blob: 706d52b830a5f161d6a5825c4f8fbd7e7f6a4173 [file] [log] [blame]
Tom Rini83d290c2018-05-06 17:58:06 -04001// SPDX-License-Identifier: GPL-2.0+
Simon Glasse761ecd2013-04-17 16:13:36 +00002/*
3 * Copyright (c) 2012 The Chromium OS Authors.
4 *
Bin Meng076bb442014-11-09 22:19:13 +08005 * TSC calibration codes are adapted from Linux kernel
6 * arch/x86/kernel/tsc_msr.c and arch/x86/kernel/tsc.c
Simon Glasse761ecd2013-04-17 16:13:36 +00007 */
8
9#include <common.h>
Simon Glass52f24232020-05-10 11:40:00 -060010#include <bootstage.h>
Bin Meng4e51fc22015-11-13 00:11:21 -080011#include <dm.h>
Simon Glassf7ae49f2020-05-10 11:40:05 -060012#include <log.h>
Simon Glasse761ecd2013-04-17 16:13:36 +000013#include <malloc.h>
Simon Glass10453152019-11-14 12:57:30 -070014#include <time.h>
Bin Meng4e51fc22015-11-13 00:11:21 -080015#include <timer.h>
Bin Meng0b992e42017-07-25 20:12:01 -070016#include <asm/cpu.h>
Simon Glasse761ecd2013-04-17 16:13:36 +000017#include <asm/io.h>
18#include <asm/i8254.h>
19#include <asm/ibmpc.h>
20#include <asm/msr.h>
21#include <asm/u-boot-x86.h>
Simon Glassc05ed002020-05-10 11:40:11 -060022#include <linux/delay.h>
Simon Glasse761ecd2013-04-17 16:13:36 +000023
Bin Meng3df39ef2017-08-15 22:41:50 -070024#define MAX_NUM_FREQS 9
Bin Meng076bb442014-11-09 22:19:13 +080025
Bernhard Messerklingerca7db862019-01-07 12:14:40 +010026#define INTEL_FAM6_SKYLAKE_MOBILE 0x4E
27#define INTEL_FAM6_ATOM_GOLDMONT 0x5C /* Apollo Lake */
28#define INTEL_FAM6_SKYLAKE_DESKTOP 0x5E
29#define INTEL_FAM6_ATOM_GOLDMONT_X 0x5F /* Denverton */
30#define INTEL_FAM6_KABYLAKE_MOBILE 0x8E
31#define INTEL_FAM6_KABYLAKE_DESKTOP 0x9E
32
Simon Glasse761ecd2013-04-17 16:13:36 +000033DECLARE_GLOBAL_DATA_PTR;
34
Bernhard Messerklingerca7db862019-01-07 12:14:40 +010035/*
36 * native_calibrate_tsc
37 * Determine TSC frequency via CPUID, else return 0.
38 */
39static unsigned long native_calibrate_tsc(void)
40{
41 struct cpuid_result tsc_info;
42 unsigned int crystal_freq;
43
44 if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
45 return 0;
46
47 if (cpuid_eax(0) < 0x15)
48 return 0;
49
50 tsc_info = cpuid(0x15);
51
52 if (tsc_info.ebx == 0 || tsc_info.eax == 0)
53 return 0;
54
55 crystal_freq = tsc_info.ecx / 1000;
Simon Glass642e8482019-12-06 21:41:50 -070056 if (!CONFIG_IS_ENABLED(X86_TSC_TIMER_NATIVE) && !crystal_freq) {
Bernhard Messerklingerca7db862019-01-07 12:14:40 +010057 switch (gd->arch.x86_model) {
58 case INTEL_FAM6_SKYLAKE_MOBILE:
59 case INTEL_FAM6_SKYLAKE_DESKTOP:
60 case INTEL_FAM6_KABYLAKE_MOBILE:
61 case INTEL_FAM6_KABYLAKE_DESKTOP:
62 crystal_freq = 24000; /* 24.0 MHz */
63 break;
64 case INTEL_FAM6_ATOM_GOLDMONT_X:
65 crystal_freq = 25000; /* 25.0 MHz */
66 break;
67 case INTEL_FAM6_ATOM_GOLDMONT:
68 crystal_freq = 19200; /* 19.2 MHz */
69 break;
70 default:
71 return 0;
72 }
73 }
74
75 return (crystal_freq * tsc_info.ebx / tsc_info.eax) / 1000;
76}
77
Christian Gmeineracc24822018-05-14 11:32:17 +020078static unsigned long cpu_mhz_from_cpuid(void)
79{
80 if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
81 return 0;
82
83 if (cpuid_eax(0) < 0x16)
84 return 0;
85
86 return cpuid_eax(0x16);
87}
88
Bin Meng076bb442014-11-09 22:19:13 +080089/*
90 * According to Intel 64 and IA-32 System Programming Guide,
91 * if MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
92 * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
93 * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
94 * so we need manually differentiate SoC families. This is what the
95 * field msr_plat does.
96 */
97struct freq_desc {
98 u8 x86_family; /* CPU family */
99 u8 x86_model; /* model */
Simon Glass5c1b6852014-11-12 22:42:04 -0700100 /* 2: use 100MHz, 1: use MSR_PLATFORM_INFO, 0: MSR_IA32_PERF_STATUS */
101 u8 msr_plat;
Bin Meng076bb442014-11-09 22:19:13 +0800102 u32 freqs[MAX_NUM_FREQS];
103};
104
105static struct freq_desc freq_desc_tables[] = {
106 /* PNW */
Bin Meng3df39ef2017-08-15 22:41:50 -0700107 { 6, 0x27, 0, { 0, 0, 0, 0, 0, 99840, 0, 83200, 0 } },
Bin Meng076bb442014-11-09 22:19:13 +0800108 /* CLV+ */
Bin Meng3df39ef2017-08-15 22:41:50 -0700109 { 6, 0x35, 0, { 0, 133200, 0, 0, 0, 99840, 0, 83200, 0 } },
Bin Mengc6367742017-07-25 20:12:03 -0700110 /* TNG - Intel Atom processor Z3400 series */
Bin Meng3df39ef2017-08-15 22:41:50 -0700111 { 6, 0x4a, 1, { 0, 100000, 133300, 0, 0, 0, 0, 0, 0 } },
Bin Mengc6367742017-07-25 20:12:03 -0700112 /* VLV2 - Intel Atom processor E3000, Z3600, Z3700 series */
Bin Meng3df39ef2017-08-15 22:41:50 -0700113 { 6, 0x37, 1, { 83300, 100000, 133300, 116700, 80000, 0, 0, 0, 0 } },
Bin Mengc6367742017-07-25 20:12:03 -0700114 /* ANN - Intel Atom processor Z3500 series */
Bin Meng3df39ef2017-08-15 22:41:50 -0700115 { 6, 0x5a, 1, { 83300, 100000, 133300, 100000, 0, 0, 0, 0, 0 } },
116 /* AMT - Intel Atom processor X7-Z8000 and X5-Z8000 series */
117 { 6, 0x4c, 1, { 83300, 100000, 133300, 116700,
118 80000, 93300, 90000, 88900, 87500 } },
Simon Glass5c1b6852014-11-12 22:42:04 -0700119 /* Ivybridge */
Bin Meng3df39ef2017-08-15 22:41:50 -0700120 { 6, 0x3a, 2, { 0, 0, 0, 0, 0, 0, 0, 0, 0 } },
Bin Meng076bb442014-11-09 22:19:13 +0800121};
122
123static int match_cpu(u8 family, u8 model)
124{
125 int i;
126
127 for (i = 0; i < ARRAY_SIZE(freq_desc_tables); i++) {
128 if ((family == freq_desc_tables[i].x86_family) &&
129 (model == freq_desc_tables[i].x86_model))
130 return i;
131 }
132
133 return -1;
134}
135
136/* Map CPU reference clock freq ID(0-7) to CPU reference clock freq(KHz) */
137#define id_to_freq(cpu_index, freq_id) \
138 (freq_desc_tables[cpu_index].freqs[freq_id])
139
140/*
Bin Meng167a4012017-07-25 20:12:05 -0700141 * TSC on Intel Atom SoCs capable of determining TSC frequency by MSR is
142 * reliable and the frequency is known (provided by HW).
Bin Meng076bb442014-11-09 22:19:13 +0800143 *
Bin Meng167a4012017-07-25 20:12:05 -0700144 * On these platforms PIT/HPET is generally not available so calibration won't
145 * work at all and there is no other clocksource to act as a watchdog for the
146 * TSC, so we have no other choice than to trust it.
147 *
148 * Returns the TSC frequency in MHz or 0 if HW does not provide it.
Bin Meng076bb442014-11-09 22:19:13 +0800149 */
Bin Meng167a4012017-07-25 20:12:05 -0700150static unsigned long __maybe_unused cpu_mhz_from_msr(void)
Bin Meng076bb442014-11-09 22:19:13 +0800151{
152 u32 lo, hi, ratio, freq_id, freq;
153 unsigned long res;
154 int cpu_index;
155
Bin Meng0b992e42017-07-25 20:12:01 -0700156 if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
157 return 0;
158
Bin Meng076bb442014-11-09 22:19:13 +0800159 cpu_index = match_cpu(gd->arch.x86, gd->arch.x86_model);
160 if (cpu_index < 0)
161 return 0;
162
163 if (freq_desc_tables[cpu_index].msr_plat) {
164 rdmsr(MSR_PLATFORM_INFO, lo, hi);
Bin Mengd92e9c82017-07-25 20:12:00 -0700165 ratio = (lo >> 8) & 0xff;
Bin Meng076bb442014-11-09 22:19:13 +0800166 } else {
167 rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
168 ratio = (hi >> 8) & 0x1f;
169 }
170 debug("Maximum core-clock to bus-clock ratio: 0x%x\n", ratio);
171
Simon Glass5c1b6852014-11-12 22:42:04 -0700172 if (freq_desc_tables[cpu_index].msr_plat == 2) {
173 /* TODO: Figure out how best to deal with this */
Bin Mengf5757152017-07-25 20:12:04 -0700174 freq = 100000;
Simon Glass5c1b6852014-11-12 22:42:04 -0700175 debug("Using frequency: %u KHz\n", freq);
176 } else {
177 /* Get FSB FREQ ID */
178 rdmsr(MSR_FSB_FREQ, lo, hi);
179 freq_id = lo & 0x7;
180 freq = id_to_freq(cpu_index, freq_id);
181 debug("Resolved frequency ID: %u, frequency: %u KHz\n",
182 freq_id, freq);
183 }
Bin Meng076bb442014-11-09 22:19:13 +0800184
185 /* TSC frequency = maximum resolved freq * maximum resolved bus ratio */
186 res = freq * ratio / 1000;
187 debug("TSC runs at %lu MHz\n", res);
188
189 return res;
Bin Meng076bb442014-11-09 22:19:13 +0800190}
191
Bin Meng80de0492014-11-09 22:19:25 +0800192/*
193 * This reads the current MSB of the PIT counter, and
194 * checks if we are running on sufficiently fast and
195 * non-virtualized hardware.
196 *
197 * Our expectations are:
198 *
199 * - the PIT is running at roughly 1.19MHz
200 *
201 * - each IO is going to take about 1us on real hardware,
202 * but we allow it to be much faster (by a factor of 10) or
203 * _slightly_ slower (ie we allow up to a 2us read+counter
204 * update - anything else implies a unacceptably slow CPU
205 * or PIT for the fast calibration to work.
206 *
207 * - with 256 PIT ticks to read the value, we have 214us to
208 * see the same MSB (and overhead like doing a single TSC
209 * read per MSB value etc).
210 *
211 * - We're doing 2 reads per loop (LSB, MSB), and we expect
212 * them each to take about a microsecond on real hardware.
213 * So we expect a count value of around 100. But we'll be
214 * generous, and accept anything over 50.
215 *
216 * - if the PIT is stuck, and we see *many* more reads, we
217 * return early (and the next caller of pit_expect_msb()
218 * then consider it a failure when they don't see the
219 * next expected value).
220 *
221 * These expectations mean that we know that we have seen the
222 * transition from one expected value to another with a fairly
223 * high accuracy, and we didn't miss any events. We can thus
224 * use the TSC value at the transitions to calculate a pretty
225 * good value for the TSC frequencty.
226 */
227static inline int pit_verify_msb(unsigned char val)
228{
229 /* Ignore LSB */
230 inb(0x42);
231 return inb(0x42) == val;
232}
233
234static inline int pit_expect_msb(unsigned char val, u64 *tscp,
235 unsigned long *deltap)
236{
237 int count;
238 u64 tsc = 0, prev_tsc = 0;
239
240 for (count = 0; count < 50000; count++) {
241 if (!pit_verify_msb(val))
242 break;
243 prev_tsc = tsc;
244 tsc = rdtsc();
245 }
246 *deltap = rdtsc() - prev_tsc;
247 *tscp = tsc;
248
249 /*
250 * We require _some_ success, but the quality control
251 * will be based on the error terms on the TSC values.
252 */
253 return count > 5;
254}
255
256/*
257 * How many MSB values do we want to see? We aim for
258 * a maximum error rate of 500ppm (in practice the
259 * real error is much smaller), but refuse to spend
260 * more than 50ms on it.
261 */
262#define MAX_QUICK_PIT_MS 50
263#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
264
Bin Meng3ba6a0f2015-01-06 22:14:14 +0800265static unsigned long __maybe_unused quick_pit_calibrate(void)
Bin Meng80de0492014-11-09 22:19:25 +0800266{
267 int i;
268 u64 tsc, delta;
269 unsigned long d1, d2;
270
271 /* Set the Gate high, disable speaker */
272 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
273
274 /*
275 * Counter 2, mode 0 (one-shot), binary count
276 *
277 * NOTE! Mode 2 decrements by two (and then the
278 * output is flipped each time, giving the same
279 * final output frequency as a decrement-by-one),
280 * so mode 0 is much better when looking at the
281 * individual counts.
282 */
283 outb(0xb0, 0x43);
284
285 /* Start at 0xffff */
286 outb(0xff, 0x42);
287 outb(0xff, 0x42);
288
289 /*
290 * The PIT starts counting at the next edge, so we
291 * need to delay for a microsecond. The easiest way
292 * to do that is to just read back the 16-bit counter
293 * once from the PIT.
294 */
295 pit_verify_msb(0);
296
297 if (pit_expect_msb(0xff, &tsc, &d1)) {
298 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
299 if (!pit_expect_msb(0xff-i, &delta, &d2))
300 break;
301
302 /*
303 * Iterate until the error is less than 500 ppm
304 */
305 delta -= tsc;
306 if (d1+d2 >= delta >> 11)
307 continue;
308
309 /*
310 * Check the PIT one more time to verify that
311 * all TSC reads were stable wrt the PIT.
312 *
313 * This also guarantees serialization of the
314 * last cycle read ('d2') in pit_expect_msb.
315 */
316 if (!pit_verify_msb(0xfe - i))
317 break;
318 goto success;
319 }
320 }
321 debug("Fast TSC calibration failed\n");
322 return 0;
323
324success:
325 /*
326 * Ok, if we get here, then we've seen the
327 * MSB of the PIT decrement 'i' times, and the
328 * error has shrunk to less than 500 ppm.
329 *
330 * As a result, we can depend on there not being
331 * any odd delays anywhere, and the TSC reads are
332 * reliable (within the error).
333 *
334 * kHz = ticks / time-in-seconds / 1000;
335 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
336 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
337 */
338 delta *= PIT_TICK_RATE;
339 delta /= (i*256*1000);
340 debug("Fast TSC calibration using PIT\n");
341 return delta / 1000;
342}
343
Simon Glasse761ecd2013-04-17 16:13:36 +0000344/* Get the speed of the TSC timer in MHz */
Bin Meng2f80fc52015-11-13 00:11:20 -0800345unsigned notrace long get_tbclk_mhz(void)
Simon Glasse761ecd2013-04-17 16:13:36 +0000346{
Bin Meng4e51fc22015-11-13 00:11:21 -0800347 return get_tbclk() / 1000000;
Simon Glasse761ecd2013-04-17 16:13:36 +0000348}
349
Simon Glasse761ecd2013-04-17 16:13:36 +0000350static ulong get_ms_timer(void)
351{
352 return (get_ticks() * 1000) / get_tbclk();
353}
354
355ulong get_timer(ulong base)
356{
357 return get_ms_timer() - base;
358}
359
Bin Meng2f80fc52015-11-13 00:11:20 -0800360ulong notrace timer_get_us(void)
Simon Glasse761ecd2013-04-17 16:13:36 +0000361{
362 return get_ticks() / get_tbclk_mhz();
363}
364
365ulong timer_get_boot_us(void)
366{
367 return timer_get_us();
368}
369
370void __udelay(unsigned long usec)
371{
372 u64 now = get_ticks();
373 u64 stop;
374
375 stop = now + usec * get_tbclk_mhz();
376
377 while ((int64_t)(stop - get_ticks()) > 0)
Miao Yan417576c2015-07-27 19:16:07 +0800378#if defined(CONFIG_QEMU) && defined(CONFIG_SMP)
379 /*
380 * Add a 'pause' instruction on qemu target,
381 * to give other VCPUs a chance to run.
382 */
383 asm volatile("pause");
384#else
Simon Glasse761ecd2013-04-17 16:13:36 +0000385 ;
Miao Yan417576c2015-07-27 19:16:07 +0800386#endif
Simon Glasse761ecd2013-04-17 16:13:36 +0000387}
388
Sean Anderson8af7bb92020-10-07 14:37:44 -0400389static u64 tsc_timer_get_count(struct udevice *dev)
Bin Meng4e51fc22015-11-13 00:11:21 -0800390{
391 u64 now_tick = rdtsc();
392
Sean Anderson8af7bb92020-10-07 14:37:44 -0400393 return now_tick - gd->arch.tsc_base;
Bin Meng4e51fc22015-11-13 00:11:21 -0800394}
395
Bin Meng6ce38362018-10-13 20:52:10 -0700396static void tsc_timer_ensure_setup(bool early)
Bin Meng4e51fc22015-11-13 00:11:21 -0800397{
Simon Glassa478a262019-10-20 21:37:47 -0600398 if (gd->arch.tsc_inited)
Simon Glass2ff50f52017-09-05 19:49:46 -0600399 return;
Simon Glass77dd7c62019-12-06 21:41:49 -0700400 if (IS_ENABLED(CONFIG_X86_TSC_READ_BASE))
401 gd->arch.tsc_base = rdtsc();
Bin Meng4e51fc22015-11-13 00:11:21 -0800402
Simon Glass2ff50f52017-09-05 19:49:46 -0600403 if (!gd->arch.clock_rate) {
Bin Meng4e51fc22015-11-13 00:11:21 -0800404 unsigned long fast_calibrate;
405
Bernhard Messerklingerca7db862019-01-07 12:14:40 +0100406 fast_calibrate = native_calibrate_tsc();
407 if (fast_calibrate)
408 goto done;
409
Simon Glass642e8482019-12-06 21:41:50 -0700410 /* Reduce code size by dropping other methods */
411 if (CONFIG_IS_ENABLED(X86_TSC_TIMER_NATIVE))
412 panic("no timer");
413
Christian Gmeineracc24822018-05-14 11:32:17 +0200414 fast_calibrate = cpu_mhz_from_cpuid();
415 if (fast_calibrate)
416 goto done;
Bin Meng4e51fc22015-11-13 00:11:21 -0800417
Christian Gmeineracc24822018-05-14 11:32:17 +0200418 fast_calibrate = cpu_mhz_from_msr();
419 if (fast_calibrate)
420 goto done;
421
422 fast_calibrate = quick_pit_calibrate();
423 if (fast_calibrate)
424 goto done;
425
Bin Meng6ce38362018-10-13 20:52:10 -0700426 if (early)
427 fast_calibrate = CONFIG_X86_TSC_TIMER_EARLY_FREQ;
Bin Meng165db7c2018-08-10 02:39:36 -0700428 else
429 return;
Christian Gmeineracc24822018-05-14 11:32:17 +0200430
431done:
Simon Glass2ff50f52017-09-05 19:49:46 -0600432 gd->arch.clock_rate = fast_calibrate * 1000000;
Bin Meng4e51fc22015-11-13 00:11:21 -0800433 }
Simon Glassa478a262019-10-20 21:37:47 -0600434 gd->arch.tsc_inited = true;
Simon Glass2ff50f52017-09-05 19:49:46 -0600435}
436
437static int tsc_timer_probe(struct udevice *dev)
438{
439 struct timer_dev_priv *uc_priv = dev_get_uclass_priv(dev);
440
Bin Meng165db7c2018-08-10 02:39:36 -0700441 /* Try hardware calibration first */
442 tsc_timer_ensure_setup(false);
443 if (!gd->arch.clock_rate) {
444 /*
445 * Use the clock frequency specified in the
446 * device tree as last resort
447 */
448 if (!uc_priv->clock_rate)
449 panic("TSC frequency is ZERO");
Bin Meng94e72a62018-06-23 03:03:47 -0700450 } else {
Bin Meng165db7c2018-08-10 02:39:36 -0700451 uc_priv->clock_rate = gd->arch.clock_rate;
Bin Meng94e72a62018-06-23 03:03:47 -0700452 }
Bin Meng4e51fc22015-11-13 00:11:21 -0800453
454 return 0;
455}
456
Simon Glass2ff50f52017-09-05 19:49:46 -0600457unsigned long notrace timer_early_get_rate(void)
458{
Bin Meng94e72a62018-06-23 03:03:47 -0700459 /*
460 * When TSC timer is used as the early timer, be warned that the timer
461 * clock rate can only be calibrated via some hardware ways. Specifying
462 * it in the device tree won't work for the early timer.
463 */
Bin Meng165db7c2018-08-10 02:39:36 -0700464 tsc_timer_ensure_setup(true);
Simon Glass2ff50f52017-09-05 19:49:46 -0600465
466 return gd->arch.clock_rate;
467}
468
469u64 notrace timer_early_get_count(void)
470{
Simon Glass096c71e2019-10-20 21:31:54 -0600471 tsc_timer_ensure_setup(true);
472
Simon Glass2ff50f52017-09-05 19:49:46 -0600473 return rdtsc() - gd->arch.tsc_base;
474}
475
Bin Meng4e51fc22015-11-13 00:11:21 -0800476static const struct timer_ops tsc_timer_ops = {
477 .get_count = tsc_timer_get_count,
478};
479
Simon Glass8b842be2020-12-23 08:11:30 -0700480#if !CONFIG_IS_ENABLED(OF_PLATDATA)
Bin Meng4e51fc22015-11-13 00:11:21 -0800481static const struct udevice_id tsc_timer_ids[] = {
482 { .compatible = "x86,tsc-timer", },
483 { }
484};
Simon Glass8b842be2020-12-23 08:11:30 -0700485#endif
Bin Meng4e51fc22015-11-13 00:11:21 -0800486
Simon Glass9d20db02020-10-05 05:27:01 -0600487U_BOOT_DRIVER(x86_tsc_timer) = {
488 .name = "x86_tsc_timer",
Bin Meng4e51fc22015-11-13 00:11:21 -0800489 .id = UCLASS_TIMER,
Simon Glass8b842be2020-12-23 08:11:30 -0700490 .of_match = of_match_ptr(tsc_timer_ids),
Bin Meng4e51fc22015-11-13 00:11:21 -0800491 .probe = tsc_timer_probe,
492 .ops = &tsc_timer_ops,
Bin Meng4e51fc22015-11-13 00:11:21 -0800493};