Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0+ |
| 2 | /* |
| 3 | * Copyright (C) 2019-20 Sean Anderson <seanga2@gmail.com> |
| 4 | */ |
Sean Anderson | af9f997 | 2021-06-11 00:16:09 -0400 | [diff] [blame] | 5 | #define LOG_CATEGORY UCLASS_CLK |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 6 | |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 7 | #include <common.h> |
Sean Anderson | af9f997 | 2021-06-11 00:16:09 -0400 | [diff] [blame] | 8 | #include <clk.h> |
| 9 | #include <clk-uclass.h> |
| 10 | #include <div64.h> |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 11 | #include <dm.h> |
| 12 | #include <log.h> |
| 13 | #include <mapmem.h> |
Sean Anderson | af9f997 | 2021-06-11 00:16:09 -0400 | [diff] [blame] | 14 | #include <serial.h> |
| 15 | #include <dt-bindings/clock/k210-sysctl.h> |
| 16 | #include <dt-bindings/mfd/k210-sysctl.h> |
Damien Le Moal | fd426b3 | 2022-03-01 10:35:39 +0000 | [diff] [blame] | 17 | #include <k210/pll.h> |
Sean Anderson | af9f997 | 2021-06-11 00:16:09 -0400 | [diff] [blame] | 18 | #include <linux/bitfield.h> |
| 19 | |
Sean Anderson | 29e3067 | 2021-06-11 00:16:11 -0400 | [diff] [blame] | 20 | DECLARE_GLOBAL_DATA_PTR; |
| 21 | |
Sean Anderson | af9f997 | 2021-06-11 00:16:09 -0400 | [diff] [blame] | 22 | /** |
| 23 | * struct k210_clk_priv - K210 clock driver private data |
| 24 | * @base: The base address of the sysctl device |
| 25 | * @in0: The "in0" external oscillator |
| 26 | */ |
| 27 | struct k210_clk_priv { |
| 28 | void __iomem *base; |
| 29 | struct clk in0; |
| 30 | }; |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 31 | |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 32 | /* |
| 33 | * All parameters for different sub-clocks are collected into parameter arrays. |
| 34 | * These parameters are then initialized by the clock which uses them during |
| 35 | * probe. To save space, ids are automatically generated for each sub-clock by |
| 36 | * using an enum. Instead of storing a parameter struct for each clock, even for |
| 37 | * those clocks which don't use a particular type of sub-clock, we can just |
| 38 | * store the parameters for the clocks which need them. |
| 39 | * |
| 40 | * So why do it like this? Arranging all the sub-clocks together makes it very |
| 41 | * easy to find bugs in the code. |
| 42 | */ |
| 43 | |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 44 | /** |
| 45 | * enum k210_clk_div_type - The type of divider |
| 46 | * @K210_DIV_ONE: freq = parent / (reg + 1) |
| 47 | * @K210_DIV_EVEN: freq = parent / 2 / (reg + 1) |
| 48 | * @K210_DIV_POWER: freq = parent / (2 << reg) |
| 49 | * @K210_DIV_FIXED: freq = parent / factor |
| 50 | */ |
| 51 | enum k210_clk_div_type { |
| 52 | K210_DIV_ONE, |
| 53 | K210_DIV_EVEN, |
| 54 | K210_DIV_POWER, |
| 55 | K210_DIV_FIXED, |
| 56 | }; |
| 57 | |
| 58 | /** |
| 59 | * struct k210_div_params - Parameters for dividing clocks |
| 60 | * @type: An &enum k210_clk_div_type specifying the dividing formula |
| 61 | * @off: The offset of the divider from the sysctl base address |
| 62 | * @shift: The offset of the LSB of the divider |
| 63 | * @width: The number of bits in the divider |
| 64 | * @div: The fixed divisor for this divider |
| 65 | */ |
| 66 | struct k210_div_params { |
| 67 | u8 type; |
| 68 | union { |
| 69 | struct { |
| 70 | u8 off; |
| 71 | u8 shift; |
| 72 | u8 width; |
| 73 | }; |
| 74 | u8 div; |
| 75 | }; |
| 76 | }; |
| 77 | |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 78 | #define DIV_LIST \ |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 79 | DIV(K210_CLK_ACLK, K210_SYSCTL_SEL0, 1, 2, K210_DIV_POWER) \ |
| 80 | DIV(K210_CLK_APB0, K210_SYSCTL_SEL0, 3, 3, K210_DIV_ONE) \ |
| 81 | DIV(K210_CLK_APB1, K210_SYSCTL_SEL0, 6, 3, K210_DIV_ONE) \ |
| 82 | DIV(K210_CLK_APB2, K210_SYSCTL_SEL0, 9, 3, K210_DIV_ONE) \ |
| 83 | DIV(K210_CLK_SRAM0, K210_SYSCTL_THR0, 0, 4, K210_DIV_ONE) \ |
| 84 | DIV(K210_CLK_SRAM1, K210_SYSCTL_THR0, 4, 4, K210_DIV_ONE) \ |
| 85 | DIV(K210_CLK_AI, K210_SYSCTL_THR0, 8, 4, K210_DIV_ONE) \ |
| 86 | DIV(K210_CLK_DVP, K210_SYSCTL_THR0, 12, 4, K210_DIV_ONE) \ |
| 87 | DIV(K210_CLK_ROM, K210_SYSCTL_THR0, 16, 4, K210_DIV_ONE) \ |
| 88 | DIV(K210_CLK_SPI0, K210_SYSCTL_THR1, 0, 8, K210_DIV_EVEN) \ |
| 89 | DIV(K210_CLK_SPI1, K210_SYSCTL_THR1, 8, 8, K210_DIV_EVEN) \ |
| 90 | DIV(K210_CLK_SPI2, K210_SYSCTL_THR1, 16, 8, K210_DIV_EVEN) \ |
| 91 | DIV(K210_CLK_SPI3, K210_SYSCTL_THR1, 24, 8, K210_DIV_EVEN) \ |
| 92 | DIV(K210_CLK_TIMER0, K210_SYSCTL_THR2, 0, 8, K210_DIV_EVEN) \ |
| 93 | DIV(K210_CLK_TIMER1, K210_SYSCTL_THR2, 8, 8, K210_DIV_EVEN) \ |
| 94 | DIV(K210_CLK_TIMER2, K210_SYSCTL_THR2, 16, 8, K210_DIV_EVEN) \ |
| 95 | DIV(K210_CLK_I2S0, K210_SYSCTL_THR3, 0, 16, K210_DIV_EVEN) \ |
| 96 | DIV(K210_CLK_I2S1, K210_SYSCTL_THR3, 16, 16, K210_DIV_EVEN) \ |
| 97 | DIV(K210_CLK_I2S2, K210_SYSCTL_THR4, 0, 16, K210_DIV_EVEN) \ |
| 98 | DIV(K210_CLK_I2S0_M, K210_SYSCTL_THR4, 16, 8, K210_DIV_EVEN) \ |
| 99 | DIV(K210_CLK_I2S1_M, K210_SYSCTL_THR4, 24, 8, K210_DIV_EVEN) \ |
| 100 | DIV(K210_CLK_I2S2_M, K210_SYSCTL_THR4, 0, 8, K210_DIV_EVEN) \ |
| 101 | DIV(K210_CLK_I2C0, K210_SYSCTL_THR5, 8, 8, K210_DIV_EVEN) \ |
| 102 | DIV(K210_CLK_I2C1, K210_SYSCTL_THR5, 16, 8, K210_DIV_EVEN) \ |
| 103 | DIV(K210_CLK_I2C2, K210_SYSCTL_THR5, 24, 8, K210_DIV_EVEN) \ |
| 104 | DIV(K210_CLK_WDT0, K210_SYSCTL_THR6, 0, 8, K210_DIV_EVEN) \ |
| 105 | DIV(K210_CLK_WDT1, K210_SYSCTL_THR6, 8, 8, K210_DIV_EVEN) \ |
| 106 | DIV_FIXED(K210_CLK_CLINT, 50) \ |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 107 | |
| 108 | #define _DIVIFY(id) K210_CLK_DIV_##id |
| 109 | #define DIVIFY(id) _DIVIFY(id) |
| 110 | |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 111 | enum k210_div_id { |
| 112 | #define DIV(id, ...) DIVIFY(id), |
| 113 | #define DIV_FIXED DIV |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 114 | DIV_LIST |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 115 | #undef DIV |
| 116 | #undef DIV_FIXED |
| 117 | K210_CLK_DIV_NONE, |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 118 | }; |
| 119 | |
| 120 | static const struct k210_div_params k210_divs[] = { |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 121 | #define DIV(id, _off, _shift, _width, _type) \ |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 122 | [DIVIFY(id)] = { \ |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 123 | .type = (_type), \ |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 124 | .off = (_off), \ |
| 125 | .shift = (_shift), \ |
| 126 | .width = (_width), \ |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 127 | }, |
| 128 | #define DIV_FIXED(id, _div) \ |
| 129 | [DIVIFY(id)] = { \ |
| 130 | .type = K210_DIV_FIXED, \ |
| 131 | .div = (_div) \ |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 132 | }, |
| 133 | DIV_LIST |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 134 | #undef DIV |
| 135 | #undef DIV_FIXED |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 136 | }; |
| 137 | |
| 138 | #undef DIV |
| 139 | #undef DIV_LIST |
| 140 | |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 141 | /** |
| 142 | * struct k210_gate_params - Parameters for gated clocks |
| 143 | * @off: The offset of the gate from the sysctl base address |
| 144 | * @bit_idx: The index of the bit within the register |
| 145 | */ |
| 146 | struct k210_gate_params { |
| 147 | u8 off; |
| 148 | u8 bit_idx; |
| 149 | }; |
| 150 | |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 151 | #define GATE_LIST \ |
| 152 | GATE(K210_CLK_CPU, K210_SYSCTL_EN_CENT, 0) \ |
| 153 | GATE(K210_CLK_SRAM0, K210_SYSCTL_EN_CENT, 1) \ |
| 154 | GATE(K210_CLK_SRAM1, K210_SYSCTL_EN_CENT, 2) \ |
| 155 | GATE(K210_CLK_APB0, K210_SYSCTL_EN_CENT, 3) \ |
| 156 | GATE(K210_CLK_APB1, K210_SYSCTL_EN_CENT, 4) \ |
| 157 | GATE(K210_CLK_APB2, K210_SYSCTL_EN_CENT, 5) \ |
| 158 | GATE(K210_CLK_ROM, K210_SYSCTL_EN_PERI, 0) \ |
| 159 | GATE(K210_CLK_DMA, K210_SYSCTL_EN_PERI, 1) \ |
| 160 | GATE(K210_CLK_AI, K210_SYSCTL_EN_PERI, 2) \ |
| 161 | GATE(K210_CLK_DVP, K210_SYSCTL_EN_PERI, 3) \ |
| 162 | GATE(K210_CLK_FFT, K210_SYSCTL_EN_PERI, 4) \ |
| 163 | GATE(K210_CLK_GPIO, K210_SYSCTL_EN_PERI, 5) \ |
| 164 | GATE(K210_CLK_SPI0, K210_SYSCTL_EN_PERI, 6) \ |
| 165 | GATE(K210_CLK_SPI1, K210_SYSCTL_EN_PERI, 7) \ |
| 166 | GATE(K210_CLK_SPI2, K210_SYSCTL_EN_PERI, 8) \ |
| 167 | GATE(K210_CLK_SPI3, K210_SYSCTL_EN_PERI, 9) \ |
| 168 | GATE(K210_CLK_I2S0, K210_SYSCTL_EN_PERI, 10) \ |
| 169 | GATE(K210_CLK_I2S1, K210_SYSCTL_EN_PERI, 11) \ |
| 170 | GATE(K210_CLK_I2S2, K210_SYSCTL_EN_PERI, 12) \ |
| 171 | GATE(K210_CLK_I2C0, K210_SYSCTL_EN_PERI, 13) \ |
| 172 | GATE(K210_CLK_I2C1, K210_SYSCTL_EN_PERI, 14) \ |
| 173 | GATE(K210_CLK_I2C2, K210_SYSCTL_EN_PERI, 15) \ |
| 174 | GATE(K210_CLK_UART1, K210_SYSCTL_EN_PERI, 16) \ |
| 175 | GATE(K210_CLK_UART2, K210_SYSCTL_EN_PERI, 17) \ |
| 176 | GATE(K210_CLK_UART3, K210_SYSCTL_EN_PERI, 18) \ |
| 177 | GATE(K210_CLK_AES, K210_SYSCTL_EN_PERI, 19) \ |
| 178 | GATE(K210_CLK_FPIOA, K210_SYSCTL_EN_PERI, 20) \ |
| 179 | GATE(K210_CLK_TIMER0, K210_SYSCTL_EN_PERI, 21) \ |
| 180 | GATE(K210_CLK_TIMER1, K210_SYSCTL_EN_PERI, 22) \ |
| 181 | GATE(K210_CLK_TIMER2, K210_SYSCTL_EN_PERI, 23) \ |
| 182 | GATE(K210_CLK_WDT0, K210_SYSCTL_EN_PERI, 24) \ |
| 183 | GATE(K210_CLK_WDT1, K210_SYSCTL_EN_PERI, 25) \ |
| 184 | GATE(K210_CLK_SHA, K210_SYSCTL_EN_PERI, 26) \ |
| 185 | GATE(K210_CLK_OTP, K210_SYSCTL_EN_PERI, 27) \ |
| 186 | GATE(K210_CLK_RTC, K210_SYSCTL_EN_PERI, 29) |
| 187 | |
| 188 | #define _GATEIFY(id) K210_CLK_GATE_##id |
| 189 | #define GATEIFY(id) _GATEIFY(id) |
| 190 | |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 191 | enum k210_gate_id { |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 192 | #define GATE(id, ...) GATEIFY(id), |
| 193 | GATE_LIST |
| 194 | #undef GATE |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 195 | K210_CLK_GATE_NONE, |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 196 | }; |
| 197 | |
| 198 | static const struct k210_gate_params k210_gates[] = { |
| 199 | #define GATE(id, _off, _idx) \ |
| 200 | [GATEIFY(id)] = { \ |
| 201 | .off = (_off), \ |
| 202 | .bit_idx = (_idx), \ |
| 203 | }, |
| 204 | GATE_LIST |
| 205 | #undef GATE |
| 206 | }; |
| 207 | |
| 208 | #undef GATE_LIST |
| 209 | |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 210 | /* The most parents is PLL2 */ |
| 211 | #define K210_CLK_MAX_PARENTS 3 |
| 212 | |
| 213 | /** |
| 214 | * struct k210_mux_params - Parameters for muxed clocks |
| 215 | * @parents: A list of parent clock ids |
| 216 | * @num_parents: The number of parent clocks |
| 217 | * @off: The offset of the mux from the base sysctl address |
| 218 | * @shift: The offset of the LSB of the mux selector |
| 219 | * @width: The number of bits in the mux selector |
| 220 | */ |
| 221 | struct k210_mux_params { |
| 222 | u8 parents[K210_CLK_MAX_PARENTS]; |
| 223 | u8 num_parents; |
| 224 | u8 off; |
| 225 | u8 shift; |
| 226 | u8 width; |
| 227 | }; |
| 228 | |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 229 | #define MUX(id, reg, shift, width) \ |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 230 | MUX_PARENTS(id, reg, shift, width, K210_CLK_IN0, K210_CLK_PLL0) |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 231 | #define MUX_LIST \ |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 232 | MUX_PARENTS(K210_CLK_PLL2, K210_SYSCTL_PLL2, 26, 2, \ |
| 233 | K210_CLK_IN0, K210_CLK_PLL0, K210_CLK_PLL1) \ |
| 234 | MUX(K210_CLK_ACLK, K210_SYSCTL_SEL0, 0, 1) \ |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 235 | MUX(K210_CLK_SPI3, K210_SYSCTL_SEL0, 12, 1) \ |
| 236 | MUX(K210_CLK_TIMER0, K210_SYSCTL_SEL0, 13, 1) \ |
| 237 | MUX(K210_CLK_TIMER1, K210_SYSCTL_SEL0, 14, 1) \ |
| 238 | MUX(K210_CLK_TIMER2, K210_SYSCTL_SEL0, 15, 1) |
| 239 | |
| 240 | #define _MUXIFY(id) K210_CLK_MUX_##id |
| 241 | #define MUXIFY(id) _MUXIFY(id) |
| 242 | |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 243 | enum k210_mux_id { |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 244 | #define MUX_PARENTS(id, ...) MUXIFY(id), |
| 245 | MUX_LIST |
| 246 | #undef MUX_PARENTS |
| 247 | K210_CLK_MUX_NONE, |
| 248 | }; |
| 249 | |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 250 | static const struct k210_mux_params k210_muxes[] = { |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 251 | #define MUX_PARENTS(id, _off, _shift, _width, ...) \ |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 252 | [MUXIFY(id)] = { \ |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 253 | .parents = { __VA_ARGS__ }, \ |
| 254 | .num_parents = __count_args(__VA_ARGS__), \ |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 255 | .off = (_off), \ |
| 256 | .shift = (_shift), \ |
| 257 | .width = (_width), \ |
| 258 | }, |
| 259 | MUX_LIST |
| 260 | #undef MUX_PARENTS |
| 261 | }; |
| 262 | |
| 263 | #undef MUX |
| 264 | #undef MUX_LIST |
| 265 | |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 266 | /** |
Sean Anderson | af9f997 | 2021-06-11 00:16:09 -0400 | [diff] [blame] | 267 | * struct k210_pll_params - K210 PLL parameters |
| 268 | * @off: The offset of the PLL from the base sysctl address |
| 269 | * @shift: The offset of the LSB of the lock status |
| 270 | * @width: The number of bits in the lock status |
| 271 | */ |
| 272 | struct k210_pll_params { |
| 273 | u8 off; |
| 274 | u8 shift; |
| 275 | u8 width; |
| 276 | }; |
| 277 | |
| 278 | static const struct k210_pll_params k210_plls[] = { |
| 279 | #define PLL(_off, _shift, _width) { \ |
| 280 | .off = (_off), \ |
| 281 | .shift = (_shift), \ |
| 282 | .width = (_width), \ |
| 283 | } |
| 284 | [0] = PLL(K210_SYSCTL_PLL0, 0, 2), |
| 285 | [1] = PLL(K210_SYSCTL_PLL1, 8, 1), |
| 286 | [2] = PLL(K210_SYSCTL_PLL2, 16, 1), |
| 287 | #undef PLL |
| 288 | }; |
| 289 | |
| 290 | /** |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 291 | * enum k210_clk_flags - The type of a K210 clock |
| 292 | * @K210_CLKF_MUX: This clock has a mux and not a static parent |
| 293 | * @K210_CLKF_PLL: This clock is a PLL |
| 294 | */ |
| 295 | enum k210_clk_flags { |
| 296 | K210_CLKF_MUX = BIT(0), |
| 297 | K210_CLKF_PLL = BIT(1), |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 298 | }; |
| 299 | |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 300 | /** |
| 301 | * struct k210_clk_params - The parameters defining a K210 clock |
| 302 | * @name: The name of the clock |
| 303 | * @flags: A set of &enum k210_clk_flags defining which fields are valid |
| 304 | * @mux: An &enum k210_mux_id of this clock's mux |
| 305 | * @parent: The clock id of this clock's parent |
| 306 | * @pll: The id of the PLL (if this clock is a PLL) |
| 307 | * @div: An &enum k210_div_id of this clock's divider |
| 308 | * @gate: An &enum k210_gate_id of this clock's gate |
| 309 | */ |
| 310 | struct k210_clk_params { |
| 311 | #if CONFIG_IS_ENABLED(CMD_CLK) |
| 312 | const char *name; |
| 313 | #endif |
| 314 | u8 flags; |
| 315 | union { |
| 316 | u8 parent; |
| 317 | u8 mux; |
| 318 | }; |
| 319 | union { |
| 320 | u8 pll; |
| 321 | struct { |
| 322 | u8 div; |
| 323 | u8 gate; |
| 324 | }; |
| 325 | }; |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 326 | }; |
| 327 | |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 328 | static const struct k210_clk_params k210_clks[] = { |
| 329 | #if CONFIG_IS_ENABLED(CMD_CLK) |
| 330 | #define NAME(_name) .name = (_name), |
| 331 | #else |
| 332 | #define NAME(name) |
| 333 | #endif |
| 334 | #define CLK(id, _name, _parent, _div, _gate) \ |
| 335 | [id] = { \ |
| 336 | NAME(_name) \ |
| 337 | .parent = (_parent), \ |
| 338 | .div = (_div), \ |
| 339 | .gate = (_gate), \ |
| 340 | } |
| 341 | #define CLK_MUX(id, _name, _mux, _div, _gate) \ |
| 342 | [id] = { \ |
| 343 | NAME(_name) \ |
| 344 | .flags = K210_CLKF_MUX, \ |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 345 | .mux = (_mux), \ |
| 346 | .div = (_div), \ |
| 347 | .gate = (_gate), \ |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 348 | } |
| 349 | #define CLK_PLL(id, _pll, _parent) \ |
| 350 | [id] = { \ |
| 351 | NAME("pll" #_pll) \ |
| 352 | .flags = K210_CLKF_PLL, \ |
| 353 | .parent = (_parent), \ |
| 354 | .pll = (_pll), \ |
| 355 | } |
| 356 | #define CLK_FULL(id, name) \ |
| 357 | CLK_MUX(id, name, MUXIFY(id), DIVIFY(id), GATEIFY(id)) |
| 358 | #define CLK_NOMUX(id, name, parent) \ |
| 359 | CLK(id, name, parent, DIVIFY(id), GATEIFY(id)) |
| 360 | #define CLK_DIV(id, name, parent) \ |
| 361 | CLK(id, name, parent, DIVIFY(id), K210_CLK_GATE_NONE) |
| 362 | #define CLK_GATE(id, name, parent) \ |
| 363 | CLK(id, name, parent, K210_CLK_DIV_NONE, GATEIFY(id)) |
| 364 | CLK_PLL(K210_CLK_PLL0, 0, K210_CLK_IN0), |
| 365 | CLK_PLL(K210_CLK_PLL1, 1, K210_CLK_IN0), |
| 366 | [K210_CLK_PLL2] = { |
| 367 | NAME("pll2") |
| 368 | .flags = K210_CLKF_MUX | K210_CLKF_PLL, |
| 369 | .mux = MUXIFY(K210_CLK_PLL2), |
| 370 | .pll = 2, |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 371 | }, |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 372 | CLK_MUX(K210_CLK_ACLK, "aclk", MUXIFY(K210_CLK_ACLK), |
| 373 | DIVIFY(K210_CLK_ACLK), K210_CLK_GATE_NONE), |
| 374 | CLK_FULL(K210_CLK_SPI3, "spi3"), |
| 375 | CLK_FULL(K210_CLK_TIMER0, "timer0"), |
| 376 | CLK_FULL(K210_CLK_TIMER1, "timer1"), |
| 377 | CLK_FULL(K210_CLK_TIMER2, "timer2"), |
| 378 | CLK_NOMUX(K210_CLK_SRAM0, "sram0", K210_CLK_ACLK), |
| 379 | CLK_NOMUX(K210_CLK_SRAM1, "sram1", K210_CLK_ACLK), |
| 380 | CLK_NOMUX(K210_CLK_ROM, "rom", K210_CLK_ACLK), |
| 381 | CLK_NOMUX(K210_CLK_DVP, "dvp", K210_CLK_ACLK), |
| 382 | CLK_NOMUX(K210_CLK_APB0, "apb0", K210_CLK_ACLK), |
| 383 | CLK_NOMUX(K210_CLK_APB1, "apb1", K210_CLK_ACLK), |
| 384 | CLK_NOMUX(K210_CLK_APB2, "apb2", K210_CLK_ACLK), |
| 385 | CLK_NOMUX(K210_CLK_AI, "ai", K210_CLK_PLL1), |
| 386 | CLK_NOMUX(K210_CLK_I2S0, "i2s0", K210_CLK_PLL2), |
| 387 | CLK_NOMUX(K210_CLK_I2S1, "i2s1", K210_CLK_PLL2), |
| 388 | CLK_NOMUX(K210_CLK_I2S2, "i2s2", K210_CLK_PLL2), |
| 389 | CLK_NOMUX(K210_CLK_WDT0, "wdt0", K210_CLK_IN0), |
| 390 | CLK_NOMUX(K210_CLK_WDT1, "wdt1", K210_CLK_IN0), |
| 391 | CLK_NOMUX(K210_CLK_SPI0, "spi0", K210_CLK_PLL0), |
| 392 | CLK_NOMUX(K210_CLK_SPI1, "spi1", K210_CLK_PLL0), |
| 393 | CLK_NOMUX(K210_CLK_SPI2, "spi2", K210_CLK_PLL0), |
| 394 | CLK_NOMUX(K210_CLK_I2C0, "i2c0", K210_CLK_PLL0), |
| 395 | CLK_NOMUX(K210_CLK_I2C1, "i2c1", K210_CLK_PLL0), |
| 396 | CLK_NOMUX(K210_CLK_I2C2, "i2c2", K210_CLK_PLL0), |
| 397 | CLK_DIV(K210_CLK_I2S0_M, "i2s0_m", K210_CLK_PLL2), |
| 398 | CLK_DIV(K210_CLK_I2S1_M, "i2s1_m", K210_CLK_PLL2), |
| 399 | CLK_DIV(K210_CLK_I2S2_M, "i2s2_m", K210_CLK_PLL2), |
| 400 | CLK_DIV(K210_CLK_CLINT, "clint", K210_CLK_ACLK), |
| 401 | CLK_GATE(K210_CLK_CPU, "cpu", K210_CLK_ACLK), |
| 402 | CLK_GATE(K210_CLK_DMA, "dma", K210_CLK_ACLK), |
| 403 | CLK_GATE(K210_CLK_FFT, "fft", K210_CLK_ACLK), |
| 404 | CLK_GATE(K210_CLK_GPIO, "gpio", K210_CLK_APB0), |
| 405 | CLK_GATE(K210_CLK_UART1, "uart1", K210_CLK_APB0), |
| 406 | CLK_GATE(K210_CLK_UART2, "uart2", K210_CLK_APB0), |
| 407 | CLK_GATE(K210_CLK_UART3, "uart3", K210_CLK_APB0), |
| 408 | CLK_GATE(K210_CLK_FPIOA, "fpioa", K210_CLK_APB0), |
| 409 | CLK_GATE(K210_CLK_SHA, "sha", K210_CLK_APB0), |
| 410 | CLK_GATE(K210_CLK_AES, "aes", K210_CLK_APB1), |
| 411 | CLK_GATE(K210_CLK_OTP, "otp", K210_CLK_APB1), |
| 412 | CLK_GATE(K210_CLK_RTC, "rtc", K210_CLK_IN0), |
| 413 | #undef NAME |
| 414 | #undef CLK_PLL |
| 415 | #undef CLK |
| 416 | #undef CLK_FULL |
| 417 | #undef CLK_NOMUX |
| 418 | #undef CLK_DIV |
| 419 | #undef CLK_GATE |
| 420 | #undef CLK_LIST |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 421 | }; |
| 422 | |
Sean Anderson | af9f997 | 2021-06-11 00:16:09 -0400 | [diff] [blame] | 423 | #define K210_PLL_CLKR GENMASK(3, 0) |
| 424 | #define K210_PLL_CLKF GENMASK(9, 4) |
| 425 | #define K210_PLL_CLKOD GENMASK(13, 10) /* Output Divider */ |
| 426 | #define K210_PLL_BWADJ GENMASK(19, 14) /* BandWidth Adjust */ |
| 427 | #define K210_PLL_RESET BIT(20) |
| 428 | #define K210_PLL_PWRD BIT(21) /* PoWeReD */ |
| 429 | #define K210_PLL_INTFB BIT(22) /* Internal FeedBack */ |
| 430 | #define K210_PLL_BYPASS BIT(23) |
| 431 | #define K210_PLL_TEST BIT(24) |
| 432 | #define K210_PLL_EN BIT(25) |
| 433 | #define K210_PLL_TEST_EN BIT(26) |
| 434 | |
| 435 | #define K210_PLL_LOCK 0 |
| 436 | #define K210_PLL_CLEAR_SLIP 2 |
| 437 | #define K210_PLL_TEST_OUT 3 |
| 438 | |
| 439 | #ifdef CONFIG_CLK_K210_SET_RATE |
| 440 | static int k210_pll_enable(struct k210_clk_priv *priv, int id); |
| 441 | static int k210_pll_disable(struct k210_clk_priv *priv, int id); |
| 442 | static ulong k210_pll_get_rate(struct k210_clk_priv *priv, int id, ulong rate_in); |
| 443 | |
| 444 | /* |
| 445 | * The PLL included with the Kendryte K210 appears to be a True Circuits, Inc. |
| 446 | * General-Purpose PLL. The logical layout of the PLL with internal feedback is |
| 447 | * approximately the following: |
| 448 | * |
| 449 | * +---------------+ |
| 450 | * |reference clock| |
| 451 | * +---------------+ |
| 452 | * | |
| 453 | * v |
| 454 | * +--+ |
| 455 | * |/r| |
| 456 | * +--+ |
| 457 | * | |
| 458 | * v |
| 459 | * +-------------+ |
| 460 | * |divided clock| |
| 461 | * +-------------+ |
| 462 | * | |
| 463 | * v |
| 464 | * +--------------+ |
| 465 | * |phase detector|<---+ |
| 466 | * +--------------+ | |
| 467 | * | | |
| 468 | * v +--------------+ |
| 469 | * +---+ |feedback clock| |
| 470 | * |VCO| +--------------+ |
| 471 | * +---+ ^ |
| 472 | * | +--+ | |
| 473 | * +--->|/f|---+ |
| 474 | * | +--+ |
| 475 | * v |
| 476 | * +---+ |
| 477 | * |/od| |
| 478 | * +---+ |
| 479 | * | |
| 480 | * v |
| 481 | * +------+ |
| 482 | * |output| |
| 483 | * +------+ |
| 484 | * |
| 485 | * The k210 PLLs have three factors: r, f, and od. Because of the feedback mode, |
| 486 | * the effect of the division by f is to multiply the input frequency. The |
| 487 | * equation for the output rate is |
| 488 | * rate = (rate_in * f) / (r * od). |
| 489 | * Moving knowns to one side of the equation, we get |
| 490 | * rate / rate_in = f / (r * od) |
| 491 | * Rearranging slightly, |
| 492 | * abs_error = abs((rate / rate_in) - (f / (r * od))). |
| 493 | * To get relative, error, we divide by the expected ratio |
| 494 | * error = abs((rate / rate_in) - (f / (r * od))) / (rate / rate_in). |
| 495 | * Simplifying, |
| 496 | * error = abs(1 - f / (r * od)) / (rate / rate_in) |
| 497 | * error = abs(1 - (f * rate_in) / (r * od * rate)) |
| 498 | * Using the constants ratio = rate / rate_in and inv_ratio = rate_in / rate, |
| 499 | * error = abs((f * inv_ratio) / (r * od) - 1) |
| 500 | * This is the error used in evaluating parameters. |
| 501 | * |
| 502 | * r and od are four bits each, while f is six bits. Because r and od are |
| 503 | * multiplied together, instead of the full 256 values possible if both bits |
| 504 | * were used fully, there are only 97 distinct products. Combined with f, there |
| 505 | * are 6208 theoretical settings for the PLL. However, most of these settings |
| 506 | * can be ruled out immediately because they do not have the correct ratio. |
| 507 | * |
| 508 | * In addition to the constraint of approximating the desired ratio, parameters |
| 509 | * must also keep internal pll frequencies within acceptable ranges. The divided |
| 510 | * clock's minimum and maximum frequencies have a ratio of around 128. This |
| 511 | * leaves fairly substantial room to work with, especially since the only |
| 512 | * affected parameter is r. The VCO's minimum and maximum frequency have a ratio |
| 513 | * of 5, which is considerably more restrictive. |
| 514 | * |
| 515 | * The r and od factors are stored in a table. This is to make it easy to find |
| 516 | * the next-largest product. Some products have multiple factorizations, but |
| 517 | * only when one factor has at least a 2.5x ratio to the factors of the other |
| 518 | * factorization. This is because any smaller ratio would not make a difference |
| 519 | * when ensuring the VCO's frequency is within spec. |
| 520 | * |
| 521 | * Throughout the calculation function, fixed point arithmetic is used. Because |
| 522 | * the range of rate and rate_in may be up to 1.75 GHz, or around 2^30, 64-bit |
| 523 | * 32.32 fixed-point numbers are used to represent ratios. In general, to |
| 524 | * implement division, the numerator is first multiplied by 2^32. This gives a |
| 525 | * result where the whole number part is in the upper 32 bits, and the fraction |
| 526 | * is in the lower 32 bits. |
| 527 | * |
| 528 | * In general, rounding is done to the closest integer. This helps find the best |
| 529 | * approximation for the ratio. Rounding in one direction (e.g down) could cause |
| 530 | * the function to miss a better ratio with one of the parameters increased by |
| 531 | * one. |
| 532 | */ |
| 533 | |
| 534 | /* |
| 535 | * The factors table was generated with the following python code: |
| 536 | * |
| 537 | * def p(x, y): |
| 538 | * return (1.0*x/y > 2.5) or (1.0*y/x > 2.5) |
| 539 | * |
| 540 | * factors = {} |
| 541 | * for i in range(1, 17): |
| 542 | * for j in range(1, 17): |
| 543 | * fs = factors.get(i*j) or [] |
| 544 | * if fs == [] or all([ |
| 545 | * (p(i, x) and p(i, y)) or (p(j, x) and p(j, y)) |
| 546 | * for (x, y) in fs]): |
| 547 | * fs.append((i, j)) |
| 548 | * factors[i*j] = fs |
| 549 | * |
| 550 | * for k, l in sorted(factors.items()): |
| 551 | * for v in l: |
| 552 | * print("PACK(%s, %s)," % v) |
| 553 | */ |
| 554 | #define PACK(r, od) (((((r) - 1) & 0xF) << 4) | (((od) - 1) & 0xF)) |
| 555 | #define UNPACK_R(val) ((((val) >> 4) & 0xF) + 1) |
| 556 | #define UNPACK_OD(val) (((val) & 0xF) + 1) |
| 557 | static const u8 factors[] = { |
| 558 | PACK(1, 1), |
| 559 | PACK(1, 2), |
| 560 | PACK(1, 3), |
| 561 | PACK(1, 4), |
| 562 | PACK(1, 5), |
| 563 | PACK(1, 6), |
| 564 | PACK(1, 7), |
| 565 | PACK(1, 8), |
| 566 | PACK(1, 9), |
| 567 | PACK(3, 3), |
| 568 | PACK(1, 10), |
| 569 | PACK(1, 11), |
| 570 | PACK(1, 12), |
| 571 | PACK(3, 4), |
| 572 | PACK(1, 13), |
| 573 | PACK(1, 14), |
| 574 | PACK(1, 15), |
| 575 | PACK(3, 5), |
| 576 | PACK(1, 16), |
| 577 | PACK(4, 4), |
| 578 | PACK(2, 9), |
| 579 | PACK(2, 10), |
| 580 | PACK(3, 7), |
| 581 | PACK(2, 11), |
| 582 | PACK(2, 12), |
| 583 | PACK(5, 5), |
| 584 | PACK(2, 13), |
| 585 | PACK(3, 9), |
| 586 | PACK(2, 14), |
| 587 | PACK(2, 15), |
| 588 | PACK(2, 16), |
| 589 | PACK(3, 11), |
| 590 | PACK(5, 7), |
| 591 | PACK(3, 12), |
| 592 | PACK(3, 13), |
| 593 | PACK(4, 10), |
| 594 | PACK(3, 14), |
| 595 | PACK(4, 11), |
| 596 | PACK(3, 15), |
| 597 | PACK(3, 16), |
| 598 | PACK(7, 7), |
| 599 | PACK(5, 10), |
| 600 | PACK(4, 13), |
| 601 | PACK(6, 9), |
| 602 | PACK(5, 11), |
| 603 | PACK(4, 14), |
| 604 | PACK(4, 15), |
| 605 | PACK(7, 9), |
| 606 | PACK(4, 16), |
| 607 | PACK(5, 13), |
| 608 | PACK(6, 11), |
| 609 | PACK(5, 14), |
| 610 | PACK(6, 12), |
| 611 | PACK(5, 15), |
| 612 | PACK(7, 11), |
| 613 | PACK(6, 13), |
| 614 | PACK(5, 16), |
| 615 | PACK(9, 9), |
| 616 | PACK(6, 14), |
| 617 | PACK(8, 11), |
| 618 | PACK(6, 15), |
| 619 | PACK(7, 13), |
| 620 | PACK(6, 16), |
| 621 | PACK(7, 14), |
| 622 | PACK(9, 11), |
| 623 | PACK(10, 10), |
| 624 | PACK(8, 13), |
| 625 | PACK(7, 15), |
| 626 | PACK(9, 12), |
| 627 | PACK(10, 11), |
| 628 | PACK(7, 16), |
| 629 | PACK(9, 13), |
| 630 | PACK(8, 15), |
| 631 | PACK(11, 11), |
| 632 | PACK(9, 14), |
| 633 | PACK(8, 16), |
| 634 | PACK(10, 13), |
| 635 | PACK(11, 12), |
| 636 | PACK(9, 15), |
| 637 | PACK(10, 14), |
| 638 | PACK(11, 13), |
| 639 | PACK(9, 16), |
| 640 | PACK(10, 15), |
| 641 | PACK(11, 14), |
| 642 | PACK(12, 13), |
| 643 | PACK(10, 16), |
| 644 | PACK(11, 15), |
| 645 | PACK(12, 14), |
| 646 | PACK(13, 13), |
| 647 | PACK(11, 16), |
| 648 | PACK(12, 15), |
| 649 | PACK(13, 14), |
| 650 | PACK(12, 16), |
| 651 | PACK(13, 15), |
| 652 | PACK(14, 14), |
| 653 | PACK(13, 16), |
| 654 | PACK(14, 15), |
| 655 | PACK(14, 16), |
| 656 | PACK(15, 15), |
| 657 | PACK(15, 16), |
| 658 | PACK(16, 16), |
| 659 | }; |
| 660 | |
| 661 | TEST_STATIC int k210_pll_calc_config(u32 rate, u32 rate_in, |
| 662 | struct k210_pll_config *best) |
| 663 | { |
| 664 | int i; |
| 665 | s64 error, best_error; |
| 666 | u64 ratio, inv_ratio; /* fixed point 32.32 ratio of the rates */ |
| 667 | u64 max_r; |
| 668 | u64 r, f, od; |
| 669 | |
| 670 | /* |
| 671 | * Can't go over 1.75 GHz or under 21.25 MHz due to limitations on the |
| 672 | * VCO frequency. These are not the same limits as below because od can |
| 673 | * reduce the output frequency by 16. |
| 674 | */ |
| 675 | if (rate > 1750000000 || rate < 21250000) |
| 676 | return -EINVAL; |
| 677 | |
| 678 | /* Similar restrictions on the input rate */ |
| 679 | if (rate_in > 1750000000 || rate_in < 13300000) |
| 680 | return -EINVAL; |
| 681 | |
| 682 | ratio = DIV_ROUND_CLOSEST_ULL((u64)rate << 32, rate_in); |
| 683 | inv_ratio = DIV_ROUND_CLOSEST_ULL((u64)rate_in << 32, rate); |
| 684 | /* Can't increase by more than 64 or reduce by more than 256 */ |
| 685 | if (rate > rate_in && ratio > (64ULL << 32)) |
| 686 | return -EINVAL; |
| 687 | else if (rate <= rate_in && inv_ratio > (256ULL << 32)) |
| 688 | return -EINVAL; |
| 689 | |
| 690 | /* |
| 691 | * The divided clock (rate_in / r) must stay between 1.75 GHz and 13.3 |
| 692 | * MHz. There is no minimum, since the only way to get a higher input |
| 693 | * clock than 26 MHz is to use a clock generated by a PLL. Because PLLs |
| 694 | * cannot output frequencies greater than 1.75 GHz, the minimum would |
| 695 | * never be greater than one. |
| 696 | */ |
| 697 | max_r = DIV_ROUND_DOWN_ULL(rate_in, 13300000); |
| 698 | |
| 699 | /* Variables get immediately incremented, so start at -1th iteration */ |
| 700 | i = -1; |
| 701 | f = 0; |
| 702 | r = 0; |
| 703 | od = 0; |
| 704 | best_error = S64_MAX; |
| 705 | error = best_error; |
| 706 | /* do-while here so we always try at least one ratio */ |
| 707 | do { |
| 708 | /* |
| 709 | * Whether we swapped r and od while enforcing frequency limits |
| 710 | */ |
| 711 | bool swapped = false; |
Sean Anderson | 4970874 | 2021-09-11 13:20:01 -0400 | [diff] [blame] | 712 | /* |
| 713 | * Whether the intermediate frequencies are out-of-spec |
| 714 | */ |
| 715 | bool out_of_spec; |
Sean Anderson | af9f997 | 2021-06-11 00:16:09 -0400 | [diff] [blame] | 716 | u64 last_od = od; |
| 717 | u64 last_r = r; |
| 718 | |
| 719 | /* |
| 720 | * Try the next largest value for f (or r and od) and |
| 721 | * recalculate the other parameters based on that |
| 722 | */ |
| 723 | if (rate > rate_in) { |
| 724 | /* |
| 725 | * Skip factors of the same product if we already tried |
| 726 | * out that product |
| 727 | */ |
| 728 | do { |
| 729 | i++; |
| 730 | r = UNPACK_R(factors[i]); |
| 731 | od = UNPACK_OD(factors[i]); |
| 732 | } while (i + 1 < ARRAY_SIZE(factors) && |
| 733 | r * od == last_r * last_od); |
| 734 | |
| 735 | /* Round close */ |
| 736 | f = (r * od * ratio + BIT(31)) >> 32; |
| 737 | if (f > 64) |
| 738 | f = 64; |
| 739 | } else { |
| 740 | u64 tmp = ++f * inv_ratio; |
| 741 | bool round_up = !!(tmp & BIT(31)); |
| 742 | u32 goal = (tmp >> 32) + round_up; |
| 743 | u32 err, last_err; |
| 744 | |
| 745 | /* Get the next r/od pair in factors */ |
| 746 | while (r * od < goal && i + 1 < ARRAY_SIZE(factors)) { |
| 747 | i++; |
| 748 | r = UNPACK_R(factors[i]); |
| 749 | od = UNPACK_OD(factors[i]); |
| 750 | } |
| 751 | |
| 752 | /* |
| 753 | * This is a case of double rounding. If we rounded up |
| 754 | * above, we need to round down (in cases of ties) here. |
| 755 | * This prevents off-by-one errors resulting from |
| 756 | * choosing X+2 over X when X.Y rounds up to X+1 and |
| 757 | * there is no r * od = X+1. For the converse, when X.Y |
| 758 | * is rounded down to X, we should choose X+1 over X-1. |
| 759 | */ |
| 760 | err = abs(r * od - goal); |
| 761 | last_err = abs(last_r * last_od - goal); |
| 762 | if (last_err < err || (round_up && last_err == err)) { |
| 763 | i--; |
| 764 | r = last_r; |
| 765 | od = last_od; |
| 766 | } |
| 767 | } |
| 768 | |
| 769 | /* |
| 770 | * Enforce limits on internal clock frequencies. If we |
| 771 | * aren't in spec, try swapping r and od. If everything is |
| 772 | * in-spec, calculate the relative error. |
| 773 | */ |
Sean Anderson | 4970874 | 2021-09-11 13:20:01 -0400 | [diff] [blame] | 774 | again: |
| 775 | out_of_spec = false; |
| 776 | if (r > max_r) { |
| 777 | out_of_spec = true; |
| 778 | } else { |
Sean Anderson | af9f997 | 2021-06-11 00:16:09 -0400 | [diff] [blame] | 779 | /* |
Sean Anderson | 4970874 | 2021-09-11 13:20:01 -0400 | [diff] [blame] | 780 | * There is no way to only divide once; we need |
| 781 | * to examine the frequency with and without the |
| 782 | * effect of od. |
Sean Anderson | af9f997 | 2021-06-11 00:16:09 -0400 | [diff] [blame] | 783 | */ |
Sean Anderson | 4970874 | 2021-09-11 13:20:01 -0400 | [diff] [blame] | 784 | u64 vco = DIV_ROUND_CLOSEST_ULL(rate_in * f, r); |
Sean Anderson | af9f997 | 2021-06-11 00:16:09 -0400 | [diff] [blame] | 785 | |
Sean Anderson | 4970874 | 2021-09-11 13:20:01 -0400 | [diff] [blame] | 786 | if (vco > 1750000000 || vco < 340000000) |
Sean Anderson | af9f997 | 2021-06-11 00:16:09 -0400 | [diff] [blame] | 787 | out_of_spec = true; |
Sean Anderson | 4970874 | 2021-09-11 13:20:01 -0400 | [diff] [blame] | 788 | } |
Sean Anderson | af9f997 | 2021-06-11 00:16:09 -0400 | [diff] [blame] | 789 | |
Sean Anderson | 4970874 | 2021-09-11 13:20:01 -0400 | [diff] [blame] | 790 | if (out_of_spec) { |
| 791 | u64 new_r, new_od; |
| 792 | |
| 793 | if (!swapped) { |
| 794 | u64 tmp = r; |
| 795 | |
| 796 | r = od; |
| 797 | od = tmp; |
| 798 | swapped = true; |
| 799 | goto again; |
Sean Anderson | af9f997 | 2021-06-11 00:16:09 -0400 | [diff] [blame] | 800 | } |
| 801 | |
Sean Anderson | 4970874 | 2021-09-11 13:20:01 -0400 | [diff] [blame] | 802 | /* |
| 803 | * Try looking ahead to see if there are additional |
| 804 | * factors for the same product. |
| 805 | */ |
| 806 | if (i + 1 < ARRAY_SIZE(factors)) { |
| 807 | i++; |
| 808 | new_r = UNPACK_R(factors[i]); |
| 809 | new_od = UNPACK_OD(factors[i]); |
| 810 | if (r * od == new_r * new_od) { |
| 811 | r = new_r; |
| 812 | od = new_od; |
| 813 | swapped = false; |
| 814 | goto again; |
Sean Anderson | af9f997 | 2021-06-11 00:16:09 -0400 | [diff] [blame] | 815 | } |
Sean Anderson | 4970874 | 2021-09-11 13:20:01 -0400 | [diff] [blame] | 816 | i--; |
Sean Anderson | af9f997 | 2021-06-11 00:16:09 -0400 | [diff] [blame] | 817 | } |
| 818 | |
Sean Anderson | 425c08f | 2021-09-11 13:20:03 -0400 | [diff] [blame] | 819 | /* |
| 820 | * Try looking back to see if there is a worse ratio |
| 821 | * that we could try anyway |
| 822 | */ |
| 823 | while (i > 0) { |
| 824 | i--; |
| 825 | new_r = UNPACK_R(factors[i]); |
| 826 | new_od = UNPACK_OD(factors[i]); |
| 827 | /* |
| 828 | * Don't loop over factors for the same product |
| 829 | * to avoid getting stuck because of the above |
| 830 | * clause |
| 831 | */ |
| 832 | if (r * od != new_r * new_od) { |
| 833 | if (new_r * new_od > last_r * last_od) { |
| 834 | r = new_r; |
| 835 | od = new_od; |
| 836 | swapped = false; |
| 837 | goto again; |
| 838 | } |
| 839 | break; |
| 840 | } |
| 841 | } |
| 842 | |
Sean Anderson | 4970874 | 2021-09-11 13:20:01 -0400 | [diff] [blame] | 843 | /* We ran out of things to try */ |
| 844 | continue; |
| 845 | } |
Sean Anderson | af9f997 | 2021-06-11 00:16:09 -0400 | [diff] [blame] | 846 | |
Sean Anderson | 4970874 | 2021-09-11 13:20:01 -0400 | [diff] [blame] | 847 | error = DIV_ROUND_CLOSEST_ULL(f * inv_ratio, r * od); |
| 848 | /* The lower 16 bits are spurious */ |
| 849 | error = abs((error - BIT(32))) >> 16; |
| 850 | |
| 851 | if (error < best_error) { |
| 852 | best->r = r; |
| 853 | best->f = f; |
| 854 | best->od = od; |
| 855 | best_error = error; |
Sean Anderson | af9f997 | 2021-06-11 00:16:09 -0400 | [diff] [blame] | 856 | } |
| 857 | } while (f < 64 && i + 1 < ARRAY_SIZE(factors) && error != 0); |
| 858 | |
Sean Anderson | 4970874 | 2021-09-11 13:20:01 -0400 | [diff] [blame] | 859 | log_debug("best error %lld\n", best_error); |
Sean Anderson | af9f997 | 2021-06-11 00:16:09 -0400 | [diff] [blame] | 860 | if (best_error == S64_MAX) |
| 861 | return -EINVAL; |
| 862 | |
Sean Anderson | af9f997 | 2021-06-11 00:16:09 -0400 | [diff] [blame] | 863 | return 0; |
| 864 | } |
| 865 | |
| 866 | static ulong k210_pll_set_rate(struct k210_clk_priv *priv, int id, ulong rate, |
| 867 | ulong rate_in) |
| 868 | { |
| 869 | int err; |
| 870 | const struct k210_pll_params *pll = &k210_plls[id]; |
| 871 | struct k210_pll_config config = {}; |
| 872 | u32 reg; |
Sean Anderson | df79e2b | 2021-06-11 00:16:12 -0400 | [diff] [blame] | 873 | ulong calc_rate; |
Sean Anderson | af9f997 | 2021-06-11 00:16:09 -0400 | [diff] [blame] | 874 | |
Sean Anderson | af9f997 | 2021-06-11 00:16:09 -0400 | [diff] [blame] | 875 | err = k210_pll_calc_config(rate, rate_in, &config); |
| 876 | if (err) |
| 877 | return err; |
| 878 | log_debug("Got r=%u f=%u od=%u\n", config.r, config.f, config.od); |
| 879 | |
Sean Anderson | df79e2b | 2021-06-11 00:16:12 -0400 | [diff] [blame] | 880 | /* Don't bother setting the rate if we're already at that rate */ |
| 881 | calc_rate = DIV_ROUND_DOWN_ULL(((u64)rate_in) * config.f, |
| 882 | config.r * config.od); |
| 883 | if (calc_rate == k210_pll_get_rate(priv, id, rate)) |
| 884 | return calc_rate; |
| 885 | |
Sean Anderson | af9f997 | 2021-06-11 00:16:09 -0400 | [diff] [blame] | 886 | k210_pll_disable(priv, id); |
| 887 | |
| 888 | reg = readl(priv->base + pll->off); |
| 889 | reg &= ~K210_PLL_CLKR |
| 890 | & ~K210_PLL_CLKF |
| 891 | & ~K210_PLL_CLKOD |
| 892 | & ~K210_PLL_BWADJ; |
| 893 | reg |= FIELD_PREP(K210_PLL_CLKR, config.r - 1) |
| 894 | | FIELD_PREP(K210_PLL_CLKF, config.f - 1) |
| 895 | | FIELD_PREP(K210_PLL_CLKOD, config.od - 1) |
| 896 | | FIELD_PREP(K210_PLL_BWADJ, config.f - 1); |
| 897 | writel(reg, priv->base + pll->off); |
| 898 | |
Sean Anderson | df79e2b | 2021-06-11 00:16:12 -0400 | [diff] [blame] | 899 | k210_pll_enable(priv, id); |
Sean Anderson | af9f997 | 2021-06-11 00:16:09 -0400 | [diff] [blame] | 900 | |
| 901 | serial_setbrg(); |
| 902 | return k210_pll_get_rate(priv, id, rate); |
| 903 | } |
| 904 | #else |
| 905 | static ulong k210_pll_set_rate(struct k210_clk_priv *priv, int id, ulong rate, |
| 906 | ulong rate_in) |
| 907 | { |
| 908 | return -ENOSYS; |
| 909 | } |
| 910 | #endif /* CONFIG_CLK_K210_SET_RATE */ |
| 911 | |
| 912 | static ulong k210_pll_get_rate(struct k210_clk_priv *priv, int id, |
| 913 | ulong rate_in) |
| 914 | { |
| 915 | u64 r, f, od; |
| 916 | u32 reg = readl(priv->base + k210_plls[id].off); |
| 917 | |
Sean Anderson | 54d5d2d | 2021-09-11 13:20:00 -0400 | [diff] [blame] | 918 | if (reg & K210_PLL_BYPASS) |
Sean Anderson | af9f997 | 2021-06-11 00:16:09 -0400 | [diff] [blame] | 919 | return rate_in; |
| 920 | |
| 921 | if (!(reg & K210_PLL_PWRD)) |
| 922 | return 0; |
| 923 | |
| 924 | r = FIELD_GET(K210_PLL_CLKR, reg) + 1; |
| 925 | f = FIELD_GET(K210_PLL_CLKF, reg) + 1; |
| 926 | od = FIELD_GET(K210_PLL_CLKOD, reg) + 1; |
| 927 | |
| 928 | return DIV_ROUND_DOWN_ULL(((u64)rate_in) * f, r * od); |
| 929 | } |
| 930 | |
| 931 | /* |
| 932 | * Wait for the PLL to be locked. If the PLL is not locked, try clearing the |
| 933 | * slip before retrying |
| 934 | */ |
| 935 | static void k210_pll_waitfor_lock(struct k210_clk_priv *priv, int id) |
| 936 | { |
| 937 | const struct k210_pll_params *pll = &k210_plls[id]; |
| 938 | u32 mask = (BIT(pll->width) - 1) << pll->shift; |
| 939 | |
| 940 | while (true) { |
| 941 | u32 reg = readl(priv->base + K210_SYSCTL_PLL_LOCK); |
| 942 | |
| 943 | if ((reg & mask) == mask) |
| 944 | break; |
| 945 | |
| 946 | reg |= BIT(pll->shift + K210_PLL_CLEAR_SLIP); |
| 947 | writel(reg, priv->base + K210_SYSCTL_PLL_LOCK); |
| 948 | } |
| 949 | } |
| 950 | |
Sean Anderson | 612a833 | 2021-06-11 00:16:10 -0400 | [diff] [blame] | 951 | static bool k210_pll_enabled(u32 reg) |
| 952 | { |
| 953 | return (reg & K210_PLL_PWRD) && (reg & K210_PLL_EN) && |
| 954 | !(reg & K210_PLL_RESET); |
| 955 | } |
| 956 | |
Sean Anderson | af9f997 | 2021-06-11 00:16:09 -0400 | [diff] [blame] | 957 | /* Adapted from sysctl_pll_enable */ |
| 958 | static int k210_pll_enable(struct k210_clk_priv *priv, int id) |
| 959 | { |
| 960 | const struct k210_pll_params *pll = &k210_plls[id]; |
| 961 | u32 reg = readl(priv->base + pll->off); |
| 962 | |
Sean Anderson | 612a833 | 2021-06-11 00:16:10 -0400 | [diff] [blame] | 963 | if (k210_pll_enabled(reg)) |
Sean Anderson | af9f997 | 2021-06-11 00:16:09 -0400 | [diff] [blame] | 964 | return 0; |
| 965 | |
| 966 | reg |= K210_PLL_PWRD; |
| 967 | writel(reg, priv->base + pll->off); |
| 968 | |
| 969 | /* Ensure reset is low before asserting it */ |
| 970 | reg &= ~K210_PLL_RESET; |
| 971 | writel(reg, priv->base + pll->off); |
| 972 | reg |= K210_PLL_RESET; |
| 973 | writel(reg, priv->base + pll->off); |
| 974 | nop(); |
| 975 | nop(); |
| 976 | reg &= ~K210_PLL_RESET; |
| 977 | writel(reg, priv->base + pll->off); |
| 978 | |
| 979 | k210_pll_waitfor_lock(priv, id); |
| 980 | |
| 981 | reg &= ~K210_PLL_BYPASS; |
| 982 | reg |= K210_PLL_EN; |
| 983 | writel(reg, priv->base + pll->off); |
| 984 | |
| 985 | return 0; |
| 986 | } |
| 987 | |
| 988 | static int k210_pll_disable(struct k210_clk_priv *priv, int id) |
| 989 | { |
| 990 | const struct k210_pll_params *pll = &k210_plls[id]; |
| 991 | u32 reg = readl(priv->base + pll->off); |
| 992 | |
| 993 | /* |
| 994 | * Bypassing before powering off is important so child clocks don't stop |
| 995 | * working. This is especially important for pll0, the indirect parent |
| 996 | * of the cpu clock. |
| 997 | */ |
| 998 | reg |= K210_PLL_BYPASS; |
| 999 | writel(reg, priv->base + pll->off); |
| 1000 | |
| 1001 | reg &= ~K210_PLL_PWRD; |
| 1002 | reg &= ~K210_PLL_EN; |
| 1003 | writel(reg, priv->base + pll->off); |
| 1004 | return 0; |
| 1005 | } |
| 1006 | |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 1007 | static u32 k210_clk_readl(struct k210_clk_priv *priv, u8 off, u8 shift, |
| 1008 | u8 width) |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 1009 | { |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 1010 | u32 reg = readl(priv->base + off); |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 1011 | |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 1012 | return (reg >> shift) & (BIT(width) - 1); |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 1013 | } |
| 1014 | |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 1015 | static void k210_clk_writel(struct k210_clk_priv *priv, u8 off, u8 shift, |
| 1016 | u8 width, u32 val) |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 1017 | { |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 1018 | u32 reg = readl(priv->base + off); |
| 1019 | u32 mask = (BIT(width) - 1) << shift; |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 1020 | |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 1021 | reg &= ~mask; |
| 1022 | reg |= mask & (val << shift); |
| 1023 | writel(reg, priv->base + off); |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 1024 | } |
| 1025 | |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 1026 | static int k210_clk_get_parent(struct k210_clk_priv *priv, int id) |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 1027 | { |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 1028 | u32 sel; |
| 1029 | const struct k210_mux_params *mux; |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 1030 | |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 1031 | if (!(k210_clks[id].flags & K210_CLKF_MUX)) |
| 1032 | return k210_clks[id].parent; |
| 1033 | mux = &k210_muxes[k210_clks[id].mux]; |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 1034 | |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 1035 | sel = k210_clk_readl(priv, mux->off, mux->shift, mux->width); |
| 1036 | assert(sel < mux->num_parents); |
| 1037 | return mux->parents[sel]; |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 1038 | } |
| 1039 | |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 1040 | static ulong do_k210_clk_get_rate(struct k210_clk_priv *priv, int id) |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 1041 | { |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 1042 | int parent; |
| 1043 | u32 val; |
| 1044 | ulong parent_rate; |
| 1045 | const struct k210_div_params *div; |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 1046 | |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 1047 | if (id == K210_CLK_IN0) |
| 1048 | return clk_get_rate(&priv->in0); |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 1049 | |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 1050 | parent = k210_clk_get_parent(priv, id); |
| 1051 | parent_rate = do_k210_clk_get_rate(priv, parent); |
Sean Anderson | 54d5d2d | 2021-09-11 13:20:00 -0400 | [diff] [blame] | 1052 | if (IS_ERR_VALUE(parent_rate)) |
| 1053 | return parent_rate; |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 1054 | |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 1055 | if (k210_clks[id].flags & K210_CLKF_PLL) |
| 1056 | return k210_pll_get_rate(priv, k210_clks[id].pll, parent_rate); |
| 1057 | |
| 1058 | if (k210_clks[id].div == K210_CLK_DIV_NONE) |
| 1059 | return parent_rate; |
| 1060 | div = &k210_divs[k210_clks[id].div]; |
| 1061 | |
| 1062 | if (div->type == K210_DIV_FIXED) |
| 1063 | return parent_rate / div->div; |
| 1064 | |
| 1065 | val = k210_clk_readl(priv, div->off, div->shift, div->width); |
| 1066 | switch (div->type) { |
| 1067 | case K210_DIV_ONE: |
| 1068 | return parent_rate / (val + 1); |
| 1069 | case K210_DIV_EVEN: |
| 1070 | return parent_rate / 2 / (val + 1); |
| 1071 | case K210_DIV_POWER: |
| 1072 | /* This is ACLK, which has no divider on IN0 */ |
| 1073 | if (parent == K210_CLK_IN0) |
| 1074 | return parent_rate; |
| 1075 | return parent_rate / (2 << val); |
| 1076 | default: |
| 1077 | assert(false); |
| 1078 | return -EINVAL; |
| 1079 | }; |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 1080 | } |
| 1081 | |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 1082 | static ulong k210_clk_get_rate(struct clk *clk) |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 1083 | { |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 1084 | return do_k210_clk_get_rate(dev_get_priv(clk->dev), clk->id); |
| 1085 | } |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 1086 | |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 1087 | static int do_k210_clk_set_parent(struct k210_clk_priv *priv, int id, int new) |
| 1088 | { |
| 1089 | int i; |
| 1090 | const struct k210_mux_params *mux; |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 1091 | |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 1092 | if (!(k210_clks[id].flags & K210_CLKF_MUX)) |
| 1093 | return -ENOSYS; |
| 1094 | mux = &k210_muxes[k210_clks[id].mux]; |
| 1095 | |
| 1096 | for (i = 0; i < mux->num_parents; i++) { |
| 1097 | if (mux->parents[i] == new) { |
| 1098 | k210_clk_writel(priv, mux->off, mux->shift, mux->width, |
| 1099 | i); |
| 1100 | return 0; |
| 1101 | } |
| 1102 | } |
| 1103 | return -EINVAL; |
| 1104 | } |
| 1105 | |
| 1106 | static int k210_clk_set_parent(struct clk *clk, struct clk *parent) |
| 1107 | { |
| 1108 | return do_k210_clk_set_parent(dev_get_priv(clk->dev), clk->id, |
| 1109 | parent->id); |
| 1110 | } |
| 1111 | |
Sean Anderson | 29e3067 | 2021-06-11 00:16:11 -0400 | [diff] [blame] | 1112 | static ulong k210_clk_set_rate(struct clk *clk, unsigned long rate) |
| 1113 | { |
| 1114 | int parent, ret, err; |
| 1115 | ulong rate_in, val; |
| 1116 | const struct k210_div_params *div; |
| 1117 | struct k210_clk_priv *priv = dev_get_priv(clk->dev); |
| 1118 | |
| 1119 | if (clk->id == K210_CLK_IN0) |
| 1120 | return clk_set_rate(&priv->in0, rate); |
| 1121 | |
| 1122 | parent = k210_clk_get_parent(priv, clk->id); |
| 1123 | rate_in = do_k210_clk_get_rate(priv, parent); |
Sean Anderson | 54d5d2d | 2021-09-11 13:20:00 -0400 | [diff] [blame] | 1124 | if (IS_ERR_VALUE(rate_in)) |
| 1125 | return rate_in; |
Sean Anderson | 29e3067 | 2021-06-11 00:16:11 -0400 | [diff] [blame] | 1126 | |
| 1127 | log_debug("id=%ld rate=%lu rate_in=%lu\n", clk->id, rate, rate_in); |
| 1128 | |
| 1129 | if (clk->id == K210_CLK_PLL0) { |
| 1130 | /* Bypass ACLK so the CPU keeps going */ |
| 1131 | ret = do_k210_clk_set_parent(priv, K210_CLK_ACLK, K210_CLK_IN0); |
| 1132 | if (ret) |
| 1133 | return ret; |
| 1134 | } else if (clk->id == K210_CLK_PLL1 && gd->flags & GD_FLG_RELOC) { |
| 1135 | /* |
| 1136 | * We can't bypass the AI clock like we can ACLK, and after |
| 1137 | * relocation we are using the AI ram. |
| 1138 | */ |
| 1139 | return -EPERM; |
| 1140 | } |
| 1141 | |
| 1142 | if (k210_clks[clk->id].flags & K210_CLKF_PLL) { |
| 1143 | ret = k210_pll_set_rate(priv, k210_clks[clk->id].pll, rate, |
| 1144 | rate_in); |
| 1145 | if (!IS_ERR_VALUE(ret) && clk->id == K210_CLK_PLL0) { |
| 1146 | /* |
| 1147 | * This may have the side effect of reparenting ACLK, |
| 1148 | * but I don't really want to keep track of what the old |
| 1149 | * parent was. |
| 1150 | */ |
| 1151 | err = do_k210_clk_set_parent(priv, K210_CLK_ACLK, |
| 1152 | K210_CLK_PLL0); |
| 1153 | if (err) |
| 1154 | return err; |
| 1155 | } |
| 1156 | return ret; |
| 1157 | } |
| 1158 | |
| 1159 | if (k210_clks[clk->id].div == K210_CLK_DIV_NONE) |
| 1160 | return -ENOSYS; |
| 1161 | div = &k210_divs[k210_clks[clk->id].div]; |
| 1162 | |
| 1163 | switch (div->type) { |
| 1164 | case K210_DIV_ONE: |
| 1165 | val = DIV_ROUND_CLOSEST_ULL((u64)rate_in, rate); |
| 1166 | val = val ? val - 1 : 0; |
| 1167 | break; |
| 1168 | case K210_DIV_EVEN: |
| 1169 | val = DIV_ROUND_CLOSEST_ULL((u64)rate_in, 2 * rate); |
| 1170 | break; |
| 1171 | case K210_DIV_POWER: |
| 1172 | /* This is ACLK, which has no divider on IN0 */ |
| 1173 | if (parent == K210_CLK_IN0) |
| 1174 | return -ENOSYS; |
| 1175 | |
| 1176 | val = DIV_ROUND_CLOSEST_ULL((u64)rate_in, rate); |
| 1177 | val = __ffs(val); |
| 1178 | break; |
| 1179 | default: |
| 1180 | assert(false); |
| 1181 | return -EINVAL; |
| 1182 | }; |
| 1183 | |
| 1184 | val = val ? val - 1 : 0; |
| 1185 | k210_clk_writel(priv, div->off, div->shift, div->width, val); |
| 1186 | return do_k210_clk_get_rate(priv, clk->id); |
| 1187 | } |
| 1188 | |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 1189 | static int k210_clk_endisable(struct k210_clk_priv *priv, int id, bool enable) |
| 1190 | { |
| 1191 | int parent = k210_clk_get_parent(priv, id); |
| 1192 | const struct k210_gate_params *gate; |
| 1193 | |
| 1194 | if (id == K210_CLK_IN0) { |
| 1195 | if (enable) |
| 1196 | return clk_enable(&priv->in0); |
| 1197 | else |
| 1198 | return clk_disable(&priv->in0); |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 1199 | } |
| 1200 | |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 1201 | /* Only recursively enable clocks since we don't track refcounts */ |
| 1202 | if (enable) { |
| 1203 | int ret = k210_clk_endisable(priv, parent, true); |
| 1204 | |
| 1205 | if (ret && ret != -ENOSYS) |
| 1206 | return ret; |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 1207 | } |
| 1208 | |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 1209 | if (k210_clks[id].flags & K210_CLKF_PLL) { |
| 1210 | if (enable) |
| 1211 | return k210_pll_enable(priv, k210_clks[id].pll); |
| 1212 | else |
| 1213 | return k210_pll_disable(priv, k210_clks[id].pll); |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 1214 | } |
| 1215 | |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 1216 | if (k210_clks[id].gate == K210_CLK_GATE_NONE) |
| 1217 | return -ENOSYS; |
| 1218 | gate = &k210_gates[k210_clks[id].gate]; |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 1219 | |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 1220 | k210_clk_writel(priv, gate->off, gate->bit_idx, 1, enable); |
Sean Anderson | 09ad08f | 2021-04-08 22:13:08 -0400 | [diff] [blame] | 1221 | return 0; |
| 1222 | } |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 1223 | |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 1224 | static int k210_clk_enable(struct clk *clk) |
| 1225 | { |
| 1226 | return k210_clk_endisable(dev_get_priv(clk->dev), clk->id, true); |
| 1227 | } |
| 1228 | |
| 1229 | static int k210_clk_disable(struct clk *clk) |
| 1230 | { |
| 1231 | return k210_clk_endisable(dev_get_priv(clk->dev), clk->id, false); |
| 1232 | } |
| 1233 | |
| 1234 | static int k210_clk_request(struct clk *clk) |
| 1235 | { |
| 1236 | if (clk->id >= ARRAY_SIZE(k210_clks)) |
| 1237 | return -EINVAL; |
| 1238 | return 0; |
| 1239 | } |
| 1240 | |
| 1241 | static const struct clk_ops k210_clk_ops = { |
| 1242 | .request = k210_clk_request, |
| 1243 | .set_rate = k210_clk_set_rate, |
| 1244 | .get_rate = k210_clk_get_rate, |
| 1245 | .set_parent = k210_clk_set_parent, |
| 1246 | .enable = k210_clk_enable, |
| 1247 | .disable = k210_clk_disable, |
| 1248 | }; |
| 1249 | |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 1250 | static int k210_clk_probe(struct udevice *dev) |
| 1251 | { |
| 1252 | int ret; |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 1253 | struct k210_clk_priv *priv = dev_get_priv(dev); |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 1254 | |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 1255 | priv->base = dev_read_addr_ptr(dev_get_parent(dev)); |
| 1256 | if (!priv->base) |
Simon Glass | 9042bf6 | 2021-03-25 10:26:08 +1300 | [diff] [blame] | 1257 | return -EINVAL; |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 1258 | |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 1259 | ret = clk_get_by_index(dev, 0, &priv->in0); |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 1260 | if (ret) |
| 1261 | return ret; |
Sean Anderson | a952c3a | 2020-09-28 10:52:27 -0400 | [diff] [blame] | 1262 | |
Sean Anderson | 29e3067 | 2021-06-11 00:16:11 -0400 | [diff] [blame] | 1263 | /* |
| 1264 | * Force setting defaults, even before relocation. This is so we can |
| 1265 | * set the clock rate for PLL1 before we relocate into aisram. |
| 1266 | */ |
| 1267 | if (!(gd->flags & GD_FLG_RELOC)) |
| 1268 | clk_set_defaults(dev, CLK_DEFAULTS_POST_FORCE); |
| 1269 | |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 1270 | return 0; |
| 1271 | } |
| 1272 | |
| 1273 | static const struct udevice_id k210_clk_ids[] = { |
Damien Le Moal | fd426b3 | 2022-03-01 10:35:39 +0000 | [diff] [blame] | 1274 | { .compatible = "canaan,k210-clk" }, |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 1275 | { }, |
| 1276 | }; |
| 1277 | |
| 1278 | U_BOOT_DRIVER(k210_clk) = { |
| 1279 | .name = "k210_clk", |
| 1280 | .id = UCLASS_CLK, |
| 1281 | .of_match = k210_clk_ids, |
| 1282 | .ops = &k210_clk_ops, |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 1283 | .probe = k210_clk_probe, |
Sean Anderson | 609bd60 | 2021-06-11 00:16:08 -0400 | [diff] [blame] | 1284 | .priv_auto = sizeof(struct k210_clk_priv), |
Sean Anderson | f9c7d4f | 2020-06-24 06:41:11 -0400 | [diff] [blame] | 1285 | }; |
Sean Anderson | 612a833 | 2021-06-11 00:16:10 -0400 | [diff] [blame] | 1286 | |
| 1287 | #if CONFIG_IS_ENABLED(CMD_CLK) |
| 1288 | static char show_enabled(struct k210_clk_priv *priv, int id) |
| 1289 | { |
| 1290 | bool enabled; |
| 1291 | |
| 1292 | if (k210_clks[id].flags & K210_CLKF_PLL) { |
| 1293 | const struct k210_pll_params *pll = |
| 1294 | &k210_plls[k210_clks[id].pll]; |
| 1295 | |
| 1296 | enabled = k210_pll_enabled(readl(priv->base + pll->off)); |
| 1297 | } else if (k210_clks[id].gate == K210_CLK_GATE_NONE) { |
| 1298 | return '-'; |
| 1299 | } else { |
| 1300 | const struct k210_gate_params *gate = |
| 1301 | &k210_gates[k210_clks[id].gate]; |
| 1302 | |
| 1303 | enabled = k210_clk_readl(priv, gate->off, gate->bit_idx, 1); |
| 1304 | } |
| 1305 | |
| 1306 | return enabled ? 'y' : 'n'; |
| 1307 | } |
| 1308 | |
| 1309 | static void show_clks(struct k210_clk_priv *priv, int id, int depth) |
| 1310 | { |
| 1311 | int i; |
| 1312 | |
| 1313 | for (i = 0; i < ARRAY_SIZE(k210_clks); i++) { |
| 1314 | if (k210_clk_get_parent(priv, i) != id) |
| 1315 | continue; |
| 1316 | |
| 1317 | printf(" %-9lu %-7c %*s%s\n", do_k210_clk_get_rate(priv, i), |
| 1318 | show_enabled(priv, i), depth * 4, "", |
| 1319 | k210_clks[i].name); |
| 1320 | |
| 1321 | show_clks(priv, i, depth + 1); |
| 1322 | } |
| 1323 | } |
| 1324 | |
| 1325 | int soc_clk_dump(void) |
| 1326 | { |
| 1327 | int ret; |
| 1328 | struct udevice *dev; |
| 1329 | struct k210_clk_priv *priv; |
| 1330 | |
| 1331 | ret = uclass_get_device_by_driver(UCLASS_CLK, DM_DRIVER_GET(k210_clk), |
| 1332 | &dev); |
| 1333 | if (ret) |
| 1334 | return ret; |
| 1335 | priv = dev_get_priv(dev); |
| 1336 | |
| 1337 | puts(" Rate Enabled Name\n"); |
| 1338 | puts("------------------------\n"); |
| 1339 | printf(" %-9lu %-7c %*s%s\n", clk_get_rate(&priv->in0), 'y', 0, "", |
| 1340 | priv->in0.dev->name); |
| 1341 | show_clks(priv, K210_CLK_IN0, 1); |
| 1342 | return 0; |
| 1343 | } |
| 1344 | #endif |