Simon Glass | e761ecd | 2013-04-17 16:13:36 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2012 The Chromium OS Authors. |
| 3 | * |
Bin Meng | 076bb44 | 2014-11-09 22:19:13 +0800 | [diff] [blame] | 4 | * TSC calibration codes are adapted from Linux kernel |
| 5 | * arch/x86/kernel/tsc_msr.c and arch/x86/kernel/tsc.c |
| 6 | * |
Wolfgang Denk | 1a45966 | 2013-07-08 09:37:19 +0200 | [diff] [blame] | 7 | * SPDX-License-Identifier: GPL-2.0+ |
Simon Glass | e761ecd | 2013-04-17 16:13:36 +0000 | [diff] [blame] | 8 | */ |
| 9 | |
| 10 | #include <common.h> |
| 11 | #include <malloc.h> |
| 12 | #include <asm/io.h> |
| 13 | #include <asm/i8254.h> |
| 14 | #include <asm/ibmpc.h> |
| 15 | #include <asm/msr.h> |
| 16 | #include <asm/u-boot-x86.h> |
| 17 | |
Bin Meng | 076bb44 | 2014-11-09 22:19:13 +0800 | [diff] [blame] | 18 | /* CPU reference clock frequency: in KHz */ |
| 19 | #define FREQ_83 83200 |
| 20 | #define FREQ_100 99840 |
| 21 | #define FREQ_133 133200 |
| 22 | #define FREQ_166 166400 |
| 23 | |
| 24 | #define MAX_NUM_FREQS 8 |
| 25 | |
Simon Glass | e761ecd | 2013-04-17 16:13:36 +0000 | [diff] [blame] | 26 | DECLARE_GLOBAL_DATA_PTR; |
| 27 | |
Bin Meng | 076bb44 | 2014-11-09 22:19:13 +0800 | [diff] [blame] | 28 | /* |
| 29 | * According to Intel 64 and IA-32 System Programming Guide, |
| 30 | * if MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be |
| 31 | * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40]. |
| 32 | * Unfortunately some Intel Atom SoCs aren't quite compliant to this, |
| 33 | * so we need manually differentiate SoC families. This is what the |
| 34 | * field msr_plat does. |
| 35 | */ |
| 36 | struct freq_desc { |
| 37 | u8 x86_family; /* CPU family */ |
| 38 | u8 x86_model; /* model */ |
| 39 | u8 msr_plat; /* 1: use MSR_PLATFORM_INFO, 0: MSR_IA32_PERF_STATUS */ |
| 40 | u32 freqs[MAX_NUM_FREQS]; |
| 41 | }; |
| 42 | |
| 43 | static struct freq_desc freq_desc_tables[] = { |
| 44 | /* PNW */ |
| 45 | { 6, 0x27, 0, { 0, 0, 0, 0, 0, FREQ_100, 0, FREQ_83 } }, |
| 46 | /* CLV+ */ |
| 47 | { 6, 0x35, 0, { 0, FREQ_133, 0, 0, 0, FREQ_100, 0, FREQ_83 } }, |
| 48 | /* TNG */ |
| 49 | { 6, 0x4a, 1, { 0, FREQ_100, FREQ_133, 0, 0, 0, 0, 0 } }, |
| 50 | /* VLV2 */ |
| 51 | { 6, 0x37, 1, { FREQ_83, FREQ_100, FREQ_133, FREQ_166, 0, 0, 0, 0 } }, |
| 52 | /* ANN */ |
| 53 | { 6, 0x5a, 1, { FREQ_83, FREQ_100, FREQ_133, FREQ_100, 0, 0, 0, 0 } }, |
| 54 | }; |
| 55 | |
| 56 | static int match_cpu(u8 family, u8 model) |
| 57 | { |
| 58 | int i; |
| 59 | |
| 60 | for (i = 0; i < ARRAY_SIZE(freq_desc_tables); i++) { |
| 61 | if ((family == freq_desc_tables[i].x86_family) && |
| 62 | (model == freq_desc_tables[i].x86_model)) |
| 63 | return i; |
| 64 | } |
| 65 | |
| 66 | return -1; |
| 67 | } |
| 68 | |
| 69 | /* Map CPU reference clock freq ID(0-7) to CPU reference clock freq(KHz) */ |
| 70 | #define id_to_freq(cpu_index, freq_id) \ |
| 71 | (freq_desc_tables[cpu_index].freqs[freq_id]) |
| 72 | |
| 73 | /* |
| 74 | * Do MSR calibration only for known/supported CPUs. |
| 75 | * |
| 76 | * Returns the calibration value or 0 if MSR calibration failed. |
| 77 | */ |
| 78 | static unsigned long try_msr_calibrate_tsc(void) |
| 79 | { |
| 80 | u32 lo, hi, ratio, freq_id, freq; |
| 81 | unsigned long res; |
| 82 | int cpu_index; |
| 83 | |
| 84 | cpu_index = match_cpu(gd->arch.x86, gd->arch.x86_model); |
| 85 | if (cpu_index < 0) |
| 86 | return 0; |
| 87 | |
| 88 | if (freq_desc_tables[cpu_index].msr_plat) { |
| 89 | rdmsr(MSR_PLATFORM_INFO, lo, hi); |
| 90 | ratio = (lo >> 8) & 0x1f; |
| 91 | } else { |
| 92 | rdmsr(MSR_IA32_PERF_STATUS, lo, hi); |
| 93 | ratio = (hi >> 8) & 0x1f; |
| 94 | } |
| 95 | debug("Maximum core-clock to bus-clock ratio: 0x%x\n", ratio); |
| 96 | |
| 97 | if (!ratio) |
| 98 | goto fail; |
| 99 | |
| 100 | /* Get FSB FREQ ID */ |
| 101 | rdmsr(MSR_FSB_FREQ, lo, hi); |
| 102 | freq_id = lo & 0x7; |
| 103 | freq = id_to_freq(cpu_index, freq_id); |
| 104 | debug("Resolved frequency ID: %u, frequency: %u KHz\n", freq_id, freq); |
| 105 | if (!freq) |
| 106 | goto fail; |
| 107 | |
| 108 | /* TSC frequency = maximum resolved freq * maximum resolved bus ratio */ |
| 109 | res = freq * ratio / 1000; |
| 110 | debug("TSC runs at %lu MHz\n", res); |
| 111 | |
| 112 | return res; |
| 113 | |
| 114 | fail: |
| 115 | debug("Fast TSC calibration using MSR failed\n"); |
| 116 | return 0; |
| 117 | } |
| 118 | |
Bin Meng | 80de049 | 2014-11-09 22:19:25 +0800 | [diff] [blame] | 119 | /* |
| 120 | * This reads the current MSB of the PIT counter, and |
| 121 | * checks if we are running on sufficiently fast and |
| 122 | * non-virtualized hardware. |
| 123 | * |
| 124 | * Our expectations are: |
| 125 | * |
| 126 | * - the PIT is running at roughly 1.19MHz |
| 127 | * |
| 128 | * - each IO is going to take about 1us on real hardware, |
| 129 | * but we allow it to be much faster (by a factor of 10) or |
| 130 | * _slightly_ slower (ie we allow up to a 2us read+counter |
| 131 | * update - anything else implies a unacceptably slow CPU |
| 132 | * or PIT for the fast calibration to work. |
| 133 | * |
| 134 | * - with 256 PIT ticks to read the value, we have 214us to |
| 135 | * see the same MSB (and overhead like doing a single TSC |
| 136 | * read per MSB value etc). |
| 137 | * |
| 138 | * - We're doing 2 reads per loop (LSB, MSB), and we expect |
| 139 | * them each to take about a microsecond on real hardware. |
| 140 | * So we expect a count value of around 100. But we'll be |
| 141 | * generous, and accept anything over 50. |
| 142 | * |
| 143 | * - if the PIT is stuck, and we see *many* more reads, we |
| 144 | * return early (and the next caller of pit_expect_msb() |
| 145 | * then consider it a failure when they don't see the |
| 146 | * next expected value). |
| 147 | * |
| 148 | * These expectations mean that we know that we have seen the |
| 149 | * transition from one expected value to another with a fairly |
| 150 | * high accuracy, and we didn't miss any events. We can thus |
| 151 | * use the TSC value at the transitions to calculate a pretty |
| 152 | * good value for the TSC frequencty. |
| 153 | */ |
| 154 | static inline int pit_verify_msb(unsigned char val) |
| 155 | { |
| 156 | /* Ignore LSB */ |
| 157 | inb(0x42); |
| 158 | return inb(0x42) == val; |
| 159 | } |
| 160 | |
| 161 | static inline int pit_expect_msb(unsigned char val, u64 *tscp, |
| 162 | unsigned long *deltap) |
| 163 | { |
| 164 | int count; |
| 165 | u64 tsc = 0, prev_tsc = 0; |
| 166 | |
| 167 | for (count = 0; count < 50000; count++) { |
| 168 | if (!pit_verify_msb(val)) |
| 169 | break; |
| 170 | prev_tsc = tsc; |
| 171 | tsc = rdtsc(); |
| 172 | } |
| 173 | *deltap = rdtsc() - prev_tsc; |
| 174 | *tscp = tsc; |
| 175 | |
| 176 | /* |
| 177 | * We require _some_ success, but the quality control |
| 178 | * will be based on the error terms on the TSC values. |
| 179 | */ |
| 180 | return count > 5; |
| 181 | } |
| 182 | |
| 183 | /* |
| 184 | * How many MSB values do we want to see? We aim for |
| 185 | * a maximum error rate of 500ppm (in practice the |
| 186 | * real error is much smaller), but refuse to spend |
| 187 | * more than 50ms on it. |
| 188 | */ |
| 189 | #define MAX_QUICK_PIT_MS 50 |
| 190 | #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) |
| 191 | |
| 192 | static unsigned long quick_pit_calibrate(void) |
| 193 | { |
| 194 | int i; |
| 195 | u64 tsc, delta; |
| 196 | unsigned long d1, d2; |
| 197 | |
| 198 | /* Set the Gate high, disable speaker */ |
| 199 | outb((inb(0x61) & ~0x02) | 0x01, 0x61); |
| 200 | |
| 201 | /* |
| 202 | * Counter 2, mode 0 (one-shot), binary count |
| 203 | * |
| 204 | * NOTE! Mode 2 decrements by two (and then the |
| 205 | * output is flipped each time, giving the same |
| 206 | * final output frequency as a decrement-by-one), |
| 207 | * so mode 0 is much better when looking at the |
| 208 | * individual counts. |
| 209 | */ |
| 210 | outb(0xb0, 0x43); |
| 211 | |
| 212 | /* Start at 0xffff */ |
| 213 | outb(0xff, 0x42); |
| 214 | outb(0xff, 0x42); |
| 215 | |
| 216 | /* |
| 217 | * The PIT starts counting at the next edge, so we |
| 218 | * need to delay for a microsecond. The easiest way |
| 219 | * to do that is to just read back the 16-bit counter |
| 220 | * once from the PIT. |
| 221 | */ |
| 222 | pit_verify_msb(0); |
| 223 | |
| 224 | if (pit_expect_msb(0xff, &tsc, &d1)) { |
| 225 | for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) { |
| 226 | if (!pit_expect_msb(0xff-i, &delta, &d2)) |
| 227 | break; |
| 228 | |
| 229 | /* |
| 230 | * Iterate until the error is less than 500 ppm |
| 231 | */ |
| 232 | delta -= tsc; |
| 233 | if (d1+d2 >= delta >> 11) |
| 234 | continue; |
| 235 | |
| 236 | /* |
| 237 | * Check the PIT one more time to verify that |
| 238 | * all TSC reads were stable wrt the PIT. |
| 239 | * |
| 240 | * This also guarantees serialization of the |
| 241 | * last cycle read ('d2') in pit_expect_msb. |
| 242 | */ |
| 243 | if (!pit_verify_msb(0xfe - i)) |
| 244 | break; |
| 245 | goto success; |
| 246 | } |
| 247 | } |
| 248 | debug("Fast TSC calibration failed\n"); |
| 249 | return 0; |
| 250 | |
| 251 | success: |
| 252 | /* |
| 253 | * Ok, if we get here, then we've seen the |
| 254 | * MSB of the PIT decrement 'i' times, and the |
| 255 | * error has shrunk to less than 500 ppm. |
| 256 | * |
| 257 | * As a result, we can depend on there not being |
| 258 | * any odd delays anywhere, and the TSC reads are |
| 259 | * reliable (within the error). |
| 260 | * |
| 261 | * kHz = ticks / time-in-seconds / 1000; |
| 262 | * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000 |
| 263 | * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000) |
| 264 | */ |
| 265 | delta *= PIT_TICK_RATE; |
| 266 | delta /= (i*256*1000); |
| 267 | debug("Fast TSC calibration using PIT\n"); |
| 268 | return delta / 1000; |
| 269 | } |
| 270 | |
Simon Glass | e761ecd | 2013-04-17 16:13:36 +0000 | [diff] [blame] | 271 | void timer_set_base(u64 base) |
| 272 | { |
| 273 | gd->arch.tsc_base = base; |
| 274 | } |
| 275 | |
| 276 | /* |
| 277 | * Get the number of CPU time counter ticks since it was read first time after |
| 278 | * restart. This yields a free running counter guaranteed to take almost 6 |
| 279 | * years to wrap around even at 100GHz clock rate. |
| 280 | */ |
Simon Glass | d8819f9 | 2013-06-11 11:14:52 -0700 | [diff] [blame] | 281 | u64 __attribute__((no_instrument_function)) get_ticks(void) |
Simon Glass | e761ecd | 2013-04-17 16:13:36 +0000 | [diff] [blame] | 282 | { |
| 283 | u64 now_tick = rdtsc(); |
| 284 | |
| 285 | /* We assume that 0 means the base hasn't been set yet */ |
| 286 | if (!gd->arch.tsc_base) |
| 287 | panic("No tick base available"); |
| 288 | return now_tick - gd->arch.tsc_base; |
| 289 | } |
| 290 | |
Simon Glass | e761ecd | 2013-04-17 16:13:36 +0000 | [diff] [blame] | 291 | /* Get the speed of the TSC timer in MHz */ |
Simon Glass | d8819f9 | 2013-06-11 11:14:52 -0700 | [diff] [blame] | 292 | unsigned __attribute__((no_instrument_function)) long get_tbclk_mhz(void) |
Simon Glass | e761ecd | 2013-04-17 16:13:36 +0000 | [diff] [blame] | 293 | { |
Bin Meng | 076bb44 | 2014-11-09 22:19:13 +0800 | [diff] [blame] | 294 | unsigned long fast_calibrate; |
Simon Glass | e761ecd | 2013-04-17 16:13:36 +0000 | [diff] [blame] | 295 | |
Bin Meng | 258b135 | 2014-11-09 22:19:35 +0800 | [diff] [blame] | 296 | if (gd->arch.tsc_mhz) |
| 297 | return gd->arch.tsc_mhz; |
| 298 | |
Bin Meng | 076bb44 | 2014-11-09 22:19:13 +0800 | [diff] [blame] | 299 | fast_calibrate = try_msr_calibrate_tsc(); |
Bin Meng | 80de049 | 2014-11-09 22:19:25 +0800 | [diff] [blame] | 300 | if (fast_calibrate) |
| 301 | return fast_calibrate; |
| 302 | |
| 303 | fast_calibrate = quick_pit_calibrate(); |
Bin Meng | 076bb44 | 2014-11-09 22:19:13 +0800 | [diff] [blame] | 304 | if (!fast_calibrate) |
| 305 | panic("TSC frequency is ZERO"); |
| 306 | |
Bin Meng | 258b135 | 2014-11-09 22:19:35 +0800 | [diff] [blame] | 307 | gd->arch.tsc_mhz = fast_calibrate; |
Bin Meng | 076bb44 | 2014-11-09 22:19:13 +0800 | [diff] [blame] | 308 | return fast_calibrate; |
Simon Glass | e761ecd | 2013-04-17 16:13:36 +0000 | [diff] [blame] | 309 | } |
| 310 | |
| 311 | unsigned long get_tbclk(void) |
| 312 | { |
| 313 | return get_tbclk_mhz() * 1000 * 1000; |
| 314 | } |
| 315 | |
| 316 | static ulong get_ms_timer(void) |
| 317 | { |
| 318 | return (get_ticks() * 1000) / get_tbclk(); |
| 319 | } |
| 320 | |
| 321 | ulong get_timer(ulong base) |
| 322 | { |
| 323 | return get_ms_timer() - base; |
| 324 | } |
| 325 | |
Simon Glass | d8819f9 | 2013-06-11 11:14:52 -0700 | [diff] [blame] | 326 | ulong __attribute__((no_instrument_function)) timer_get_us(void) |
Simon Glass | e761ecd | 2013-04-17 16:13:36 +0000 | [diff] [blame] | 327 | { |
| 328 | return get_ticks() / get_tbclk_mhz(); |
| 329 | } |
| 330 | |
| 331 | ulong timer_get_boot_us(void) |
| 332 | { |
| 333 | return timer_get_us(); |
| 334 | } |
| 335 | |
| 336 | void __udelay(unsigned long usec) |
| 337 | { |
| 338 | u64 now = get_ticks(); |
| 339 | u64 stop; |
| 340 | |
| 341 | stop = now + usec * get_tbclk_mhz(); |
| 342 | |
| 343 | while ((int64_t)(stop - get_ticks()) > 0) |
| 344 | ; |
| 345 | } |
| 346 | |
| 347 | int timer_init(void) |
| 348 | { |
Simon Glass | d0b6f24 | 2013-04-17 16:13:39 +0000 | [diff] [blame] | 349 | #ifdef CONFIG_SYS_PCAT_TIMER |
| 350 | /* Set up the PCAT timer if required */ |
| 351 | pcat_timer_init(); |
| 352 | #endif |
| 353 | |
Simon Glass | e761ecd | 2013-04-17 16:13:36 +0000 | [diff] [blame] | 354 | return 0; |
| 355 | } |