196 | if( addr && addr_len ){ |
| 197 | ptr = addr; |
| 198 | cnt = addr_len; |
| 199 | reading = 0; |
| 200 | }else{ |
| 201 | ptr = data; |
| 202 | cnt = data_len; |
| 203 | reading = cmd_type; |
| 204 | } |
| 205 | |
| 206 | /*Clear Stop Complete Bit*/ |
| 207 | out8(IIC_STS,IIC_STS_SCMP); |
| 208 | /* Check init */ |
| 209 | i=10; |
| 210 | do { |
| 211 | /* Get status */ |
| 212 | status = in8(IIC_STS); |
| 213 | __asm__ volatile("eieio"); |
| 214 | i--; |
| 215 | } while ((status & IIC_STS_PT) && (i>0)); |
| 216 | |
| 217 | if (status & IIC_STS_PT) { |
| 218 | result = IIC_NOK_TOUT; |
| 219 | return(result); |
| 220 | } |
| 221 | /*flush the Master/Slave Databuffers*/ |
| 222 | out8(IIC_MDCNTL, ((in8(IIC_MDCNTL))|IIC_MDCNTL_FMDB|IIC_MDCNTL_FSDB)); |
| 223 | /*need to wait 4 OPB clocks? code below should take that long*/ |
| 224 | |
| 225 | /* 7-bit adressing */ |
| 226 | out8(IIC_HMADR,0); |
| 227 | out8(IIC_LMADR, chip); |
| 228 | __asm__ volatile("eieio"); |
| 229 | |
| 230 | tran = 0; |
| 231 | result = IIC_OK; |
| 232 | creg = 0; |
| 233 | |
| 234 | while ( tran != cnt && (result == IIC_OK)) { |
| 235 | int bc,j; |
| 236 | |
| 237 | /* Control register = |
| 238 | Normal transfer, 7-bits adressing, Transfer up to bc bytes, Normal start, |
| 239 | Transfer is a sequence of transfers |
| 240 | */ |
| 241 | creg |= IIC_CNTL_PT; |
| 242 | |
| 243 | bc = (cnt - tran) > 4 ? 4 : |
| 244 | cnt - tran; |
| 245 | creg |= (bc-1)<<4; |
| 246 | /* if the real cmd type is write continue trans*/ |
| 247 | if ( (!cmd_type && (ptr == addr)) || ((tran+bc) != cnt) ) |
| 248 | creg |= IIC_CNTL_CHT; |
| 249 | |
| 250 | if (reading) |
| 251 | creg |= IIC_CNTL_READ; |
| 252 | else { |
| 253 | for(j=0; j<bc; j++) { |
| 254 | /* Set buffer */ |
| 255 | out8(IIC_MDBUF,ptr[tran+j]); |
| 256 | __asm__ volatile("eieio"); |
| 257 | } |
| 258 | } |
| 259 | out8(IIC_CNTL, creg ); |
| 260 | __asm__ volatile("eieio"); |
| 261 | |
| 262 | /* Transfer is in progress |
| 263 | we have to wait for upto 5 bytes of data |
| 264 | 1 byte chip address+r/w bit then bc bytes |
| 265 | of data. |
| 266 | udelay(10) is 1 bit time at 100khz |
| 267 | Doubled for slop. 20 is too small. |
| 268 | */ |
| 269 | i=2*5*8; |
| 270 | do { |
| 271 | /* Get status */ |
| 272 | status = in8(IIC_STS); |
| 273 | __asm__ volatile("eieio"); |
| 274 | udelay (10); |
| 275 | i--; |
| 276 | } while ((status & IIC_STS_PT) && !(status & IIC_STS_ERR) |
| 277 | && (i>0)); |
| 278 | |
| 279 | if (status & IIC_STS_ERR) { |
| 280 | result = IIC_NOK; |
| 281 | status = in8 (IIC_EXTSTS); |
| 282 | /* Lost arbitration? */ |
| 283 | if (status & IIC_EXTSTS_LA) |
| 284 | result = IIC_NOK_LA; |
| 285 | /* Incomplete transfer? */ |
| 286 | if (status & IIC_EXTSTS_ICT) |
| 287 | result = IIC_NOK_ICT; |
| 288 | /* Transfer aborted? */ |
| 289 | if (status & IIC_EXTSTS_XFRA) |
| 290 | result = IIC_NOK_XFRA; |
| 291 | } else if ( status & IIC_STS_PT) { |
| 292 | result = IIC_NOK_TOUT; |
| 293 | } |
| 294 | /* Command is reading => get buffer */ |
| 295 | if ((reading) && (result == IIC_OK)) { |
| 296 | /* Are there data in buffer */ |
| 297 | if (status & IIC_STS_MDBS) { |
| 298 | /* |
| 299 | even if we have data we have to wait 4OPB clocks |
| 300 | for it to hit the front of the FIFO, after that |
| 301 | we can just read. We should check XFCNT here and |
| 302 | if the FIFO is full there is no need to wait. |
| 303 | */ |
| 304 | udelay (1); |
| 305 | for(j=0;j<bc;j++) { |
| 306 | ptr[tran+j] = in8(IIC_MDBUF); |
| 307 | __asm__ volatile("eieio"); |
| 308 | } |
| 309 | } else |
| 310 | result = IIC_NOK_DATA; |
| 311 | } |
| 312 | creg = 0; |
| 313 | tran+=bc; |
| 314 | if( ptr == addr && tran == cnt ) { |
| 315 | ptr = data; |
| 316 | cnt = data_len; |
| 317 | tran = 0; |
| 318 | reading = cmd_type; |
| 319 | if( reading ) |
| 320 | creg = IIC_CNTL_RPST; |
| 321 | } |
| 322 | } |
| 323 | return (result); |
| 324 | } |
| 325 | |
| 326 | int i2c_probe (uchar chip) |
| 327 | { |
| 328 | uchar buf[1]; |
| 329 | |
| 330 | buf[0] = 0; |
| 331 | |
| 332 | /* |
| 333 | * What is needed is to send the chip address and verify that the |
| 334 | * address was <ACK>ed (i.e. there was a chip at that address which |
| 335 | * drove the data line low). |
| 336 | */ |
| 337 | return(i2c_transfer (1, chip << 1, 0,0, buf, 1) != 0); |
| 338 | } |
| 339 | |
| 340 | |
| 341 | |
| 342 | int i2c_read (uchar chip, uint addr, int alen, uchar * buffer, int len) |
| 343 | { |
| 344 | uchar xaddr[4]; |
| 345 | int ret; |
| 346 | |
| 347 | if ( alen > 4 ) { |
| 348 | printf ("I2C read: addr len %d not supported\n", alen); |
| 349 | return 1; |
| 350 | } |
| 351 | |
| 352 | if ( alen > 0 ) { |
| 353 | xaddr[0] = (addr >> 24) & 0xFF; |
| 354 | xaddr[1] = (addr >> 16) & 0xFF; |
| 355 | xaddr[2] = (addr >> 8) & 0xFF; |
| 356 | xaddr[3] = addr & 0xFF; |
| 357 | } |
| 358 | |
| 359 | |
| 360 | #ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW |
| 361 | /* |
| 362 | * EEPROM chips that implement "address overflow" are ones |
| 363 | * like Catalyst 24WC04/08/16 which has 9/10/11 bits of |
| 364 | * address and the extra bits end up in the "chip address" |
| 365 | * bit slots. This makes a 24WC08 (1Kbyte) chip look like |
| 366 | * four 256 byte chips. |
| 367 | * |
| 368 | * Note that we consider the length of the address field to |
| 369 | * still be one byte because the extra address bits are |
| 370 | * hidden in the chip address. |
| 371 | */ |
| 372 | if( alen > 0 ) |
| 373 | chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW); |
| 374 | #endif |
| 375 | if( (ret = i2c_transfer( 1, chip<<1, &xaddr[4-alen], alen, buffer, len )) != 0) { |
| 376 | printf( "I2c read: failed %d\n", ret); |
| 377 | return 1; |
| 378 | } |
| 379 | return 0; |
| 380 | } |
| 381 | |
| 382 | int i2c_write (uchar chip, uint addr, int alen, uchar * buffer, int len) |
| 383 | { |
| 384 | uchar xaddr[4]; |
| 385 | |
| 386 | if ( alen > 4 ) { |
| 387 | printf ("I2C write: addr len %d not supported\n", alen); |
| 388 | return 1; |
| 389 | |
| 390 | } |
| 391 | if ( alen > 0 ) { |
| 392 | xaddr[0] = (addr >> 24) & 0xFF; |
| 393 | xaddr[1] = (addr >> 16) & 0xFF; |
| 394 | xaddr[2] = (addr >> 8) & 0xFF; |
| 395 | xaddr[3] = addr & 0xFF; |
| 396 | } |
| 397 | |
| 398 | #ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW |
| 399 | /* |
| 400 | * EEPROM chips that implement "address overflow" are ones |
| 401 | * like Catalyst 24WC04/08/16 which has 9/10/11 bits of |
| 402 | * address and the extra bits end up in the "chip address" |
| 403 | * bit slots. This makes a 24WC08 (1Kbyte) chip look like |
| 404 | * four 256 byte chips. |
| 405 | * |
| 406 | * Note that we consider the length of the address field to |
| 407 | * still be one byte because the extra address bits are |
| 408 | * hidden in the chip address. |
| 409 | */ |
| 410 | if( alen > 0 ) |
| 411 | chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW); |
| 412 | #endif |
| 413 | |
| 414 | return (i2c_transfer( 0, chip<<1, &xaddr[4-alen], alen, buffer, len ) != 0); |
| 415 | } |
| 416 | |
| 417 | #endif /* CONFIG_HARD_I2C */ |