wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1 | /************************************************************************** |
Andre Schwarz | ac3315c | 2008-03-06 16:45:44 +0100 | [diff] [blame] | 2 | Intel Pro 1000 for ppcboot/das-u-boot |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3 | Drivers are port from Intel's Linux driver e1000-4.3.15 |
| 4 | and from Etherboot pro 1000 driver by mrakes at vivato dot net |
| 5 | tested on both gig copper and gig fiber boards |
| 6 | ***************************************************************************/ |
| 7 | /******************************************************************************* |
| 8 | |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 9 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 10 | Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved. |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 11 | |
| 12 | This program is free software; you can redistribute it and/or modify it |
| 13 | under the terms of the GNU General Public License as published by the Free |
| 14 | Software Foundation; either version 2 of the License, or (at your option) |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 15 | any later version. |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 16 | |
| 17 | This program is distributed in the hope that it will be useful, but WITHOUT |
| 18 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 19 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 20 | more details. |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 21 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 22 | You should have received a copy of the GNU General Public License along with |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 23 | this program; if not, write to the Free Software Foundation, Inc., 59 |
Wolfgang Denk | 1aeed8d | 2008-04-13 09:59:26 -0700 | [diff] [blame] | 24 | Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 25 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 26 | The full GNU General Public License is included in this distribution in the |
| 27 | file called LICENSE. |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 28 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 29 | Contact Information: |
| 30 | Linux NICS <linux.nics@intel.com> |
| 31 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| 32 | |
| 33 | *******************************************************************************/ |
| 34 | /* |
| 35 | * Copyright (C) Archway Digital Solutions. |
| 36 | * |
| 37 | * written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org> |
| 38 | * 2/9/2002 |
| 39 | * |
| 40 | * Copyright (C) Linux Networx. |
| 41 | * Massive upgrade to work with the new intel gigabit NICs. |
| 42 | * <ebiederman at lnxi dot com> |
Roy Zang | 2c2668f | 2011-01-21 11:29:38 +0800 | [diff] [blame] | 43 | * |
| 44 | * Copyright 2011 Freescale Semiconductor, Inc. |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 45 | */ |
| 46 | |
| 47 | #include "e1000.h" |
| 48 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 49 | #define TOUT_LOOP 100000 |
| 50 | |
Timur Tabi | f81ecb5 | 2009-08-17 15:55:38 -0500 | [diff] [blame] | 51 | #define virt_to_bus(devno, v) pci_virt_to_mem(devno, (void *) (v)) |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 52 | #define bus_to_phys(devno, a) pci_mem_to_phys(devno, a) |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 53 | |
Roy Zang | 9ea005f | 2009-08-22 03:49:52 +0800 | [diff] [blame] | 54 | #define E1000_DEFAULT_PCI_PBA 0x00000030 |
| 55 | #define E1000_DEFAULT_PCIE_PBA 0x000a0026 |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 56 | |
| 57 | /* NIC specific static variables go here */ |
| 58 | |
| 59 | static char tx_pool[128 + 16]; |
| 60 | static char rx_pool[128 + 16]; |
| 61 | static char packet[2096]; |
| 62 | |
| 63 | static struct e1000_tx_desc *tx_base; |
| 64 | static struct e1000_rx_desc *rx_base; |
| 65 | |
| 66 | static int tx_tail; |
| 67 | static int rx_tail, rx_last; |
| 68 | |
| 69 | static struct pci_device_id supported[] = { |
| 70 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542}, |
| 71 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER}, |
| 72 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER}, |
| 73 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER}, |
| 74 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER}, |
| 75 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER}, |
| 76 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM}, |
| 77 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM}, |
| 78 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER}, |
Paul Gortmaker | 8915f11 | 2008-07-09 17:50:45 -0400 | [diff] [blame] | 79 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER}, |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 80 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER}, |
| 81 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER}, |
| 82 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER}, |
Reinhard Arlt | 2ab4a4d | 2009-12-04 09:52:17 +0100 | [diff] [blame] | 83 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER}, |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 84 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM}, |
Andre Schwarz | ac3315c | 2008-03-06 16:45:44 +0100 | [diff] [blame] | 85 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER}, |
Wolfgang Grandegger | aa3b8bf | 2008-05-28 19:55:19 +0200 | [diff] [blame] | 86 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF}, |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 87 | /* E1000 PCIe card */ |
| 88 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER}, |
| 89 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER }, |
| 90 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES }, |
| 91 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER}, |
| 92 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER}, |
| 93 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER}, |
| 94 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE}, |
| 95 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL}, |
| 96 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD}, |
| 97 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER}, |
| 98 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER}, |
| 99 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES}, |
| 100 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI}, |
| 101 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E}, |
| 102 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT}, |
| 103 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L}, |
Roy Zang | 2c2668f | 2011-01-21 11:29:38 +0800 | [diff] [blame] | 104 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L}, |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 105 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3}, |
| 106 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT}, |
| 107 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT}, |
| 108 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT}, |
| 109 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT}, |
Stefan Althoefer | 1bc4343 | 2008-12-20 19:40:41 +0100 | [diff] [blame] | 110 | {} |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 111 | }; |
| 112 | |
| 113 | /* Function forward declarations */ |
| 114 | static int e1000_setup_link(struct eth_device *nic); |
| 115 | static int e1000_setup_fiber_link(struct eth_device *nic); |
| 116 | static int e1000_setup_copper_link(struct eth_device *nic); |
| 117 | static int e1000_phy_setup_autoneg(struct e1000_hw *hw); |
| 118 | static void e1000_config_collision_dist(struct e1000_hw *hw); |
| 119 | static int e1000_config_mac_to_phy(struct e1000_hw *hw); |
| 120 | static int e1000_config_fc_after_link_up(struct e1000_hw *hw); |
| 121 | static int e1000_check_for_link(struct eth_device *nic); |
| 122 | static int e1000_wait_autoneg(struct e1000_hw *hw); |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 123 | static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed, |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 124 | uint16_t * duplex); |
| 125 | static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, |
| 126 | uint16_t * phy_data); |
| 127 | static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, |
| 128 | uint16_t phy_data); |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 129 | static int32_t e1000_phy_hw_reset(struct e1000_hw *hw); |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 130 | static int e1000_phy_reset(struct e1000_hw *hw); |
| 131 | static int e1000_detect_gig_phy(struct e1000_hw *hw); |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 132 | static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw); |
| 133 | static void e1000_set_media_type(struct e1000_hw *hw); |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 134 | |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 135 | static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask); |
| 136 | static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw); |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 137 | #define E1000_WRITE_REG(a, reg, value) (writel((value), ((a)->hw_addr + E1000_##reg))) |
| 138 | #define E1000_READ_REG(a, reg) (readl((a)->hw_addr + E1000_##reg)) |
| 139 | #define E1000_WRITE_REG_ARRAY(a, reg, offset, value) (\ |
| 140 | writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2)))) |
| 141 | #define E1000_READ_REG_ARRAY(a, reg, offset) ( \ |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 142 | readl((a)->hw_addr + E1000_##reg + ((offset) << 2))) |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 143 | #define E1000_WRITE_FLUSH(a) {uint32_t x; x = E1000_READ_REG(a, STATUS);} |
| 144 | |
Wolfgang Denk | 7521af1 | 2005-10-09 01:04:33 +0200 | [diff] [blame] | 145 | #ifndef CONFIG_AP1000 /* remove for warnings */ |
Roy Zang | ecbd207 | 2009-08-11 03:48:05 +0800 | [diff] [blame] | 146 | static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset, |
| 147 | uint16_t words, |
| 148 | uint16_t *data); |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 149 | /****************************************************************************** |
| 150 | * Raises the EEPROM's clock input. |
| 151 | * |
| 152 | * hw - Struct containing variables accessed by shared code |
| 153 | * eecd - EECD's current value |
| 154 | *****************************************************************************/ |
| 155 | static void |
| 156 | e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd) |
| 157 | { |
| 158 | /* Raise the clock input to the EEPROM (by setting the SK bit), and then |
| 159 | * wait 50 microseconds. |
| 160 | */ |
| 161 | *eecd = *eecd | E1000_EECD_SK; |
| 162 | E1000_WRITE_REG(hw, EECD, *eecd); |
| 163 | E1000_WRITE_FLUSH(hw); |
| 164 | udelay(50); |
| 165 | } |
| 166 | |
| 167 | /****************************************************************************** |
| 168 | * Lowers the EEPROM's clock input. |
| 169 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 170 | * hw - Struct containing variables accessed by shared code |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 171 | * eecd - EECD's current value |
| 172 | *****************************************************************************/ |
| 173 | static void |
| 174 | e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd) |
| 175 | { |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 176 | /* Lower the clock input to the EEPROM (by clearing the SK bit), and then |
| 177 | * wait 50 microseconds. |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 178 | */ |
| 179 | *eecd = *eecd & ~E1000_EECD_SK; |
| 180 | E1000_WRITE_REG(hw, EECD, *eecd); |
| 181 | E1000_WRITE_FLUSH(hw); |
| 182 | udelay(50); |
| 183 | } |
| 184 | |
| 185 | /****************************************************************************** |
| 186 | * Shift data bits out to the EEPROM. |
| 187 | * |
| 188 | * hw - Struct containing variables accessed by shared code |
| 189 | * data - data to send to the EEPROM |
| 190 | * count - number of bits to shift out |
| 191 | *****************************************************************************/ |
| 192 | static void |
| 193 | e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count) |
| 194 | { |
| 195 | uint32_t eecd; |
| 196 | uint32_t mask; |
| 197 | |
| 198 | /* We need to shift "count" bits out to the EEPROM. So, value in the |
| 199 | * "data" parameter will be shifted out to the EEPROM one bit at a time. |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 200 | * In order to do this, "data" must be broken down into bits. |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 201 | */ |
| 202 | mask = 0x01 << (count - 1); |
| 203 | eecd = E1000_READ_REG(hw, EECD); |
| 204 | eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); |
| 205 | do { |
| 206 | /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", |
| 207 | * and then raising and then lowering the clock (the SK bit controls |
| 208 | * the clock input to the EEPROM). A "0" is shifted out to the EEPROM |
| 209 | * by setting "DI" to "0" and then raising and then lowering the clock. |
| 210 | */ |
| 211 | eecd &= ~E1000_EECD_DI; |
| 212 | |
| 213 | if (data & mask) |
| 214 | eecd |= E1000_EECD_DI; |
| 215 | |
| 216 | E1000_WRITE_REG(hw, EECD, eecd); |
| 217 | E1000_WRITE_FLUSH(hw); |
| 218 | |
| 219 | udelay(50); |
| 220 | |
| 221 | e1000_raise_ee_clk(hw, &eecd); |
| 222 | e1000_lower_ee_clk(hw, &eecd); |
| 223 | |
| 224 | mask = mask >> 1; |
| 225 | |
| 226 | } while (mask); |
| 227 | |
| 228 | /* We leave the "DI" bit set to "0" when we leave this routine. */ |
| 229 | eecd &= ~E1000_EECD_DI; |
| 230 | E1000_WRITE_REG(hw, EECD, eecd); |
| 231 | } |
| 232 | |
| 233 | /****************************************************************************** |
| 234 | * Shift data bits in from the EEPROM |
| 235 | * |
| 236 | * hw - Struct containing variables accessed by shared code |
| 237 | *****************************************************************************/ |
| 238 | static uint16_t |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 239 | e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count) |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 240 | { |
| 241 | uint32_t eecd; |
| 242 | uint32_t i; |
| 243 | uint16_t data; |
| 244 | |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 245 | /* In order to read a register from the EEPROM, we need to shift 'count' |
| 246 | * bits in from the EEPROM. Bits are "shifted in" by raising the clock |
| 247 | * input to the EEPROM (setting the SK bit), and then reading the |
| 248 | * value of the "DO" bit. During this "shifting in" process the |
| 249 | * "DI" bit should always be clear. |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 250 | */ |
| 251 | |
| 252 | eecd = E1000_READ_REG(hw, EECD); |
| 253 | |
| 254 | eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); |
| 255 | data = 0; |
| 256 | |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 257 | for (i = 0; i < count; i++) { |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 258 | data = data << 1; |
| 259 | e1000_raise_ee_clk(hw, &eecd); |
| 260 | |
| 261 | eecd = E1000_READ_REG(hw, EECD); |
| 262 | |
| 263 | eecd &= ~(E1000_EECD_DI); |
| 264 | if (eecd & E1000_EECD_DO) |
| 265 | data |= 1; |
| 266 | |
| 267 | e1000_lower_ee_clk(hw, &eecd); |
| 268 | } |
| 269 | |
| 270 | return data; |
| 271 | } |
| 272 | |
| 273 | /****************************************************************************** |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 274 | * Returns EEPROM to a "standby" state |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 275 | * |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 276 | * hw - Struct containing variables accessed by shared code |
| 277 | *****************************************************************************/ |
| 278 | static void |
| 279 | e1000_standby_eeprom(struct e1000_hw *hw) |
| 280 | { |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 281 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 282 | uint32_t eecd; |
| 283 | |
| 284 | eecd = E1000_READ_REG(hw, EECD); |
| 285 | |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 286 | if (eeprom->type == e1000_eeprom_microwire) { |
| 287 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); |
| 288 | E1000_WRITE_REG(hw, EECD, eecd); |
| 289 | E1000_WRITE_FLUSH(hw); |
| 290 | udelay(eeprom->delay_usec); |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 291 | |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 292 | /* Clock high */ |
| 293 | eecd |= E1000_EECD_SK; |
| 294 | E1000_WRITE_REG(hw, EECD, eecd); |
| 295 | E1000_WRITE_FLUSH(hw); |
| 296 | udelay(eeprom->delay_usec); |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 297 | |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 298 | /* Select EEPROM */ |
| 299 | eecd |= E1000_EECD_CS; |
| 300 | E1000_WRITE_REG(hw, EECD, eecd); |
| 301 | E1000_WRITE_FLUSH(hw); |
| 302 | udelay(eeprom->delay_usec); |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 303 | |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 304 | /* Clock low */ |
| 305 | eecd &= ~E1000_EECD_SK; |
| 306 | E1000_WRITE_REG(hw, EECD, eecd); |
| 307 | E1000_WRITE_FLUSH(hw); |
| 308 | udelay(eeprom->delay_usec); |
| 309 | } else if (eeprom->type == e1000_eeprom_spi) { |
| 310 | /* Toggle CS to flush commands */ |
| 311 | eecd |= E1000_EECD_CS; |
| 312 | E1000_WRITE_REG(hw, EECD, eecd); |
| 313 | E1000_WRITE_FLUSH(hw); |
| 314 | udelay(eeprom->delay_usec); |
| 315 | eecd &= ~E1000_EECD_CS; |
| 316 | E1000_WRITE_REG(hw, EECD, eecd); |
| 317 | E1000_WRITE_FLUSH(hw); |
| 318 | udelay(eeprom->delay_usec); |
| 319 | } |
| 320 | } |
| 321 | |
| 322 | /*************************************************************************** |
| 323 | * Description: Determines if the onboard NVM is FLASH or EEPROM. |
| 324 | * |
| 325 | * hw - Struct containing variables accessed by shared code |
| 326 | ****************************************************************************/ |
| 327 | static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw) |
| 328 | { |
| 329 | uint32_t eecd = 0; |
| 330 | |
| 331 | DEBUGFUNC(); |
| 332 | |
| 333 | if (hw->mac_type == e1000_ich8lan) |
| 334 | return FALSE; |
| 335 | |
Roy Zang | 2c2668f | 2011-01-21 11:29:38 +0800 | [diff] [blame] | 336 | if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) { |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 337 | eecd = E1000_READ_REG(hw, EECD); |
| 338 | |
| 339 | /* Isolate bits 15 & 16 */ |
| 340 | eecd = ((eecd >> 15) & 0x03); |
| 341 | |
| 342 | /* If both bits are set, device is Flash type */ |
| 343 | if (eecd == 0x03) |
| 344 | return FALSE; |
| 345 | } |
| 346 | return TRUE; |
| 347 | } |
| 348 | |
| 349 | /****************************************************************************** |
| 350 | * Prepares EEPROM for access |
| 351 | * |
| 352 | * hw - Struct containing variables accessed by shared code |
| 353 | * |
| 354 | * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This |
| 355 | * function should be called before issuing a command to the EEPROM. |
| 356 | *****************************************************************************/ |
| 357 | static int32_t |
| 358 | e1000_acquire_eeprom(struct e1000_hw *hw) |
| 359 | { |
| 360 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
| 361 | uint32_t eecd, i = 0; |
| 362 | |
Timur Tabi | f81ecb5 | 2009-08-17 15:55:38 -0500 | [diff] [blame] | 363 | DEBUGFUNC(); |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 364 | |
| 365 | if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM)) |
| 366 | return -E1000_ERR_SWFW_SYNC; |
| 367 | eecd = E1000_READ_REG(hw, EECD); |
| 368 | |
Roy Zang | 2c2668f | 2011-01-21 11:29:38 +0800 | [diff] [blame] | 369 | if (hw->mac_type != e1000_82573 || hw->mac_type != e1000_82574) { |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 370 | /* Request EEPROM Access */ |
| 371 | if (hw->mac_type > e1000_82544) { |
| 372 | eecd |= E1000_EECD_REQ; |
| 373 | E1000_WRITE_REG(hw, EECD, eecd); |
| 374 | eecd = E1000_READ_REG(hw, EECD); |
| 375 | while ((!(eecd & E1000_EECD_GNT)) && |
| 376 | (i < E1000_EEPROM_GRANT_ATTEMPTS)) { |
| 377 | i++; |
| 378 | udelay(5); |
| 379 | eecd = E1000_READ_REG(hw, EECD); |
| 380 | } |
| 381 | if (!(eecd & E1000_EECD_GNT)) { |
| 382 | eecd &= ~E1000_EECD_REQ; |
| 383 | E1000_WRITE_REG(hw, EECD, eecd); |
| 384 | DEBUGOUT("Could not acquire EEPROM grant\n"); |
| 385 | return -E1000_ERR_EEPROM; |
| 386 | } |
| 387 | } |
| 388 | } |
| 389 | |
| 390 | /* Setup EEPROM for Read/Write */ |
| 391 | |
| 392 | if (eeprom->type == e1000_eeprom_microwire) { |
| 393 | /* Clear SK and DI */ |
| 394 | eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); |
| 395 | E1000_WRITE_REG(hw, EECD, eecd); |
| 396 | |
| 397 | /* Set CS */ |
| 398 | eecd |= E1000_EECD_CS; |
| 399 | E1000_WRITE_REG(hw, EECD, eecd); |
| 400 | } else if (eeprom->type == e1000_eeprom_spi) { |
| 401 | /* Clear SK and CS */ |
| 402 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); |
| 403 | E1000_WRITE_REG(hw, EECD, eecd); |
| 404 | udelay(1); |
| 405 | } |
| 406 | |
| 407 | return E1000_SUCCESS; |
| 408 | } |
| 409 | |
| 410 | /****************************************************************************** |
| 411 | * Sets up eeprom variables in the hw struct. Must be called after mac_type |
| 412 | * is configured. Additionally, if this is ICH8, the flash controller GbE |
| 413 | * registers must be mapped, or this will crash. |
| 414 | * |
| 415 | * hw - Struct containing variables accessed by shared code |
| 416 | *****************************************************************************/ |
| 417 | static int32_t e1000_init_eeprom_params(struct e1000_hw *hw) |
| 418 | { |
| 419 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
| 420 | uint32_t eecd = E1000_READ_REG(hw, EECD); |
| 421 | int32_t ret_val = E1000_SUCCESS; |
| 422 | uint16_t eeprom_size; |
| 423 | |
Timur Tabi | f81ecb5 | 2009-08-17 15:55:38 -0500 | [diff] [blame] | 424 | DEBUGFUNC(); |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 425 | |
| 426 | switch (hw->mac_type) { |
| 427 | case e1000_82542_rev2_0: |
| 428 | case e1000_82542_rev2_1: |
| 429 | case e1000_82543: |
| 430 | case e1000_82544: |
| 431 | eeprom->type = e1000_eeprom_microwire; |
| 432 | eeprom->word_size = 64; |
| 433 | eeprom->opcode_bits = 3; |
| 434 | eeprom->address_bits = 6; |
| 435 | eeprom->delay_usec = 50; |
| 436 | eeprom->use_eerd = FALSE; |
| 437 | eeprom->use_eewr = FALSE; |
| 438 | break; |
| 439 | case e1000_82540: |
| 440 | case e1000_82545: |
| 441 | case e1000_82545_rev_3: |
| 442 | case e1000_82546: |
| 443 | case e1000_82546_rev_3: |
| 444 | eeprom->type = e1000_eeprom_microwire; |
| 445 | eeprom->opcode_bits = 3; |
| 446 | eeprom->delay_usec = 50; |
| 447 | if (eecd & E1000_EECD_SIZE) { |
| 448 | eeprom->word_size = 256; |
| 449 | eeprom->address_bits = 8; |
| 450 | } else { |
| 451 | eeprom->word_size = 64; |
| 452 | eeprom->address_bits = 6; |
| 453 | } |
| 454 | eeprom->use_eerd = FALSE; |
| 455 | eeprom->use_eewr = FALSE; |
| 456 | break; |
| 457 | case e1000_82541: |
| 458 | case e1000_82541_rev_2: |
| 459 | case e1000_82547: |
| 460 | case e1000_82547_rev_2: |
| 461 | if (eecd & E1000_EECD_TYPE) { |
| 462 | eeprom->type = e1000_eeprom_spi; |
| 463 | eeprom->opcode_bits = 8; |
| 464 | eeprom->delay_usec = 1; |
| 465 | if (eecd & E1000_EECD_ADDR_BITS) { |
| 466 | eeprom->page_size = 32; |
| 467 | eeprom->address_bits = 16; |
| 468 | } else { |
| 469 | eeprom->page_size = 8; |
| 470 | eeprom->address_bits = 8; |
| 471 | } |
| 472 | } else { |
| 473 | eeprom->type = e1000_eeprom_microwire; |
| 474 | eeprom->opcode_bits = 3; |
| 475 | eeprom->delay_usec = 50; |
| 476 | if (eecd & E1000_EECD_ADDR_BITS) { |
| 477 | eeprom->word_size = 256; |
| 478 | eeprom->address_bits = 8; |
| 479 | } else { |
| 480 | eeprom->word_size = 64; |
| 481 | eeprom->address_bits = 6; |
| 482 | } |
| 483 | } |
| 484 | eeprom->use_eerd = FALSE; |
| 485 | eeprom->use_eewr = FALSE; |
| 486 | break; |
| 487 | case e1000_82571: |
| 488 | case e1000_82572: |
| 489 | eeprom->type = e1000_eeprom_spi; |
| 490 | eeprom->opcode_bits = 8; |
| 491 | eeprom->delay_usec = 1; |
| 492 | if (eecd & E1000_EECD_ADDR_BITS) { |
| 493 | eeprom->page_size = 32; |
| 494 | eeprom->address_bits = 16; |
| 495 | } else { |
| 496 | eeprom->page_size = 8; |
| 497 | eeprom->address_bits = 8; |
| 498 | } |
| 499 | eeprom->use_eerd = FALSE; |
| 500 | eeprom->use_eewr = FALSE; |
| 501 | break; |
| 502 | case e1000_82573: |
Roy Zang | 2c2668f | 2011-01-21 11:29:38 +0800 | [diff] [blame] | 503 | case e1000_82574: |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 504 | eeprom->type = e1000_eeprom_spi; |
| 505 | eeprom->opcode_bits = 8; |
| 506 | eeprom->delay_usec = 1; |
| 507 | if (eecd & E1000_EECD_ADDR_BITS) { |
| 508 | eeprom->page_size = 32; |
| 509 | eeprom->address_bits = 16; |
| 510 | } else { |
| 511 | eeprom->page_size = 8; |
| 512 | eeprom->address_bits = 8; |
| 513 | } |
| 514 | eeprom->use_eerd = TRUE; |
| 515 | eeprom->use_eewr = TRUE; |
| 516 | if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) { |
| 517 | eeprom->type = e1000_eeprom_flash; |
| 518 | eeprom->word_size = 2048; |
| 519 | |
| 520 | /* Ensure that the Autonomous FLASH update bit is cleared due to |
| 521 | * Flash update issue on parts which use a FLASH for NVM. */ |
| 522 | eecd &= ~E1000_EECD_AUPDEN; |
| 523 | E1000_WRITE_REG(hw, EECD, eecd); |
| 524 | } |
| 525 | break; |
| 526 | case e1000_80003es2lan: |
| 527 | eeprom->type = e1000_eeprom_spi; |
| 528 | eeprom->opcode_bits = 8; |
| 529 | eeprom->delay_usec = 1; |
| 530 | if (eecd & E1000_EECD_ADDR_BITS) { |
| 531 | eeprom->page_size = 32; |
| 532 | eeprom->address_bits = 16; |
| 533 | } else { |
| 534 | eeprom->page_size = 8; |
| 535 | eeprom->address_bits = 8; |
| 536 | } |
| 537 | eeprom->use_eerd = TRUE; |
| 538 | eeprom->use_eewr = FALSE; |
| 539 | break; |
| 540 | |
| 541 | /* ich8lan does not support currently. if needed, please |
| 542 | * add corresponding code and functions. |
| 543 | */ |
| 544 | #if 0 |
| 545 | case e1000_ich8lan: |
| 546 | { |
| 547 | int32_t i = 0; |
| 548 | |
| 549 | eeprom->type = e1000_eeprom_ich8; |
| 550 | eeprom->use_eerd = FALSE; |
| 551 | eeprom->use_eewr = FALSE; |
| 552 | eeprom->word_size = E1000_SHADOW_RAM_WORDS; |
| 553 | uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw, |
| 554 | ICH_FLASH_GFPREG); |
| 555 | /* Zero the shadow RAM structure. But don't load it from NVM |
| 556 | * so as to save time for driver init */ |
| 557 | if (hw->eeprom_shadow_ram != NULL) { |
| 558 | for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { |
| 559 | hw->eeprom_shadow_ram[i].modified = FALSE; |
| 560 | hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF; |
| 561 | } |
| 562 | } |
| 563 | |
| 564 | hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) * |
| 565 | ICH_FLASH_SECTOR_SIZE; |
| 566 | |
| 567 | hw->flash_bank_size = ((flash_size >> 16) |
| 568 | & ICH_GFPREG_BASE_MASK) + 1; |
| 569 | hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK); |
| 570 | |
| 571 | hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE; |
| 572 | |
| 573 | hw->flash_bank_size /= 2 * sizeof(uint16_t); |
| 574 | break; |
| 575 | } |
| 576 | #endif |
| 577 | default: |
| 578 | break; |
| 579 | } |
| 580 | |
| 581 | if (eeprom->type == e1000_eeprom_spi) { |
| 582 | /* eeprom_size will be an enum [0..8] that maps |
| 583 | * to eeprom sizes 128B to |
| 584 | * 32KB (incremented by powers of 2). |
| 585 | */ |
| 586 | if (hw->mac_type <= e1000_82547_rev_2) { |
| 587 | /* Set to default value for initial eeprom read. */ |
| 588 | eeprom->word_size = 64; |
| 589 | ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, |
| 590 | &eeprom_size); |
| 591 | if (ret_val) |
| 592 | return ret_val; |
| 593 | eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) |
| 594 | >> EEPROM_SIZE_SHIFT; |
| 595 | /* 256B eeprom size was not supported in earlier |
| 596 | * hardware, so we bump eeprom_size up one to |
| 597 | * ensure that "1" (which maps to 256B) is never |
| 598 | * the result used in the shifting logic below. */ |
| 599 | if (eeprom_size) |
| 600 | eeprom_size++; |
| 601 | } else { |
| 602 | eeprom_size = (uint16_t)((eecd & |
| 603 | E1000_EECD_SIZE_EX_MASK) >> |
| 604 | E1000_EECD_SIZE_EX_SHIFT); |
| 605 | } |
| 606 | |
| 607 | eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); |
| 608 | } |
| 609 | return ret_val; |
| 610 | } |
| 611 | |
| 612 | /****************************************************************************** |
| 613 | * Polls the status bit (bit 1) of the EERD to determine when the read is done. |
| 614 | * |
| 615 | * hw - Struct containing variables accessed by shared code |
| 616 | *****************************************************************************/ |
| 617 | static int32_t |
| 618 | e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd) |
| 619 | { |
| 620 | uint32_t attempts = 100000; |
| 621 | uint32_t i, reg = 0; |
| 622 | int32_t done = E1000_ERR_EEPROM; |
| 623 | |
| 624 | for (i = 0; i < attempts; i++) { |
| 625 | if (eerd == E1000_EEPROM_POLL_READ) |
| 626 | reg = E1000_READ_REG(hw, EERD); |
| 627 | else |
| 628 | reg = E1000_READ_REG(hw, EEWR); |
| 629 | |
| 630 | if (reg & E1000_EEPROM_RW_REG_DONE) { |
| 631 | done = E1000_SUCCESS; |
| 632 | break; |
| 633 | } |
| 634 | udelay(5); |
| 635 | } |
| 636 | |
| 637 | return done; |
| 638 | } |
| 639 | |
| 640 | /****************************************************************************** |
| 641 | * Reads a 16 bit word from the EEPROM using the EERD register. |
| 642 | * |
| 643 | * hw - Struct containing variables accessed by shared code |
| 644 | * offset - offset of word in the EEPROM to read |
| 645 | * data - word read from the EEPROM |
| 646 | * words - number of words to read |
| 647 | *****************************************************************************/ |
| 648 | static int32_t |
| 649 | e1000_read_eeprom_eerd(struct e1000_hw *hw, |
| 650 | uint16_t offset, |
| 651 | uint16_t words, |
| 652 | uint16_t *data) |
| 653 | { |
| 654 | uint32_t i, eerd = 0; |
| 655 | int32_t error = 0; |
| 656 | |
| 657 | for (i = 0; i < words; i++) { |
| 658 | eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) + |
| 659 | E1000_EEPROM_RW_REG_START; |
| 660 | |
| 661 | E1000_WRITE_REG(hw, EERD, eerd); |
| 662 | error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ); |
| 663 | |
| 664 | if (error) |
| 665 | break; |
| 666 | data[i] = (E1000_READ_REG(hw, EERD) >> |
| 667 | E1000_EEPROM_RW_REG_DATA); |
| 668 | |
| 669 | } |
| 670 | |
| 671 | return error; |
| 672 | } |
| 673 | |
| 674 | static void |
| 675 | e1000_release_eeprom(struct e1000_hw *hw) |
| 676 | { |
| 677 | uint32_t eecd; |
| 678 | |
| 679 | DEBUGFUNC(); |
| 680 | |
| 681 | eecd = E1000_READ_REG(hw, EECD); |
| 682 | |
| 683 | if (hw->eeprom.type == e1000_eeprom_spi) { |
| 684 | eecd |= E1000_EECD_CS; /* Pull CS high */ |
| 685 | eecd &= ~E1000_EECD_SK; /* Lower SCK */ |
| 686 | |
| 687 | E1000_WRITE_REG(hw, EECD, eecd); |
| 688 | |
| 689 | udelay(hw->eeprom.delay_usec); |
| 690 | } else if (hw->eeprom.type == e1000_eeprom_microwire) { |
| 691 | /* cleanup eeprom */ |
| 692 | |
| 693 | /* CS on Microwire is active-high */ |
| 694 | eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); |
| 695 | |
| 696 | E1000_WRITE_REG(hw, EECD, eecd); |
| 697 | |
| 698 | /* Rising edge of clock */ |
| 699 | eecd |= E1000_EECD_SK; |
| 700 | E1000_WRITE_REG(hw, EECD, eecd); |
| 701 | E1000_WRITE_FLUSH(hw); |
| 702 | udelay(hw->eeprom.delay_usec); |
| 703 | |
| 704 | /* Falling edge of clock */ |
| 705 | eecd &= ~E1000_EECD_SK; |
| 706 | E1000_WRITE_REG(hw, EECD, eecd); |
| 707 | E1000_WRITE_FLUSH(hw); |
| 708 | udelay(hw->eeprom.delay_usec); |
| 709 | } |
| 710 | |
| 711 | /* Stop requesting EEPROM access */ |
| 712 | if (hw->mac_type > e1000_82544) { |
| 713 | eecd &= ~E1000_EECD_REQ; |
| 714 | E1000_WRITE_REG(hw, EECD, eecd); |
| 715 | } |
| 716 | } |
| 717 | /****************************************************************************** |
| 718 | * Reads a 16 bit word from the EEPROM. |
| 719 | * |
| 720 | * hw - Struct containing variables accessed by shared code |
| 721 | *****************************************************************************/ |
| 722 | static int32_t |
| 723 | e1000_spi_eeprom_ready(struct e1000_hw *hw) |
| 724 | { |
| 725 | uint16_t retry_count = 0; |
| 726 | uint8_t spi_stat_reg; |
| 727 | |
| 728 | DEBUGFUNC(); |
| 729 | |
| 730 | /* Read "Status Register" repeatedly until the LSB is cleared. The |
| 731 | * EEPROM will signal that the command has been completed by clearing |
| 732 | * bit 0 of the internal status register. If it's not cleared within |
| 733 | * 5 milliseconds, then error out. |
| 734 | */ |
| 735 | retry_count = 0; |
| 736 | do { |
| 737 | e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, |
| 738 | hw->eeprom.opcode_bits); |
| 739 | spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8); |
| 740 | if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) |
| 741 | break; |
| 742 | |
| 743 | udelay(5); |
| 744 | retry_count += 5; |
| 745 | |
| 746 | e1000_standby_eeprom(hw); |
| 747 | } while (retry_count < EEPROM_MAX_RETRY_SPI); |
| 748 | |
| 749 | /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and |
| 750 | * only 0-5mSec on 5V devices) |
| 751 | */ |
| 752 | if (retry_count >= EEPROM_MAX_RETRY_SPI) { |
| 753 | DEBUGOUT("SPI EEPROM Status error\n"); |
| 754 | return -E1000_ERR_EEPROM; |
| 755 | } |
| 756 | |
| 757 | return E1000_SUCCESS; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 758 | } |
| 759 | |
| 760 | /****************************************************************************** |
| 761 | * Reads a 16 bit word from the EEPROM. |
| 762 | * |
| 763 | * hw - Struct containing variables accessed by shared code |
| 764 | * offset - offset of word in the EEPROM to read |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 765 | * data - word read from the EEPROM |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 766 | *****************************************************************************/ |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 767 | static int32_t |
| 768 | e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset, |
| 769 | uint16_t words, uint16_t *data) |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 770 | { |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 771 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 772 | uint32_t i = 0; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 773 | |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 774 | DEBUGFUNC(); |
| 775 | |
| 776 | /* If eeprom is not yet detected, do so now */ |
| 777 | if (eeprom->word_size == 0) |
| 778 | e1000_init_eeprom_params(hw); |
| 779 | |
| 780 | /* A check for invalid values: offset too large, too many words, |
| 781 | * and not enough words. |
| 782 | */ |
| 783 | if ((offset >= eeprom->word_size) || |
| 784 | (words > eeprom->word_size - offset) || |
| 785 | (words == 0)) { |
| 786 | DEBUGOUT("\"words\" parameter out of bounds." |
| 787 | "Words = %d, size = %d\n", offset, eeprom->word_size); |
| 788 | return -E1000_ERR_EEPROM; |
| 789 | } |
| 790 | |
| 791 | /* EEPROM's that don't use EERD to read require us to bit-bang the SPI |
| 792 | * directly. In this case, we need to acquire the EEPROM so that |
| 793 | * FW or other port software does not interrupt. |
| 794 | */ |
| 795 | if (e1000_is_onboard_nvm_eeprom(hw) == TRUE && |
| 796 | hw->eeprom.use_eerd == FALSE) { |
| 797 | |
| 798 | /* Prepare the EEPROM for bit-bang reading */ |
| 799 | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) |
| 800 | return -E1000_ERR_EEPROM; |
| 801 | } |
| 802 | |
| 803 | /* Eerd register EEPROM access requires no eeprom aquire/release */ |
| 804 | if (eeprom->use_eerd == TRUE) |
| 805 | return e1000_read_eeprom_eerd(hw, offset, words, data); |
| 806 | |
| 807 | /* ich8lan does not support currently. if needed, please |
| 808 | * add corresponding code and functions. |
| 809 | */ |
| 810 | #if 0 |
| 811 | /* ICH EEPROM access is done via the ICH flash controller */ |
| 812 | if (eeprom->type == e1000_eeprom_ich8) |
| 813 | return e1000_read_eeprom_ich8(hw, offset, words, data); |
| 814 | #endif |
| 815 | /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have |
| 816 | * acquired the EEPROM at this point, so any returns should relase it */ |
| 817 | if (eeprom->type == e1000_eeprom_spi) { |
| 818 | uint16_t word_in; |
| 819 | uint8_t read_opcode = EEPROM_READ_OPCODE_SPI; |
| 820 | |
| 821 | if (e1000_spi_eeprom_ready(hw)) { |
| 822 | e1000_release_eeprom(hw); |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 823 | return -E1000_ERR_EEPROM; |
| 824 | } |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 825 | |
| 826 | e1000_standby_eeprom(hw); |
| 827 | |
| 828 | /* Some SPI eeproms use the 8th address bit embedded in |
| 829 | * the opcode */ |
| 830 | if ((eeprom->address_bits == 8) && (offset >= 128)) |
| 831 | read_opcode |= EEPROM_A8_OPCODE_SPI; |
| 832 | |
| 833 | /* Send the READ command (opcode + addr) */ |
| 834 | e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); |
| 835 | e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), |
| 836 | eeprom->address_bits); |
| 837 | |
| 838 | /* Read the data. The address of the eeprom internally |
| 839 | * increments with each byte (spi) being read, saving on the |
| 840 | * overhead of eeprom setup and tear-down. The address |
| 841 | * counter will roll over if reading beyond the size of |
| 842 | * the eeprom, thus allowing the entire memory to be read |
| 843 | * starting from any offset. */ |
| 844 | for (i = 0; i < words; i++) { |
| 845 | word_in = e1000_shift_in_ee_bits(hw, 16); |
| 846 | data[i] = (word_in >> 8) | (word_in << 8); |
| 847 | } |
| 848 | } else if (eeprom->type == e1000_eeprom_microwire) { |
| 849 | for (i = 0; i < words; i++) { |
| 850 | /* Send the READ command (opcode + addr) */ |
| 851 | e1000_shift_out_ee_bits(hw, |
| 852 | EEPROM_READ_OPCODE_MICROWIRE, |
| 853 | eeprom->opcode_bits); |
| 854 | e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i), |
| 855 | eeprom->address_bits); |
| 856 | |
| 857 | /* Read the data. For microwire, each word requires |
| 858 | * the overhead of eeprom setup and tear-down. */ |
| 859 | data[i] = e1000_shift_in_ee_bits(hw, 16); |
| 860 | e1000_standby_eeprom(hw); |
| 861 | } |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 862 | } |
| 863 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 864 | /* End this read operation */ |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 865 | e1000_release_eeprom(hw); |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 866 | |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 867 | return E1000_SUCCESS; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 868 | } |
| 869 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 870 | /****************************************************************************** |
| 871 | * Verifies that the EEPROM has a valid checksum |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 872 | * |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 873 | * hw - Struct containing variables accessed by shared code |
| 874 | * |
| 875 | * Reads the first 64 16 bit words of the EEPROM and sums the values read. |
| 876 | * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is |
| 877 | * valid. |
| 878 | *****************************************************************************/ |
| 879 | static int |
| 880 | e1000_validate_eeprom_checksum(struct eth_device *nic) |
| 881 | { |
| 882 | struct e1000_hw *hw = nic->priv; |
| 883 | uint16_t checksum = 0; |
| 884 | uint16_t i, eeprom_data; |
| 885 | |
| 886 | DEBUGFUNC(); |
| 887 | |
| 888 | for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 889 | if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 890 | DEBUGOUT("EEPROM Read Error\n"); |
| 891 | return -E1000_ERR_EEPROM; |
| 892 | } |
| 893 | checksum += eeprom_data; |
| 894 | } |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 895 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 896 | if (checksum == (uint16_t) EEPROM_SUM) { |
| 897 | return 0; |
| 898 | } else { |
| 899 | DEBUGOUT("EEPROM Checksum Invalid\n"); |
| 900 | return -E1000_ERR_EEPROM; |
| 901 | } |
| 902 | } |
Roy Zang | ecbd207 | 2009-08-11 03:48:05 +0800 | [diff] [blame] | 903 | |
| 904 | /***************************************************************************** |
| 905 | * Set PHY to class A mode |
| 906 | * Assumes the following operations will follow to enable the new class mode. |
| 907 | * 1. Do a PHY soft reset |
| 908 | * 2. Restart auto-negotiation or force link. |
| 909 | * |
| 910 | * hw - Struct containing variables accessed by shared code |
| 911 | ****************************************************************************/ |
| 912 | static int32_t |
| 913 | e1000_set_phy_mode(struct e1000_hw *hw) |
| 914 | { |
| 915 | int32_t ret_val; |
| 916 | uint16_t eeprom_data; |
| 917 | |
| 918 | DEBUGFUNC(); |
| 919 | |
| 920 | if ((hw->mac_type == e1000_82545_rev_3) && |
| 921 | (hw->media_type == e1000_media_type_copper)) { |
| 922 | ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, |
| 923 | 1, &eeprom_data); |
| 924 | if (ret_val) |
| 925 | return ret_val; |
| 926 | |
| 927 | if ((eeprom_data != EEPROM_RESERVED_WORD) && |
| 928 | (eeprom_data & EEPROM_PHY_CLASS_A)) { |
| 929 | ret_val = e1000_write_phy_reg(hw, |
| 930 | M88E1000_PHY_PAGE_SELECT, 0x000B); |
| 931 | if (ret_val) |
| 932 | return ret_val; |
| 933 | ret_val = e1000_write_phy_reg(hw, |
| 934 | M88E1000_PHY_GEN_CONTROL, 0x8104); |
| 935 | if (ret_val) |
| 936 | return ret_val; |
| 937 | |
| 938 | hw->phy_reset_disable = FALSE; |
| 939 | } |
| 940 | } |
| 941 | |
| 942 | return E1000_SUCCESS; |
| 943 | } |
Wolfgang Denk | 7521af1 | 2005-10-09 01:04:33 +0200 | [diff] [blame] | 944 | #endif /* #ifndef CONFIG_AP1000 */ |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 945 | |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 946 | /*************************************************************************** |
| 947 | * |
| 948 | * Obtaining software semaphore bit (SMBI) before resetting PHY. |
| 949 | * |
| 950 | * hw: Struct containing variables accessed by shared code |
| 951 | * |
| 952 | * returns: - E1000_ERR_RESET if fail to obtain semaphore. |
| 953 | * E1000_SUCCESS at any other case. |
| 954 | * |
| 955 | ***************************************************************************/ |
| 956 | static int32_t |
| 957 | e1000_get_software_semaphore(struct e1000_hw *hw) |
| 958 | { |
| 959 | int32_t timeout = hw->eeprom.word_size + 1; |
| 960 | uint32_t swsm; |
| 961 | |
| 962 | DEBUGFUNC(); |
| 963 | |
| 964 | if (hw->mac_type != e1000_80003es2lan) |
| 965 | return E1000_SUCCESS; |
| 966 | |
| 967 | while (timeout) { |
| 968 | swsm = E1000_READ_REG(hw, SWSM); |
| 969 | /* If SMBI bit cleared, it is now set and we hold |
| 970 | * the semaphore */ |
| 971 | if (!(swsm & E1000_SWSM_SMBI)) |
| 972 | break; |
| 973 | mdelay(1); |
| 974 | timeout--; |
| 975 | } |
| 976 | |
| 977 | if (!timeout) { |
| 978 | DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); |
| 979 | return -E1000_ERR_RESET; |
| 980 | } |
| 981 | |
| 982 | return E1000_SUCCESS; |
| 983 | } |
| 984 | |
| 985 | /*************************************************************************** |
| 986 | * This function clears HW semaphore bits. |
| 987 | * |
| 988 | * hw: Struct containing variables accessed by shared code |
| 989 | * |
| 990 | * returns: - None. |
| 991 | * |
| 992 | ***************************************************************************/ |
| 993 | static void |
| 994 | e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw) |
| 995 | { |
| 996 | uint32_t swsm; |
| 997 | |
| 998 | DEBUGFUNC(); |
| 999 | |
| 1000 | if (!hw->eeprom_semaphore_present) |
| 1001 | return; |
| 1002 | |
| 1003 | swsm = E1000_READ_REG(hw, SWSM); |
| 1004 | if (hw->mac_type == e1000_80003es2lan) { |
| 1005 | /* Release both semaphores. */ |
| 1006 | swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); |
| 1007 | } else |
| 1008 | swsm &= ~(E1000_SWSM_SWESMBI); |
| 1009 | E1000_WRITE_REG(hw, SWSM, swsm); |
| 1010 | } |
| 1011 | |
| 1012 | /*************************************************************************** |
| 1013 | * |
| 1014 | * Using the combination of SMBI and SWESMBI semaphore bits when resetting |
| 1015 | * adapter or Eeprom access. |
| 1016 | * |
| 1017 | * hw: Struct containing variables accessed by shared code |
| 1018 | * |
| 1019 | * returns: - E1000_ERR_EEPROM if fail to access EEPROM. |
| 1020 | * E1000_SUCCESS at any other case. |
| 1021 | * |
| 1022 | ***************************************************************************/ |
| 1023 | static int32_t |
| 1024 | e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw) |
| 1025 | { |
| 1026 | int32_t timeout; |
| 1027 | uint32_t swsm; |
| 1028 | |
| 1029 | DEBUGFUNC(); |
| 1030 | |
| 1031 | if (!hw->eeprom_semaphore_present) |
| 1032 | return E1000_SUCCESS; |
| 1033 | |
| 1034 | if (hw->mac_type == e1000_80003es2lan) { |
| 1035 | /* Get the SW semaphore. */ |
| 1036 | if (e1000_get_software_semaphore(hw) != E1000_SUCCESS) |
| 1037 | return -E1000_ERR_EEPROM; |
| 1038 | } |
| 1039 | |
| 1040 | /* Get the FW semaphore. */ |
| 1041 | timeout = hw->eeprom.word_size + 1; |
| 1042 | while (timeout) { |
| 1043 | swsm = E1000_READ_REG(hw, SWSM); |
| 1044 | swsm |= E1000_SWSM_SWESMBI; |
| 1045 | E1000_WRITE_REG(hw, SWSM, swsm); |
| 1046 | /* if we managed to set the bit we got the semaphore. */ |
| 1047 | swsm = E1000_READ_REG(hw, SWSM); |
| 1048 | if (swsm & E1000_SWSM_SWESMBI) |
| 1049 | break; |
| 1050 | |
| 1051 | udelay(50); |
| 1052 | timeout--; |
| 1053 | } |
| 1054 | |
| 1055 | if (!timeout) { |
| 1056 | /* Release semaphores */ |
| 1057 | e1000_put_hw_eeprom_semaphore(hw); |
| 1058 | DEBUGOUT("Driver can't access the Eeprom - " |
| 1059 | "SWESMBI bit is set.\n"); |
| 1060 | return -E1000_ERR_EEPROM; |
| 1061 | } |
| 1062 | |
| 1063 | return E1000_SUCCESS; |
| 1064 | } |
| 1065 | |
| 1066 | static int32_t |
| 1067 | e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask) |
| 1068 | { |
| 1069 | uint32_t swfw_sync = 0; |
| 1070 | uint32_t swmask = mask; |
| 1071 | uint32_t fwmask = mask << 16; |
| 1072 | int32_t timeout = 200; |
| 1073 | |
| 1074 | DEBUGFUNC(); |
| 1075 | while (timeout) { |
| 1076 | if (e1000_get_hw_eeprom_semaphore(hw)) |
| 1077 | return -E1000_ERR_SWFW_SYNC; |
| 1078 | |
| 1079 | swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC); |
| 1080 | if (!(swfw_sync & (fwmask | swmask))) |
| 1081 | break; |
| 1082 | |
| 1083 | /* firmware currently using resource (fwmask) */ |
| 1084 | /* or other software thread currently using resource (swmask) */ |
| 1085 | e1000_put_hw_eeprom_semaphore(hw); |
| 1086 | mdelay(5); |
| 1087 | timeout--; |
| 1088 | } |
| 1089 | |
| 1090 | if (!timeout) { |
| 1091 | DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); |
| 1092 | return -E1000_ERR_SWFW_SYNC; |
| 1093 | } |
| 1094 | |
| 1095 | swfw_sync |= swmask; |
| 1096 | E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync); |
| 1097 | |
| 1098 | e1000_put_hw_eeprom_semaphore(hw); |
| 1099 | return E1000_SUCCESS; |
| 1100 | } |
| 1101 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1102 | /****************************************************************************** |
| 1103 | * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the |
| 1104 | * second function of dual function devices |
| 1105 | * |
| 1106 | * nic - Struct containing variables accessed by shared code |
| 1107 | *****************************************************************************/ |
| 1108 | static int |
| 1109 | e1000_read_mac_addr(struct eth_device *nic) |
| 1110 | { |
Wolfgang Denk | 7521af1 | 2005-10-09 01:04:33 +0200 | [diff] [blame] | 1111 | #ifndef CONFIG_AP1000 |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1112 | struct e1000_hw *hw = nic->priv; |
| 1113 | uint16_t offset; |
| 1114 | uint16_t eeprom_data; |
| 1115 | int i; |
| 1116 | |
| 1117 | DEBUGFUNC(); |
| 1118 | |
| 1119 | for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { |
| 1120 | offset = i >> 1; |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1121 | if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1122 | DEBUGOUT("EEPROM Read Error\n"); |
| 1123 | return -E1000_ERR_EEPROM; |
| 1124 | } |
| 1125 | nic->enetaddr[i] = eeprom_data & 0xff; |
| 1126 | nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff; |
| 1127 | } |
| 1128 | if ((hw->mac_type == e1000_82546) && |
| 1129 | (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { |
| 1130 | /* Invert the last bit if this is the second device */ |
| 1131 | nic->enetaddr[5] += 1; |
| 1132 | } |
Andre Schwarz | ac3315c | 2008-03-06 16:45:44 +0100 | [diff] [blame] | 1133 | #ifdef CONFIG_E1000_FALLBACK_MAC |
Stefan Roese | f2302d4 | 2008-08-06 14:05:38 +0200 | [diff] [blame] | 1134 | if ( *(u32*)(nic->enetaddr) == 0 || *(u32*)(nic->enetaddr) == ~0 ) { |
| 1135 | unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC; |
| 1136 | |
| 1137 | memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE); |
| 1138 | } |
Andre Schwarz | ac3315c | 2008-03-06 16:45:44 +0100 | [diff] [blame] | 1139 | #endif |
Wolfgang Denk | 7521af1 | 2005-10-09 01:04:33 +0200 | [diff] [blame] | 1140 | #else |
| 1141 | /* |
| 1142 | * The AP1000's e1000 has no eeprom; the MAC address is stored in the |
| 1143 | * environment variables. Currently this does not support the addition |
| 1144 | * of a PMC e1000 card, which is certainly a possibility, so this should |
| 1145 | * be updated to properly use the env variable only for the onboard e1000 |
| 1146 | */ |
| 1147 | |
| 1148 | int ii; |
| 1149 | char *s, *e; |
| 1150 | |
| 1151 | DEBUGFUNC(); |
| 1152 | |
| 1153 | s = getenv ("ethaddr"); |
Stefan Roese | f2302d4 | 2008-08-06 14:05:38 +0200 | [diff] [blame] | 1154 | if (s == NULL) { |
Wolfgang Denk | 7521af1 | 2005-10-09 01:04:33 +0200 | [diff] [blame] | 1155 | return -E1000_ERR_EEPROM; |
Stefan Roese | f2302d4 | 2008-08-06 14:05:38 +0200 | [diff] [blame] | 1156 | } else { |
Wolfgang Denk | 7521af1 | 2005-10-09 01:04:33 +0200 | [diff] [blame] | 1157 | for(ii = 0; ii < 6; ii++) { |
| 1158 | nic->enetaddr[ii] = s ? simple_strtoul (s, &e, 16) : 0; |
| 1159 | if (s){ |
| 1160 | s = (*e) ? e + 1 : e; |
| 1161 | } |
| 1162 | } |
| 1163 | } |
| 1164 | #endif |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1165 | return 0; |
| 1166 | } |
| 1167 | |
| 1168 | /****************************************************************************** |
| 1169 | * Initializes receive address filters. |
| 1170 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 1171 | * hw - Struct containing variables accessed by shared code |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1172 | * |
| 1173 | * Places the MAC address in receive address register 0 and clears the rest |
| 1174 | * of the receive addresss registers. Clears the multicast table. Assumes |
| 1175 | * the receiver is in reset when the routine is called. |
| 1176 | *****************************************************************************/ |
| 1177 | static void |
| 1178 | e1000_init_rx_addrs(struct eth_device *nic) |
| 1179 | { |
| 1180 | struct e1000_hw *hw = nic->priv; |
| 1181 | uint32_t i; |
| 1182 | uint32_t addr_low; |
| 1183 | uint32_t addr_high; |
| 1184 | |
| 1185 | DEBUGFUNC(); |
| 1186 | |
| 1187 | /* Setup the receive address. */ |
| 1188 | DEBUGOUT("Programming MAC Address into RAR[0]\n"); |
| 1189 | addr_low = (nic->enetaddr[0] | |
| 1190 | (nic->enetaddr[1] << 8) | |
| 1191 | (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24)); |
| 1192 | |
| 1193 | addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV); |
| 1194 | |
| 1195 | E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low); |
| 1196 | E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high); |
| 1197 | |
| 1198 | /* Zero out the other 15 receive addresses. */ |
| 1199 | DEBUGOUT("Clearing RAR[1-15]\n"); |
| 1200 | for (i = 1; i < E1000_RAR_ENTRIES; i++) { |
| 1201 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); |
| 1202 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); |
| 1203 | } |
| 1204 | } |
| 1205 | |
| 1206 | /****************************************************************************** |
| 1207 | * Clears the VLAN filer table |
| 1208 | * |
| 1209 | * hw - Struct containing variables accessed by shared code |
| 1210 | *****************************************************************************/ |
| 1211 | static void |
| 1212 | e1000_clear_vfta(struct e1000_hw *hw) |
| 1213 | { |
| 1214 | uint32_t offset; |
| 1215 | |
| 1216 | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) |
| 1217 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0); |
| 1218 | } |
| 1219 | |
| 1220 | /****************************************************************************** |
| 1221 | * Set the mac type member in the hw struct. |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 1222 | * |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1223 | * hw - Struct containing variables accessed by shared code |
| 1224 | *****************************************************************************/ |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1225 | int32_t |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1226 | e1000_set_mac_type(struct e1000_hw *hw) |
| 1227 | { |
| 1228 | DEBUGFUNC(); |
| 1229 | |
| 1230 | switch (hw->device_id) { |
| 1231 | case E1000_DEV_ID_82542: |
| 1232 | switch (hw->revision_id) { |
| 1233 | case E1000_82542_2_0_REV_ID: |
| 1234 | hw->mac_type = e1000_82542_rev2_0; |
| 1235 | break; |
| 1236 | case E1000_82542_2_1_REV_ID: |
| 1237 | hw->mac_type = e1000_82542_rev2_1; |
| 1238 | break; |
| 1239 | default: |
| 1240 | /* Invalid 82542 revision ID */ |
| 1241 | return -E1000_ERR_MAC_TYPE; |
| 1242 | } |
| 1243 | break; |
| 1244 | case E1000_DEV_ID_82543GC_FIBER: |
| 1245 | case E1000_DEV_ID_82543GC_COPPER: |
| 1246 | hw->mac_type = e1000_82543; |
| 1247 | break; |
| 1248 | case E1000_DEV_ID_82544EI_COPPER: |
| 1249 | case E1000_DEV_ID_82544EI_FIBER: |
| 1250 | case E1000_DEV_ID_82544GC_COPPER: |
| 1251 | case E1000_DEV_ID_82544GC_LOM: |
| 1252 | hw->mac_type = e1000_82544; |
| 1253 | break; |
| 1254 | case E1000_DEV_ID_82540EM: |
| 1255 | case E1000_DEV_ID_82540EM_LOM: |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1256 | case E1000_DEV_ID_82540EP: |
| 1257 | case E1000_DEV_ID_82540EP_LOM: |
| 1258 | case E1000_DEV_ID_82540EP_LP: |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1259 | hw->mac_type = e1000_82540; |
| 1260 | break; |
| 1261 | case E1000_DEV_ID_82545EM_COPPER: |
| 1262 | case E1000_DEV_ID_82545EM_FIBER: |
| 1263 | hw->mac_type = e1000_82545; |
| 1264 | break; |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1265 | case E1000_DEV_ID_82545GM_COPPER: |
| 1266 | case E1000_DEV_ID_82545GM_FIBER: |
| 1267 | case E1000_DEV_ID_82545GM_SERDES: |
| 1268 | hw->mac_type = e1000_82545_rev_3; |
| 1269 | break; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1270 | case E1000_DEV_ID_82546EB_COPPER: |
| 1271 | case E1000_DEV_ID_82546EB_FIBER: |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1272 | case E1000_DEV_ID_82546EB_QUAD_COPPER: |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1273 | hw->mac_type = e1000_82546; |
| 1274 | break; |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1275 | case E1000_DEV_ID_82546GB_COPPER: |
| 1276 | case E1000_DEV_ID_82546GB_FIBER: |
| 1277 | case E1000_DEV_ID_82546GB_SERDES: |
| 1278 | case E1000_DEV_ID_82546GB_PCIE: |
| 1279 | case E1000_DEV_ID_82546GB_QUAD_COPPER: |
| 1280 | case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: |
| 1281 | hw->mac_type = e1000_82546_rev_3; |
| 1282 | break; |
| 1283 | case E1000_DEV_ID_82541EI: |
| 1284 | case E1000_DEV_ID_82541EI_MOBILE: |
| 1285 | case E1000_DEV_ID_82541ER_LOM: |
| 1286 | hw->mac_type = e1000_82541; |
| 1287 | break; |
Andre Schwarz | ac3315c | 2008-03-06 16:45:44 +0100 | [diff] [blame] | 1288 | case E1000_DEV_ID_82541ER: |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1289 | case E1000_DEV_ID_82541GI: |
Wolfgang Grandegger | aa3b8bf | 2008-05-28 19:55:19 +0200 | [diff] [blame] | 1290 | case E1000_DEV_ID_82541GI_LF: |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1291 | case E1000_DEV_ID_82541GI_MOBILE: |
Wolfgang Denk | 1aeed8d | 2008-04-13 09:59:26 -0700 | [diff] [blame] | 1292 | hw->mac_type = e1000_82541_rev_2; |
| 1293 | break; |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1294 | case E1000_DEV_ID_82547EI: |
| 1295 | case E1000_DEV_ID_82547EI_MOBILE: |
| 1296 | hw->mac_type = e1000_82547; |
| 1297 | break; |
| 1298 | case E1000_DEV_ID_82547GI: |
| 1299 | hw->mac_type = e1000_82547_rev_2; |
| 1300 | break; |
| 1301 | case E1000_DEV_ID_82571EB_COPPER: |
| 1302 | case E1000_DEV_ID_82571EB_FIBER: |
| 1303 | case E1000_DEV_ID_82571EB_SERDES: |
| 1304 | case E1000_DEV_ID_82571EB_SERDES_DUAL: |
| 1305 | case E1000_DEV_ID_82571EB_SERDES_QUAD: |
| 1306 | case E1000_DEV_ID_82571EB_QUAD_COPPER: |
| 1307 | case E1000_DEV_ID_82571PT_QUAD_COPPER: |
| 1308 | case E1000_DEV_ID_82571EB_QUAD_FIBER: |
| 1309 | case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE: |
| 1310 | hw->mac_type = e1000_82571; |
| 1311 | break; |
| 1312 | case E1000_DEV_ID_82572EI_COPPER: |
| 1313 | case E1000_DEV_ID_82572EI_FIBER: |
| 1314 | case E1000_DEV_ID_82572EI_SERDES: |
| 1315 | case E1000_DEV_ID_82572EI: |
| 1316 | hw->mac_type = e1000_82572; |
| 1317 | break; |
| 1318 | case E1000_DEV_ID_82573E: |
| 1319 | case E1000_DEV_ID_82573E_IAMT: |
| 1320 | case E1000_DEV_ID_82573L: |
| 1321 | hw->mac_type = e1000_82573; |
| 1322 | break; |
Roy Zang | 2c2668f | 2011-01-21 11:29:38 +0800 | [diff] [blame] | 1323 | case E1000_DEV_ID_82574L: |
| 1324 | hw->mac_type = e1000_82574; |
| 1325 | break; |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1326 | case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: |
| 1327 | case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: |
| 1328 | case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: |
| 1329 | case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: |
| 1330 | hw->mac_type = e1000_80003es2lan; |
| 1331 | break; |
| 1332 | case E1000_DEV_ID_ICH8_IGP_M_AMT: |
| 1333 | case E1000_DEV_ID_ICH8_IGP_AMT: |
| 1334 | case E1000_DEV_ID_ICH8_IGP_C: |
| 1335 | case E1000_DEV_ID_ICH8_IFE: |
| 1336 | case E1000_DEV_ID_ICH8_IFE_GT: |
| 1337 | case E1000_DEV_ID_ICH8_IFE_G: |
| 1338 | case E1000_DEV_ID_ICH8_IGP_M: |
| 1339 | hw->mac_type = e1000_ich8lan; |
| 1340 | break; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1341 | default: |
| 1342 | /* Should never have loaded on this device */ |
| 1343 | return -E1000_ERR_MAC_TYPE; |
| 1344 | } |
| 1345 | return E1000_SUCCESS; |
| 1346 | } |
| 1347 | |
| 1348 | /****************************************************************************** |
| 1349 | * Reset the transmit and receive units; mask and clear all interrupts. |
| 1350 | * |
| 1351 | * hw - Struct containing variables accessed by shared code |
| 1352 | *****************************************************************************/ |
| 1353 | void |
| 1354 | e1000_reset_hw(struct e1000_hw *hw) |
| 1355 | { |
| 1356 | uint32_t ctrl; |
| 1357 | uint32_t ctrl_ext; |
| 1358 | uint32_t icr; |
| 1359 | uint32_t manc; |
Roy Zang | 9ea005f | 2009-08-22 03:49:52 +0800 | [diff] [blame] | 1360 | uint32_t pba = 0; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1361 | |
| 1362 | DEBUGFUNC(); |
| 1363 | |
Roy Zang | 9ea005f | 2009-08-22 03:49:52 +0800 | [diff] [blame] | 1364 | /* get the correct pba value for both PCI and PCIe*/ |
| 1365 | if (hw->mac_type < e1000_82571) |
| 1366 | pba = E1000_DEFAULT_PCI_PBA; |
| 1367 | else |
| 1368 | pba = E1000_DEFAULT_PCIE_PBA; |
| 1369 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1370 | /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ |
| 1371 | if (hw->mac_type == e1000_82542_rev2_0) { |
| 1372 | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); |
| 1373 | pci_write_config_word(hw->pdev, PCI_COMMAND, |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1374 | hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE); |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1375 | } |
| 1376 | |
| 1377 | /* Clear interrupt mask to stop board from generating interrupts */ |
| 1378 | DEBUGOUT("Masking off all interrupts\n"); |
| 1379 | E1000_WRITE_REG(hw, IMC, 0xffffffff); |
| 1380 | |
| 1381 | /* Disable the Transmit and Receive units. Then delay to allow |
| 1382 | * any pending transactions to complete before we hit the MAC with |
| 1383 | * the global reset. |
| 1384 | */ |
| 1385 | E1000_WRITE_REG(hw, RCTL, 0); |
| 1386 | E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP); |
| 1387 | E1000_WRITE_FLUSH(hw); |
| 1388 | |
| 1389 | /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ |
| 1390 | hw->tbi_compatibility_on = FALSE; |
| 1391 | |
| 1392 | /* Delay to allow any outstanding PCI transactions to complete before |
| 1393 | * resetting the device |
| 1394 | */ |
| 1395 | mdelay(10); |
| 1396 | |
| 1397 | /* Issue a global reset to the MAC. This will reset the chip's |
| 1398 | * transmit, receive, DMA, and link units. It will not effect |
| 1399 | * the current PCI configuration. The global reset bit is self- |
| 1400 | * clearing, and should clear within a microsecond. |
| 1401 | */ |
| 1402 | DEBUGOUT("Issuing a global reset to MAC\n"); |
| 1403 | ctrl = E1000_READ_REG(hw, CTRL); |
| 1404 | |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1405 | E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1406 | |
| 1407 | /* Force a reload from the EEPROM if necessary */ |
| 1408 | if (hw->mac_type < e1000_82540) { |
| 1409 | /* Wait for reset to complete */ |
| 1410 | udelay(10); |
| 1411 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); |
| 1412 | ctrl_ext |= E1000_CTRL_EXT_EE_RST; |
| 1413 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| 1414 | E1000_WRITE_FLUSH(hw); |
| 1415 | /* Wait for EEPROM reload */ |
| 1416 | mdelay(2); |
| 1417 | } else { |
| 1418 | /* Wait for EEPROM reload (it happens automatically) */ |
| 1419 | mdelay(4); |
| 1420 | /* Dissable HW ARPs on ASF enabled adapters */ |
| 1421 | manc = E1000_READ_REG(hw, MANC); |
| 1422 | manc &= ~(E1000_MANC_ARP_EN); |
| 1423 | E1000_WRITE_REG(hw, MANC, manc); |
| 1424 | } |
| 1425 | |
| 1426 | /* Clear interrupt mask to stop board from generating interrupts */ |
| 1427 | DEBUGOUT("Masking off all interrupts\n"); |
| 1428 | E1000_WRITE_REG(hw, IMC, 0xffffffff); |
| 1429 | |
| 1430 | /* Clear any pending interrupt events. */ |
| 1431 | icr = E1000_READ_REG(hw, ICR); |
| 1432 | |
| 1433 | /* If MWI was previously enabled, reenable it. */ |
| 1434 | if (hw->mac_type == e1000_82542_rev2_0) { |
| 1435 | pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word); |
| 1436 | } |
Roy Zang | 9ea005f | 2009-08-22 03:49:52 +0800 | [diff] [blame] | 1437 | E1000_WRITE_REG(hw, PBA, pba); |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1438 | } |
| 1439 | |
| 1440 | /****************************************************************************** |
| 1441 | * |
| 1442 | * Initialize a number of hardware-dependent bits |
| 1443 | * |
| 1444 | * hw: Struct containing variables accessed by shared code |
| 1445 | * |
| 1446 | * This function contains hardware limitation workarounds for PCI-E adapters |
| 1447 | * |
| 1448 | *****************************************************************************/ |
| 1449 | static void |
| 1450 | e1000_initialize_hardware_bits(struct e1000_hw *hw) |
| 1451 | { |
| 1452 | if ((hw->mac_type >= e1000_82571) && |
| 1453 | (!hw->initialize_hw_bits_disable)) { |
| 1454 | /* Settings common to all PCI-express silicon */ |
| 1455 | uint32_t reg_ctrl, reg_ctrl_ext; |
| 1456 | uint32_t reg_tarc0, reg_tarc1; |
| 1457 | uint32_t reg_tctl; |
| 1458 | uint32_t reg_txdctl, reg_txdctl1; |
| 1459 | |
| 1460 | /* link autonegotiation/sync workarounds */ |
| 1461 | reg_tarc0 = E1000_READ_REG(hw, TARC0); |
| 1462 | reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27)); |
| 1463 | |
| 1464 | /* Enable not-done TX descriptor counting */ |
| 1465 | reg_txdctl = E1000_READ_REG(hw, TXDCTL); |
| 1466 | reg_txdctl |= E1000_TXDCTL_COUNT_DESC; |
| 1467 | E1000_WRITE_REG(hw, TXDCTL, reg_txdctl); |
| 1468 | |
| 1469 | reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1); |
| 1470 | reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC; |
| 1471 | E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1); |
| 1472 | |
| 1473 | switch (hw->mac_type) { |
| 1474 | case e1000_82571: |
| 1475 | case e1000_82572: |
| 1476 | /* Clear PHY TX compatible mode bits */ |
| 1477 | reg_tarc1 = E1000_READ_REG(hw, TARC1); |
| 1478 | reg_tarc1 &= ~((1 << 30)|(1 << 29)); |
| 1479 | |
| 1480 | /* link autonegotiation/sync workarounds */ |
| 1481 | reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23)); |
| 1482 | |
| 1483 | /* TX ring control fixes */ |
| 1484 | reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24)); |
| 1485 | |
| 1486 | /* Multiple read bit is reversed polarity */ |
| 1487 | reg_tctl = E1000_READ_REG(hw, TCTL); |
| 1488 | if (reg_tctl & E1000_TCTL_MULR) |
| 1489 | reg_tarc1 &= ~(1 << 28); |
| 1490 | else |
| 1491 | reg_tarc1 |= (1 << 28); |
| 1492 | |
| 1493 | E1000_WRITE_REG(hw, TARC1, reg_tarc1); |
| 1494 | break; |
| 1495 | case e1000_82573: |
Roy Zang | 2c2668f | 2011-01-21 11:29:38 +0800 | [diff] [blame] | 1496 | case e1000_82574: |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1497 | reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); |
| 1498 | reg_ctrl_ext &= ~(1 << 23); |
| 1499 | reg_ctrl_ext |= (1 << 22); |
| 1500 | |
| 1501 | /* TX byte count fix */ |
| 1502 | reg_ctrl = E1000_READ_REG(hw, CTRL); |
| 1503 | reg_ctrl &= ~(1 << 29); |
| 1504 | |
| 1505 | E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext); |
| 1506 | E1000_WRITE_REG(hw, CTRL, reg_ctrl); |
| 1507 | break; |
| 1508 | case e1000_80003es2lan: |
| 1509 | /* improve small packet performace for fiber/serdes */ |
| 1510 | if ((hw->media_type == e1000_media_type_fiber) |
| 1511 | || (hw->media_type == |
| 1512 | e1000_media_type_internal_serdes)) { |
| 1513 | reg_tarc0 &= ~(1 << 20); |
| 1514 | } |
| 1515 | |
| 1516 | /* Multiple read bit is reversed polarity */ |
| 1517 | reg_tctl = E1000_READ_REG(hw, TCTL); |
| 1518 | reg_tarc1 = E1000_READ_REG(hw, TARC1); |
| 1519 | if (reg_tctl & E1000_TCTL_MULR) |
| 1520 | reg_tarc1 &= ~(1 << 28); |
| 1521 | else |
| 1522 | reg_tarc1 |= (1 << 28); |
| 1523 | |
| 1524 | E1000_WRITE_REG(hw, TARC1, reg_tarc1); |
| 1525 | break; |
| 1526 | case e1000_ich8lan: |
| 1527 | /* Reduce concurrent DMA requests to 3 from 4 */ |
| 1528 | if ((hw->revision_id < 3) || |
| 1529 | ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) && |
| 1530 | (hw->device_id != E1000_DEV_ID_ICH8_IGP_M))) |
| 1531 | reg_tarc0 |= ((1 << 29)|(1 << 28)); |
| 1532 | |
| 1533 | reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); |
| 1534 | reg_ctrl_ext |= (1 << 22); |
| 1535 | E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext); |
| 1536 | |
| 1537 | /* workaround TX hang with TSO=on */ |
| 1538 | reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23)); |
| 1539 | |
| 1540 | /* Multiple read bit is reversed polarity */ |
| 1541 | reg_tctl = E1000_READ_REG(hw, TCTL); |
| 1542 | reg_tarc1 = E1000_READ_REG(hw, TARC1); |
| 1543 | if (reg_tctl & E1000_TCTL_MULR) |
| 1544 | reg_tarc1 &= ~(1 << 28); |
| 1545 | else |
| 1546 | reg_tarc1 |= (1 << 28); |
| 1547 | |
| 1548 | /* workaround TX hang with TSO=on */ |
| 1549 | reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24)); |
| 1550 | |
| 1551 | E1000_WRITE_REG(hw, TARC1, reg_tarc1); |
| 1552 | break; |
| 1553 | default: |
| 1554 | break; |
| 1555 | } |
| 1556 | |
| 1557 | E1000_WRITE_REG(hw, TARC0, reg_tarc0); |
| 1558 | } |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1559 | } |
| 1560 | |
| 1561 | /****************************************************************************** |
| 1562 | * Performs basic configuration of the adapter. |
| 1563 | * |
| 1564 | * hw - Struct containing variables accessed by shared code |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 1565 | * |
| 1566 | * Assumes that the controller has previously been reset and is in a |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1567 | * post-reset uninitialized state. Initializes the receive address registers, |
| 1568 | * multicast table, and VLAN filter table. Calls routines to setup link |
| 1569 | * configuration and flow control settings. Clears all on-chip counters. Leaves |
| 1570 | * the transmit and receive units disabled and uninitialized. |
| 1571 | *****************************************************************************/ |
| 1572 | static int |
| 1573 | e1000_init_hw(struct eth_device *nic) |
| 1574 | { |
| 1575 | struct e1000_hw *hw = nic->priv; |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1576 | uint32_t ctrl; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1577 | uint32_t i; |
| 1578 | int32_t ret_val; |
| 1579 | uint16_t pcix_cmd_word; |
| 1580 | uint16_t pcix_stat_hi_word; |
| 1581 | uint16_t cmd_mmrbc; |
| 1582 | uint16_t stat_mmrbc; |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1583 | uint32_t mta_size; |
| 1584 | uint32_t reg_data; |
| 1585 | uint32_t ctrl_ext; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1586 | DEBUGFUNC(); |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1587 | /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */ |
| 1588 | if ((hw->mac_type == e1000_ich8lan) && |
| 1589 | ((hw->revision_id < 3) || |
| 1590 | ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) && |
| 1591 | (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) { |
| 1592 | reg_data = E1000_READ_REG(hw, STATUS); |
| 1593 | reg_data &= ~0x80000000; |
| 1594 | E1000_WRITE_REG(hw, STATUS, reg_data); |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1595 | } |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1596 | /* Do not need initialize Identification LED */ |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1597 | |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1598 | /* Set the media type and TBI compatibility */ |
| 1599 | e1000_set_media_type(hw); |
| 1600 | |
| 1601 | /* Must be called after e1000_set_media_type |
| 1602 | * because media_type is used */ |
| 1603 | e1000_initialize_hardware_bits(hw); |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1604 | |
| 1605 | /* Disabling VLAN filtering. */ |
| 1606 | DEBUGOUT("Initializing the IEEE VLAN\n"); |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1607 | /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */ |
| 1608 | if (hw->mac_type != e1000_ich8lan) { |
| 1609 | if (hw->mac_type < e1000_82545_rev_3) |
| 1610 | E1000_WRITE_REG(hw, VET, 0); |
| 1611 | e1000_clear_vfta(hw); |
| 1612 | } |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1613 | |
| 1614 | /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ |
| 1615 | if (hw->mac_type == e1000_82542_rev2_0) { |
| 1616 | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); |
| 1617 | pci_write_config_word(hw->pdev, PCI_COMMAND, |
| 1618 | hw-> |
| 1619 | pci_cmd_word & ~PCI_COMMAND_INVALIDATE); |
| 1620 | E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST); |
| 1621 | E1000_WRITE_FLUSH(hw); |
| 1622 | mdelay(5); |
| 1623 | } |
| 1624 | |
| 1625 | /* Setup the receive address. This involves initializing all of the Receive |
| 1626 | * Address Registers (RARs 0 - 15). |
| 1627 | */ |
| 1628 | e1000_init_rx_addrs(nic); |
| 1629 | |
| 1630 | /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ |
| 1631 | if (hw->mac_type == e1000_82542_rev2_0) { |
| 1632 | E1000_WRITE_REG(hw, RCTL, 0); |
| 1633 | E1000_WRITE_FLUSH(hw); |
| 1634 | mdelay(1); |
| 1635 | pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word); |
| 1636 | } |
| 1637 | |
| 1638 | /* Zero out the Multicast HASH table */ |
| 1639 | DEBUGOUT("Zeroing the MTA\n"); |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1640 | mta_size = E1000_MC_TBL_SIZE; |
| 1641 | if (hw->mac_type == e1000_ich8lan) |
| 1642 | mta_size = E1000_MC_TBL_SIZE_ICH8LAN; |
| 1643 | for (i = 0; i < mta_size; i++) { |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1644 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1645 | /* use write flush to prevent Memory Write Block (MWB) from |
| 1646 | * occuring when accessing our register space */ |
| 1647 | E1000_WRITE_FLUSH(hw); |
| 1648 | } |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1649 | #if 0 |
| 1650 | /* Set the PCI priority bit correctly in the CTRL register. This |
| 1651 | * determines if the adapter gives priority to receives, or if it |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1652 | * gives equal priority to transmits and receives. Valid only on |
| 1653 | * 82542 and 82543 silicon. |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1654 | */ |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1655 | if (hw->dma_fairness && hw->mac_type <= e1000_82543) { |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1656 | ctrl = E1000_READ_REG(hw, CTRL); |
| 1657 | E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR); |
| 1658 | } |
| 1659 | #endif |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1660 | switch (hw->mac_type) { |
| 1661 | case e1000_82545_rev_3: |
| 1662 | case e1000_82546_rev_3: |
| 1663 | break; |
| 1664 | default: |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1665 | /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1666 | if (hw->bus_type == e1000_bus_type_pcix) { |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1667 | pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER, |
| 1668 | &pcix_cmd_word); |
| 1669 | pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI, |
| 1670 | &pcix_stat_hi_word); |
| 1671 | cmd_mmrbc = |
| 1672 | (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >> |
| 1673 | PCIX_COMMAND_MMRBC_SHIFT; |
| 1674 | stat_mmrbc = |
| 1675 | (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> |
| 1676 | PCIX_STATUS_HI_MMRBC_SHIFT; |
| 1677 | if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) |
| 1678 | stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; |
| 1679 | if (cmd_mmrbc > stat_mmrbc) { |
| 1680 | pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK; |
| 1681 | pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; |
| 1682 | pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER, |
| 1683 | pcix_cmd_word); |
| 1684 | } |
| 1685 | } |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1686 | break; |
| 1687 | } |
| 1688 | |
| 1689 | /* More time needed for PHY to initialize */ |
| 1690 | if (hw->mac_type == e1000_ich8lan) |
| 1691 | mdelay(15); |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1692 | |
| 1693 | /* Call a subroutine to configure the link and setup flow control. */ |
| 1694 | ret_val = e1000_setup_link(nic); |
| 1695 | |
| 1696 | /* Set the transmit descriptor write-back policy */ |
| 1697 | if (hw->mac_type > e1000_82544) { |
| 1698 | ctrl = E1000_READ_REG(hw, TXDCTL); |
| 1699 | ctrl = |
| 1700 | (ctrl & ~E1000_TXDCTL_WTHRESH) | |
| 1701 | E1000_TXDCTL_FULL_TX_DESC_WB; |
| 1702 | E1000_WRITE_REG(hw, TXDCTL, ctrl); |
| 1703 | } |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1704 | |
| 1705 | switch (hw->mac_type) { |
| 1706 | default: |
| 1707 | break; |
| 1708 | case e1000_80003es2lan: |
| 1709 | /* Enable retransmit on late collisions */ |
| 1710 | reg_data = E1000_READ_REG(hw, TCTL); |
| 1711 | reg_data |= E1000_TCTL_RTLC; |
| 1712 | E1000_WRITE_REG(hw, TCTL, reg_data); |
| 1713 | |
| 1714 | /* Configure Gigabit Carry Extend Padding */ |
| 1715 | reg_data = E1000_READ_REG(hw, TCTL_EXT); |
| 1716 | reg_data &= ~E1000_TCTL_EXT_GCEX_MASK; |
| 1717 | reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX; |
| 1718 | E1000_WRITE_REG(hw, TCTL_EXT, reg_data); |
| 1719 | |
| 1720 | /* Configure Transmit Inter-Packet Gap */ |
| 1721 | reg_data = E1000_READ_REG(hw, TIPG); |
| 1722 | reg_data &= ~E1000_TIPG_IPGT_MASK; |
| 1723 | reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; |
| 1724 | E1000_WRITE_REG(hw, TIPG, reg_data); |
| 1725 | |
| 1726 | reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001); |
| 1727 | reg_data &= ~0x00100000; |
| 1728 | E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data); |
| 1729 | /* Fall through */ |
| 1730 | case e1000_82571: |
| 1731 | case e1000_82572: |
| 1732 | case e1000_ich8lan: |
| 1733 | ctrl = E1000_READ_REG(hw, TXDCTL1); |
| 1734 | ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) |
| 1735 | | E1000_TXDCTL_FULL_TX_DESC_WB; |
| 1736 | E1000_WRITE_REG(hw, TXDCTL1, ctrl); |
| 1737 | break; |
Roy Zang | 2c2668f | 2011-01-21 11:29:38 +0800 | [diff] [blame] | 1738 | case e1000_82573: |
| 1739 | case e1000_82574: |
| 1740 | reg_data = E1000_READ_REG(hw, GCR); |
| 1741 | reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; |
| 1742 | E1000_WRITE_REG(hw, GCR, reg_data); |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1743 | } |
| 1744 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1745 | #if 0 |
| 1746 | /* Clear all of the statistics registers (clear on read). It is |
| 1747 | * important that we do this after we have tried to establish link |
| 1748 | * because the symbol error count will increment wildly if there |
| 1749 | * is no link. |
| 1750 | */ |
| 1751 | e1000_clear_hw_cntrs(hw); |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1752 | |
| 1753 | /* ICH8 No-snoop bits are opposite polarity. |
| 1754 | * Set to snoop by default after reset. */ |
| 1755 | if (hw->mac_type == e1000_ich8lan) |
| 1756 | e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL); |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1757 | #endif |
| 1758 | |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1759 | if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || |
| 1760 | hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { |
| 1761 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); |
| 1762 | /* Relaxed ordering must be disabled to avoid a parity |
| 1763 | * error crash in a PCI slot. */ |
| 1764 | ctrl_ext |= E1000_CTRL_EXT_RO_DIS; |
| 1765 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| 1766 | } |
| 1767 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1768 | return ret_val; |
| 1769 | } |
| 1770 | |
| 1771 | /****************************************************************************** |
| 1772 | * Configures flow control and link settings. |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 1773 | * |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1774 | * hw - Struct containing variables accessed by shared code |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 1775 | * |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1776 | * Determines which flow control settings to use. Calls the apropriate media- |
| 1777 | * specific link configuration function. Configures the flow control settings. |
| 1778 | * Assuming the adapter has a valid link partner, a valid link should be |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 1779 | * established. Assumes the hardware has previously been reset and the |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1780 | * transmitter and receiver are not enabled. |
| 1781 | *****************************************************************************/ |
| 1782 | static int |
| 1783 | e1000_setup_link(struct eth_device *nic) |
| 1784 | { |
| 1785 | struct e1000_hw *hw = nic->priv; |
| 1786 | uint32_t ctrl_ext; |
| 1787 | int32_t ret_val; |
| 1788 | uint16_t eeprom_data; |
| 1789 | |
| 1790 | DEBUGFUNC(); |
| 1791 | |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1792 | /* In the case of the phy reset being blocked, we already have a link. |
| 1793 | * We do not have to set it up again. */ |
| 1794 | if (e1000_check_phy_reset_block(hw)) |
| 1795 | return E1000_SUCCESS; |
| 1796 | |
Wolfgang Denk | 7521af1 | 2005-10-09 01:04:33 +0200 | [diff] [blame] | 1797 | #ifndef CONFIG_AP1000 |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1798 | /* Read and store word 0x0F of the EEPROM. This word contains bits |
| 1799 | * that determine the hardware's default PAUSE (flow control) mode, |
| 1800 | * a bit that determines whether the HW defaults to enabling or |
| 1801 | * disabling auto-negotiation, and the direction of the |
| 1802 | * SW defined pins. If there is no SW over-ride of the flow |
| 1803 | * control setting, then the variable hw->fc will |
| 1804 | * be initialized based on a value in the EEPROM. |
| 1805 | */ |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1806 | if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, |
| 1807 | &eeprom_data) < 0) { |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1808 | DEBUGOUT("EEPROM Read Error\n"); |
| 1809 | return -E1000_ERR_EEPROM; |
| 1810 | } |
Wolfgang Denk | 7521af1 | 2005-10-09 01:04:33 +0200 | [diff] [blame] | 1811 | #else |
| 1812 | /* we have to hardcode the proper value for our hardware. */ |
| 1813 | /* this value is for the 82540EM pci card used for prototyping, and it works. */ |
| 1814 | eeprom_data = 0xb220; |
| 1815 | #endif |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1816 | |
| 1817 | if (hw->fc == e1000_fc_default) { |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1818 | switch (hw->mac_type) { |
| 1819 | case e1000_ich8lan: |
| 1820 | case e1000_82573: |
Roy Zang | 2c2668f | 2011-01-21 11:29:38 +0800 | [diff] [blame] | 1821 | case e1000_82574: |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1822 | hw->fc = e1000_fc_full; |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1823 | break; |
| 1824 | default: |
| 1825 | #ifndef CONFIG_AP1000 |
| 1826 | ret_val = e1000_read_eeprom(hw, |
| 1827 | EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); |
| 1828 | if (ret_val) { |
| 1829 | DEBUGOUT("EEPROM Read Error\n"); |
| 1830 | return -E1000_ERR_EEPROM; |
| 1831 | } |
| 1832 | #else |
| 1833 | eeprom_data = 0xb220; |
| 1834 | #endif |
| 1835 | if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) |
| 1836 | hw->fc = e1000_fc_none; |
| 1837 | else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == |
| 1838 | EEPROM_WORD0F_ASM_DIR) |
| 1839 | hw->fc = e1000_fc_tx_pause; |
| 1840 | else |
| 1841 | hw->fc = e1000_fc_full; |
| 1842 | break; |
| 1843 | } |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1844 | } |
| 1845 | |
| 1846 | /* We want to save off the original Flow Control configuration just |
| 1847 | * in case we get disconnected and then reconnected into a different |
| 1848 | * hub or switch with different Flow Control capabilities. |
| 1849 | */ |
| 1850 | if (hw->mac_type == e1000_82542_rev2_0) |
| 1851 | hw->fc &= (~e1000_fc_tx_pause); |
| 1852 | |
| 1853 | if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) |
| 1854 | hw->fc &= (~e1000_fc_rx_pause); |
| 1855 | |
| 1856 | hw->original_fc = hw->fc; |
| 1857 | |
| 1858 | DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc); |
| 1859 | |
| 1860 | /* Take the 4 bits from EEPROM word 0x0F that determine the initial |
| 1861 | * polarity value for the SW controlled pins, and setup the |
| 1862 | * Extended Device Control reg with that info. |
| 1863 | * This is needed because one of the SW controlled pins is used for |
| 1864 | * signal detection. So this should be done before e1000_setup_pcs_link() |
| 1865 | * or e1000_phy_setup() is called. |
| 1866 | */ |
| 1867 | if (hw->mac_type == e1000_82543) { |
| 1868 | ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << |
| 1869 | SWDPIO__EXT_SHIFT); |
| 1870 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| 1871 | } |
| 1872 | |
| 1873 | /* Call the necessary subroutine to configure the link. */ |
| 1874 | ret_val = (hw->media_type == e1000_media_type_fiber) ? |
| 1875 | e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic); |
| 1876 | if (ret_val < 0) { |
| 1877 | return ret_val; |
| 1878 | } |
| 1879 | |
| 1880 | /* Initialize the flow control address, type, and PAUSE timer |
| 1881 | * registers to their default values. This is done even if flow |
| 1882 | * control is disabled, because it does not hurt anything to |
| 1883 | * initialize these registers. |
| 1884 | */ |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1885 | DEBUGOUT("Initializing the Flow Control address, type" |
| 1886 | "and timer regs\n"); |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1887 | |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 1888 | /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */ |
| 1889 | if (hw->mac_type != e1000_ich8lan) { |
| 1890 | E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); |
| 1891 | E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); |
| 1892 | E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); |
| 1893 | } |
| 1894 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1895 | E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); |
| 1896 | |
| 1897 | /* Set the flow control receive threshold registers. Normally, |
| 1898 | * these registers will be set to a default threshold that may be |
| 1899 | * adjusted later by the driver's runtime code. However, if the |
| 1900 | * ability to transmit pause frames in not enabled, then these |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 1901 | * registers will be set to 0. |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1902 | */ |
| 1903 | if (!(hw->fc & e1000_fc_tx_pause)) { |
| 1904 | E1000_WRITE_REG(hw, FCRTL, 0); |
| 1905 | E1000_WRITE_REG(hw, FCRTH, 0); |
| 1906 | } else { |
| 1907 | /* We need to set up the Receive Threshold high and low water marks |
| 1908 | * as well as (optionally) enabling the transmission of XON frames. |
| 1909 | */ |
| 1910 | if (hw->fc_send_xon) { |
| 1911 | E1000_WRITE_REG(hw, FCRTL, |
| 1912 | (hw->fc_low_water | E1000_FCRTL_XONE)); |
| 1913 | E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); |
| 1914 | } else { |
| 1915 | E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water); |
| 1916 | E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); |
| 1917 | } |
| 1918 | } |
| 1919 | return ret_val; |
| 1920 | } |
| 1921 | |
| 1922 | /****************************************************************************** |
| 1923 | * Sets up link for a fiber based adapter |
| 1924 | * |
| 1925 | * hw - Struct containing variables accessed by shared code |
| 1926 | * |
| 1927 | * Manipulates Physical Coding Sublayer functions in order to configure |
| 1928 | * link. Assumes the hardware has been previously reset and the transmitter |
| 1929 | * and receiver are not enabled. |
| 1930 | *****************************************************************************/ |
| 1931 | static int |
| 1932 | e1000_setup_fiber_link(struct eth_device *nic) |
| 1933 | { |
| 1934 | struct e1000_hw *hw = nic->priv; |
| 1935 | uint32_t ctrl; |
| 1936 | uint32_t status; |
| 1937 | uint32_t txcw = 0; |
| 1938 | uint32_t i; |
| 1939 | uint32_t signal; |
| 1940 | int32_t ret_val; |
| 1941 | |
| 1942 | DEBUGFUNC(); |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 1943 | /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be |
| 1944 | * set when the optics detect a signal. On older adapters, it will be |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1945 | * cleared when there is a signal |
| 1946 | */ |
| 1947 | ctrl = E1000_READ_REG(hw, CTRL); |
| 1948 | if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS)) |
| 1949 | signal = E1000_CTRL_SWDPIN1; |
| 1950 | else |
| 1951 | signal = 0; |
| 1952 | |
| 1953 | printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal, |
| 1954 | ctrl); |
| 1955 | /* Take the link out of reset */ |
| 1956 | ctrl &= ~(E1000_CTRL_LRST); |
| 1957 | |
| 1958 | e1000_config_collision_dist(hw); |
| 1959 | |
| 1960 | /* Check for a software override of the flow control settings, and setup |
| 1961 | * the device accordingly. If auto-negotiation is enabled, then software |
| 1962 | * will have to set the "PAUSE" bits to the correct value in the Tranmsit |
| 1963 | * Config Word Register (TXCW) and re-start auto-negotiation. However, if |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 1964 | * auto-negotiation is disabled, then software will have to manually |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1965 | * configure the two flow control enable bits in the CTRL register. |
| 1966 | * |
| 1967 | * The possible values of the "fc" parameter are: |
Wolfgang Denk | 1aeed8d | 2008-04-13 09:59:26 -0700 | [diff] [blame] | 1968 | * 0: Flow control is completely disabled |
| 1969 | * 1: Rx flow control is enabled (we can receive pause frames, but |
| 1970 | * not send pause frames). |
| 1971 | * 2: Tx flow control is enabled (we can send pause frames but we do |
| 1972 | * not support receiving pause frames). |
| 1973 | * 3: Both Rx and TX flow control (symmetric) are enabled. |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1974 | */ |
| 1975 | switch (hw->fc) { |
| 1976 | case e1000_fc_none: |
| 1977 | /* Flow control is completely disabled by a software over-ride. */ |
| 1978 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); |
| 1979 | break; |
| 1980 | case e1000_fc_rx_pause: |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 1981 | /* RX Flow control is enabled and TX Flow control is disabled by a |
| 1982 | * software over-ride. Since there really isn't a way to advertise |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1983 | * that we are capable of RX Pause ONLY, we will advertise that we |
| 1984 | * support both symmetric and asymmetric RX PAUSE. Later, we will |
| 1985 | * disable the adapter's ability to send PAUSE frames. |
| 1986 | */ |
| 1987 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); |
| 1988 | break; |
| 1989 | case e1000_fc_tx_pause: |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 1990 | /* TX Flow control is enabled, and RX Flow control is disabled, by a |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1991 | * software over-ride. |
| 1992 | */ |
| 1993 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); |
| 1994 | break; |
| 1995 | case e1000_fc_full: |
| 1996 | /* Flow control (both RX and TX) is enabled by a software over-ride. */ |
| 1997 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); |
| 1998 | break; |
| 1999 | default: |
| 2000 | DEBUGOUT("Flow control param set incorrectly\n"); |
| 2001 | return -E1000_ERR_CONFIG; |
| 2002 | break; |
| 2003 | } |
| 2004 | |
| 2005 | /* Since auto-negotiation is enabled, take the link out of reset (the link |
| 2006 | * will be in reset, because we previously reset the chip). This will |
| 2007 | * restart auto-negotiation. If auto-neogtiation is successful then the |
| 2008 | * link-up status bit will be set and the flow control enable bits (RFCE |
| 2009 | * and TFCE) will be set according to their negotiated value. |
| 2010 | */ |
| 2011 | DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw); |
| 2012 | |
| 2013 | E1000_WRITE_REG(hw, TXCW, txcw); |
| 2014 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 2015 | E1000_WRITE_FLUSH(hw); |
| 2016 | |
| 2017 | hw->txcw = txcw; |
| 2018 | mdelay(1); |
| 2019 | |
| 2020 | /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 2021 | * indication in the Device Status Register. Time-out if a link isn't |
| 2022 | * seen in 500 milliseconds seconds (Auto-negotiation should complete in |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2023 | * less than 500 milliseconds even if the other end is doing it in SW). |
| 2024 | */ |
| 2025 | if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) { |
| 2026 | DEBUGOUT("Looking for Link\n"); |
| 2027 | for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { |
| 2028 | mdelay(10); |
| 2029 | status = E1000_READ_REG(hw, STATUS); |
| 2030 | if (status & E1000_STATUS_LU) |
| 2031 | break; |
| 2032 | } |
| 2033 | if (i == (LINK_UP_TIMEOUT / 10)) { |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 2034 | /* AutoNeg failed to achieve a link, so we'll call |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2035 | * e1000_check_for_link. This routine will force the link up if we |
| 2036 | * detect a signal. This will allow us to communicate with |
| 2037 | * non-autonegotiating link partners. |
| 2038 | */ |
| 2039 | DEBUGOUT("Never got a valid link from auto-neg!!!\n"); |
| 2040 | hw->autoneg_failed = 1; |
| 2041 | ret_val = e1000_check_for_link(nic); |
| 2042 | if (ret_val < 0) { |
| 2043 | DEBUGOUT("Error while checking for link\n"); |
| 2044 | return ret_val; |
| 2045 | } |
| 2046 | hw->autoneg_failed = 0; |
| 2047 | } else { |
| 2048 | hw->autoneg_failed = 0; |
| 2049 | DEBUGOUT("Valid Link Found\n"); |
| 2050 | } |
| 2051 | } else { |
| 2052 | DEBUGOUT("No Signal Detected\n"); |
| 2053 | return -E1000_ERR_NOLINK; |
| 2054 | } |
| 2055 | return 0; |
| 2056 | } |
| 2057 | |
| 2058 | /****************************************************************************** |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 2059 | * Make sure we have a valid PHY and change PHY mode before link setup. |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2060 | * |
| 2061 | * hw - Struct containing variables accessed by shared code |
| 2062 | ******************************************************************************/ |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 2063 | static int32_t |
| 2064 | e1000_copper_link_preconfig(struct e1000_hw *hw) |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2065 | { |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2066 | uint32_t ctrl; |
| 2067 | int32_t ret_val; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2068 | uint16_t phy_data; |
| 2069 | |
| 2070 | DEBUGFUNC(); |
| 2071 | |
| 2072 | ctrl = E1000_READ_REG(hw, CTRL); |
| 2073 | /* With 82543, we need to force speed and duplex on the MAC equal to what |
| 2074 | * the PHY speed and duplex configuration is. In addition, we need to |
| 2075 | * perform a hardware reset on the PHY to take it out of reset. |
| 2076 | */ |
| 2077 | if (hw->mac_type > e1000_82543) { |
| 2078 | ctrl |= E1000_CTRL_SLU; |
| 2079 | ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
| 2080 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 2081 | } else { |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 2082 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
| 2083 | | E1000_CTRL_SLU); |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2084 | E1000_WRITE_REG(hw, CTRL, ctrl); |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 2085 | ret_val = e1000_phy_hw_reset(hw); |
| 2086 | if (ret_val) |
| 2087 | return ret_val; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2088 | } |
| 2089 | |
| 2090 | /* Make sure we have a valid PHY */ |
| 2091 | ret_val = e1000_detect_gig_phy(hw); |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 2092 | if (ret_val) { |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2093 | DEBUGOUT("Error, did not detect valid phy.\n"); |
| 2094 | return ret_val; |
| 2095 | } |
| 2096 | DEBUGOUT("Phy ID = %x \n", hw->phy_id); |
| 2097 | |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 2098 | #ifndef CONFIG_AP1000 |
| 2099 | /* Set PHY to class A mode (if necessary) */ |
| 2100 | ret_val = e1000_set_phy_mode(hw); |
| 2101 | if (ret_val) |
| 2102 | return ret_val; |
| 2103 | #endif |
| 2104 | if ((hw->mac_type == e1000_82545_rev_3) || |
| 2105 | (hw->mac_type == e1000_82546_rev_3)) { |
| 2106 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, |
| 2107 | &phy_data); |
| 2108 | phy_data |= 0x00000008; |
| 2109 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, |
| 2110 | phy_data); |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2111 | } |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 2112 | |
| 2113 | if (hw->mac_type <= e1000_82543 || |
| 2114 | hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 || |
| 2115 | hw->mac_type == e1000_82541_rev_2 |
| 2116 | || hw->mac_type == e1000_82547_rev_2) |
| 2117 | hw->phy_reset_disable = FALSE; |
| 2118 | |
| 2119 | return E1000_SUCCESS; |
| 2120 | } |
| 2121 | |
| 2122 | /***************************************************************************** |
| 2123 | * |
| 2124 | * This function sets the lplu state according to the active flag. When |
| 2125 | * activating lplu this function also disables smart speed and vise versa. |
| 2126 | * lplu will not be activated unless the device autonegotiation advertisment |
| 2127 | * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. |
| 2128 | * hw: Struct containing variables accessed by shared code |
| 2129 | * active - true to enable lplu false to disable lplu. |
| 2130 | * |
| 2131 | * returns: - E1000_ERR_PHY if fail to read/write the PHY |
| 2132 | * E1000_SUCCESS at any other case. |
| 2133 | * |
| 2134 | ****************************************************************************/ |
| 2135 | |
| 2136 | static int32_t |
| 2137 | e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active) |
| 2138 | { |
| 2139 | uint32_t phy_ctrl = 0; |
| 2140 | int32_t ret_val; |
| 2141 | uint16_t phy_data; |
| 2142 | DEBUGFUNC(); |
| 2143 | |
| 2144 | if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2 |
| 2145 | && hw->phy_type != e1000_phy_igp_3) |
| 2146 | return E1000_SUCCESS; |
| 2147 | |
| 2148 | /* During driver activity LPLU should not be used or it will attain link |
| 2149 | * from the lowest speeds starting from 10Mbps. The capability is used |
| 2150 | * for Dx transitions and states */ |
| 2151 | if (hw->mac_type == e1000_82541_rev_2 |
| 2152 | || hw->mac_type == e1000_82547_rev_2) { |
| 2153 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, |
| 2154 | &phy_data); |
| 2155 | if (ret_val) |
| 2156 | return ret_val; |
| 2157 | } else if (hw->mac_type == e1000_ich8lan) { |
| 2158 | /* MAC writes into PHY register based on the state transition |
| 2159 | * and start auto-negotiation. SW driver can overwrite the |
| 2160 | * settings in CSR PHY power control E1000_PHY_CTRL register. */ |
| 2161 | phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); |
| 2162 | } else { |
| 2163 | ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, |
| 2164 | &phy_data); |
| 2165 | if (ret_val) |
| 2166 | return ret_val; |
| 2167 | } |
| 2168 | |
| 2169 | if (!active) { |
| 2170 | if (hw->mac_type == e1000_82541_rev_2 || |
| 2171 | hw->mac_type == e1000_82547_rev_2) { |
| 2172 | phy_data &= ~IGP01E1000_GMII_FLEX_SPD; |
| 2173 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, |
| 2174 | phy_data); |
| 2175 | if (ret_val) |
| 2176 | return ret_val; |
| 2177 | } else { |
| 2178 | if (hw->mac_type == e1000_ich8lan) { |
| 2179 | phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; |
| 2180 | E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); |
| 2181 | } else { |
| 2182 | phy_data &= ~IGP02E1000_PM_D3_LPLU; |
| 2183 | ret_val = e1000_write_phy_reg(hw, |
| 2184 | IGP02E1000_PHY_POWER_MGMT, phy_data); |
| 2185 | if (ret_val) |
| 2186 | return ret_val; |
| 2187 | } |
| 2188 | } |
| 2189 | |
| 2190 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during |
| 2191 | * Dx states where the power conservation is most important. During |
| 2192 | * driver activity we should enable SmartSpeed, so performance is |
| 2193 | * maintained. */ |
| 2194 | if (hw->smart_speed == e1000_smart_speed_on) { |
| 2195 | ret_val = e1000_read_phy_reg(hw, |
| 2196 | IGP01E1000_PHY_PORT_CONFIG, &phy_data); |
| 2197 | if (ret_val) |
| 2198 | return ret_val; |
| 2199 | |
| 2200 | phy_data |= IGP01E1000_PSCFR_SMART_SPEED; |
| 2201 | ret_val = e1000_write_phy_reg(hw, |
| 2202 | IGP01E1000_PHY_PORT_CONFIG, phy_data); |
| 2203 | if (ret_val) |
| 2204 | return ret_val; |
| 2205 | } else if (hw->smart_speed == e1000_smart_speed_off) { |
| 2206 | ret_val = e1000_read_phy_reg(hw, |
| 2207 | IGP01E1000_PHY_PORT_CONFIG, &phy_data); |
| 2208 | if (ret_val) |
| 2209 | return ret_val; |
| 2210 | |
| 2211 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| 2212 | ret_val = e1000_write_phy_reg(hw, |
| 2213 | IGP01E1000_PHY_PORT_CONFIG, phy_data); |
| 2214 | if (ret_val) |
| 2215 | return ret_val; |
| 2216 | } |
| 2217 | |
| 2218 | } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) |
| 2219 | || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) || |
| 2220 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { |
| 2221 | |
| 2222 | if (hw->mac_type == e1000_82541_rev_2 || |
| 2223 | hw->mac_type == e1000_82547_rev_2) { |
| 2224 | phy_data |= IGP01E1000_GMII_FLEX_SPD; |
| 2225 | ret_val = e1000_write_phy_reg(hw, |
| 2226 | IGP01E1000_GMII_FIFO, phy_data); |
| 2227 | if (ret_val) |
| 2228 | return ret_val; |
| 2229 | } else { |
| 2230 | if (hw->mac_type == e1000_ich8lan) { |
| 2231 | phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; |
| 2232 | E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); |
| 2233 | } else { |
| 2234 | phy_data |= IGP02E1000_PM_D3_LPLU; |
| 2235 | ret_val = e1000_write_phy_reg(hw, |
| 2236 | IGP02E1000_PHY_POWER_MGMT, phy_data); |
| 2237 | if (ret_val) |
| 2238 | return ret_val; |
| 2239 | } |
| 2240 | } |
| 2241 | |
| 2242 | /* When LPLU is enabled we should disable SmartSpeed */ |
| 2243 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| 2244 | &phy_data); |
| 2245 | if (ret_val) |
| 2246 | return ret_val; |
| 2247 | |
| 2248 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| 2249 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| 2250 | phy_data); |
| 2251 | if (ret_val) |
| 2252 | return ret_val; |
| 2253 | } |
| 2254 | return E1000_SUCCESS; |
| 2255 | } |
| 2256 | |
| 2257 | /***************************************************************************** |
| 2258 | * |
| 2259 | * This function sets the lplu d0 state according to the active flag. When |
| 2260 | * activating lplu this function also disables smart speed and vise versa. |
| 2261 | * lplu will not be activated unless the device autonegotiation advertisment |
| 2262 | * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. |
| 2263 | * hw: Struct containing variables accessed by shared code |
| 2264 | * active - true to enable lplu false to disable lplu. |
| 2265 | * |
| 2266 | * returns: - E1000_ERR_PHY if fail to read/write the PHY |
| 2267 | * E1000_SUCCESS at any other case. |
| 2268 | * |
| 2269 | ****************************************************************************/ |
| 2270 | |
| 2271 | static int32_t |
| 2272 | e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active) |
| 2273 | { |
| 2274 | uint32_t phy_ctrl = 0; |
| 2275 | int32_t ret_val; |
| 2276 | uint16_t phy_data; |
| 2277 | DEBUGFUNC(); |
| 2278 | |
| 2279 | if (hw->mac_type <= e1000_82547_rev_2) |
| 2280 | return E1000_SUCCESS; |
| 2281 | |
| 2282 | if (hw->mac_type == e1000_ich8lan) { |
| 2283 | phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); |
| 2284 | } else { |
| 2285 | ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, |
| 2286 | &phy_data); |
| 2287 | if (ret_val) |
| 2288 | return ret_val; |
| 2289 | } |
| 2290 | |
| 2291 | if (!active) { |
| 2292 | if (hw->mac_type == e1000_ich8lan) { |
| 2293 | phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; |
| 2294 | E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); |
| 2295 | } else { |
| 2296 | phy_data &= ~IGP02E1000_PM_D0_LPLU; |
| 2297 | ret_val = e1000_write_phy_reg(hw, |
| 2298 | IGP02E1000_PHY_POWER_MGMT, phy_data); |
| 2299 | if (ret_val) |
| 2300 | return ret_val; |
| 2301 | } |
| 2302 | |
| 2303 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during |
| 2304 | * Dx states where the power conservation is most important. During |
| 2305 | * driver activity we should enable SmartSpeed, so performance is |
| 2306 | * maintained. */ |
| 2307 | if (hw->smart_speed == e1000_smart_speed_on) { |
| 2308 | ret_val = e1000_read_phy_reg(hw, |
| 2309 | IGP01E1000_PHY_PORT_CONFIG, &phy_data); |
| 2310 | if (ret_val) |
| 2311 | return ret_val; |
| 2312 | |
| 2313 | phy_data |= IGP01E1000_PSCFR_SMART_SPEED; |
| 2314 | ret_val = e1000_write_phy_reg(hw, |
| 2315 | IGP01E1000_PHY_PORT_CONFIG, phy_data); |
| 2316 | if (ret_val) |
| 2317 | return ret_val; |
| 2318 | } else if (hw->smart_speed == e1000_smart_speed_off) { |
| 2319 | ret_val = e1000_read_phy_reg(hw, |
| 2320 | IGP01E1000_PHY_PORT_CONFIG, &phy_data); |
| 2321 | if (ret_val) |
| 2322 | return ret_val; |
| 2323 | |
| 2324 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| 2325 | ret_val = e1000_write_phy_reg(hw, |
| 2326 | IGP01E1000_PHY_PORT_CONFIG, phy_data); |
| 2327 | if (ret_val) |
| 2328 | return ret_val; |
| 2329 | } |
| 2330 | |
| 2331 | |
| 2332 | } else { |
| 2333 | |
| 2334 | if (hw->mac_type == e1000_ich8lan) { |
| 2335 | phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; |
| 2336 | E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); |
| 2337 | } else { |
| 2338 | phy_data |= IGP02E1000_PM_D0_LPLU; |
| 2339 | ret_val = e1000_write_phy_reg(hw, |
| 2340 | IGP02E1000_PHY_POWER_MGMT, phy_data); |
| 2341 | if (ret_val) |
| 2342 | return ret_val; |
| 2343 | } |
| 2344 | |
| 2345 | /* When LPLU is enabled we should disable SmartSpeed */ |
| 2346 | ret_val = e1000_read_phy_reg(hw, |
| 2347 | IGP01E1000_PHY_PORT_CONFIG, &phy_data); |
| 2348 | if (ret_val) |
| 2349 | return ret_val; |
| 2350 | |
| 2351 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| 2352 | ret_val = e1000_write_phy_reg(hw, |
| 2353 | IGP01E1000_PHY_PORT_CONFIG, phy_data); |
| 2354 | if (ret_val) |
| 2355 | return ret_val; |
| 2356 | |
| 2357 | } |
| 2358 | return E1000_SUCCESS; |
| 2359 | } |
| 2360 | |
| 2361 | /******************************************************************** |
| 2362 | * Copper link setup for e1000_phy_igp series. |
| 2363 | * |
| 2364 | * hw - Struct containing variables accessed by shared code |
| 2365 | *********************************************************************/ |
| 2366 | static int32_t |
| 2367 | e1000_copper_link_igp_setup(struct e1000_hw *hw) |
| 2368 | { |
| 2369 | uint32_t led_ctrl; |
| 2370 | int32_t ret_val; |
| 2371 | uint16_t phy_data; |
| 2372 | |
Timur Tabi | f81ecb5 | 2009-08-17 15:55:38 -0500 | [diff] [blame] | 2373 | DEBUGFUNC(); |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 2374 | |
| 2375 | if (hw->phy_reset_disable) |
| 2376 | return E1000_SUCCESS; |
| 2377 | |
| 2378 | ret_val = e1000_phy_reset(hw); |
| 2379 | if (ret_val) { |
| 2380 | DEBUGOUT("Error Resetting the PHY\n"); |
| 2381 | return ret_val; |
| 2382 | } |
| 2383 | |
| 2384 | /* Wait 15ms for MAC to configure PHY from eeprom settings */ |
| 2385 | mdelay(15); |
| 2386 | if (hw->mac_type != e1000_ich8lan) { |
| 2387 | /* Configure activity LED after PHY reset */ |
| 2388 | led_ctrl = E1000_READ_REG(hw, LEDCTL); |
| 2389 | led_ctrl &= IGP_ACTIVITY_LED_MASK; |
| 2390 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
| 2391 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl); |
| 2392 | } |
| 2393 | |
| 2394 | /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */ |
| 2395 | if (hw->phy_type == e1000_phy_igp) { |
| 2396 | /* disable lplu d3 during driver init */ |
| 2397 | ret_val = e1000_set_d3_lplu_state(hw, FALSE); |
| 2398 | if (ret_val) { |
| 2399 | DEBUGOUT("Error Disabling LPLU D3\n"); |
| 2400 | return ret_val; |
| 2401 | } |
| 2402 | } |
| 2403 | |
| 2404 | /* disable lplu d0 during driver init */ |
| 2405 | ret_val = e1000_set_d0_lplu_state(hw, FALSE); |
| 2406 | if (ret_val) { |
| 2407 | DEBUGOUT("Error Disabling LPLU D0\n"); |
| 2408 | return ret_val; |
| 2409 | } |
| 2410 | /* Configure mdi-mdix settings */ |
| 2411 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); |
| 2412 | if (ret_val) |
| 2413 | return ret_val; |
| 2414 | |
| 2415 | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
| 2416 | hw->dsp_config_state = e1000_dsp_config_disabled; |
| 2417 | /* Force MDI for earlier revs of the IGP PHY */ |
| 2418 | phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX |
| 2419 | | IGP01E1000_PSCR_FORCE_MDI_MDIX); |
| 2420 | hw->mdix = 1; |
| 2421 | |
| 2422 | } else { |
| 2423 | hw->dsp_config_state = e1000_dsp_config_enabled; |
| 2424 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; |
| 2425 | |
| 2426 | switch (hw->mdix) { |
| 2427 | case 1: |
| 2428 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; |
| 2429 | break; |
| 2430 | case 2: |
| 2431 | phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; |
| 2432 | break; |
| 2433 | case 0: |
| 2434 | default: |
| 2435 | phy_data |= IGP01E1000_PSCR_AUTO_MDIX; |
| 2436 | break; |
| 2437 | } |
| 2438 | } |
| 2439 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); |
| 2440 | if (ret_val) |
| 2441 | return ret_val; |
| 2442 | |
| 2443 | /* set auto-master slave resolution settings */ |
| 2444 | if (hw->autoneg) { |
| 2445 | e1000_ms_type phy_ms_setting = hw->master_slave; |
| 2446 | |
| 2447 | if (hw->ffe_config_state == e1000_ffe_config_active) |
| 2448 | hw->ffe_config_state = e1000_ffe_config_enabled; |
| 2449 | |
| 2450 | if (hw->dsp_config_state == e1000_dsp_config_activated) |
| 2451 | hw->dsp_config_state = e1000_dsp_config_enabled; |
| 2452 | |
| 2453 | /* when autonegotiation advertisment is only 1000Mbps then we |
| 2454 | * should disable SmartSpeed and enable Auto MasterSlave |
| 2455 | * resolution as hardware default. */ |
| 2456 | if (hw->autoneg_advertised == ADVERTISE_1000_FULL) { |
| 2457 | /* Disable SmartSpeed */ |
| 2458 | ret_val = e1000_read_phy_reg(hw, |
| 2459 | IGP01E1000_PHY_PORT_CONFIG, &phy_data); |
| 2460 | if (ret_val) |
| 2461 | return ret_val; |
| 2462 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| 2463 | ret_val = e1000_write_phy_reg(hw, |
| 2464 | IGP01E1000_PHY_PORT_CONFIG, phy_data); |
| 2465 | if (ret_val) |
| 2466 | return ret_val; |
| 2467 | /* Set auto Master/Slave resolution process */ |
| 2468 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, |
| 2469 | &phy_data); |
| 2470 | if (ret_val) |
| 2471 | return ret_val; |
| 2472 | phy_data &= ~CR_1000T_MS_ENABLE; |
| 2473 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, |
| 2474 | phy_data); |
| 2475 | if (ret_val) |
| 2476 | return ret_val; |
| 2477 | } |
| 2478 | |
| 2479 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); |
| 2480 | if (ret_val) |
| 2481 | return ret_val; |
| 2482 | |
| 2483 | /* load defaults for future use */ |
| 2484 | hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? |
| 2485 | ((phy_data & CR_1000T_MS_VALUE) ? |
| 2486 | e1000_ms_force_master : |
| 2487 | e1000_ms_force_slave) : |
| 2488 | e1000_ms_auto; |
| 2489 | |
| 2490 | switch (phy_ms_setting) { |
| 2491 | case e1000_ms_force_master: |
| 2492 | phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); |
| 2493 | break; |
| 2494 | case e1000_ms_force_slave: |
| 2495 | phy_data |= CR_1000T_MS_ENABLE; |
| 2496 | phy_data &= ~(CR_1000T_MS_VALUE); |
| 2497 | break; |
| 2498 | case e1000_ms_auto: |
| 2499 | phy_data &= ~CR_1000T_MS_ENABLE; |
| 2500 | default: |
| 2501 | break; |
| 2502 | } |
| 2503 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); |
| 2504 | if (ret_val) |
| 2505 | return ret_val; |
| 2506 | } |
| 2507 | |
| 2508 | return E1000_SUCCESS; |
| 2509 | } |
| 2510 | |
| 2511 | /***************************************************************************** |
| 2512 | * This function checks the mode of the firmware. |
| 2513 | * |
| 2514 | * returns - TRUE when the mode is IAMT or FALSE. |
| 2515 | ****************************************************************************/ |
| 2516 | boolean_t |
| 2517 | e1000_check_mng_mode(struct e1000_hw *hw) |
| 2518 | { |
| 2519 | uint32_t fwsm; |
| 2520 | DEBUGFUNC(); |
| 2521 | |
| 2522 | fwsm = E1000_READ_REG(hw, FWSM); |
| 2523 | |
| 2524 | if (hw->mac_type == e1000_ich8lan) { |
| 2525 | if ((fwsm & E1000_FWSM_MODE_MASK) == |
| 2526 | (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) |
| 2527 | return TRUE; |
| 2528 | } else if ((fwsm & E1000_FWSM_MODE_MASK) == |
| 2529 | (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) |
| 2530 | return TRUE; |
| 2531 | |
| 2532 | return FALSE; |
| 2533 | } |
| 2534 | |
| 2535 | static int32_t |
| 2536 | e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data) |
| 2537 | { |
| 2538 | uint32_t reg_val; |
| 2539 | uint16_t swfw; |
| 2540 | DEBUGFUNC(); |
| 2541 | |
| 2542 | if ((hw->mac_type == e1000_80003es2lan) && |
| 2543 | (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { |
| 2544 | swfw = E1000_SWFW_PHY1_SM; |
| 2545 | } else { |
| 2546 | swfw = E1000_SWFW_PHY0_SM; |
| 2547 | } |
| 2548 | if (e1000_swfw_sync_acquire(hw, swfw)) |
| 2549 | return -E1000_ERR_SWFW_SYNC; |
| 2550 | |
| 2551 | reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) |
| 2552 | & E1000_KUMCTRLSTA_OFFSET) | data; |
| 2553 | E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val); |
| 2554 | udelay(2); |
| 2555 | |
| 2556 | return E1000_SUCCESS; |
| 2557 | } |
| 2558 | |
| 2559 | static int32_t |
| 2560 | e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data) |
| 2561 | { |
| 2562 | uint32_t reg_val; |
| 2563 | uint16_t swfw; |
| 2564 | DEBUGFUNC(); |
| 2565 | |
| 2566 | if ((hw->mac_type == e1000_80003es2lan) && |
| 2567 | (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { |
| 2568 | swfw = E1000_SWFW_PHY1_SM; |
| 2569 | } else { |
| 2570 | swfw = E1000_SWFW_PHY0_SM; |
| 2571 | } |
| 2572 | if (e1000_swfw_sync_acquire(hw, swfw)) |
| 2573 | return -E1000_ERR_SWFW_SYNC; |
| 2574 | |
| 2575 | /* Write register address */ |
| 2576 | reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) & |
| 2577 | E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN; |
| 2578 | E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val); |
| 2579 | udelay(2); |
| 2580 | |
| 2581 | /* Read the data returned */ |
| 2582 | reg_val = E1000_READ_REG(hw, KUMCTRLSTA); |
| 2583 | *data = (uint16_t)reg_val; |
| 2584 | |
| 2585 | return E1000_SUCCESS; |
| 2586 | } |
| 2587 | |
| 2588 | /******************************************************************** |
| 2589 | * Copper link setup for e1000_phy_gg82563 series. |
| 2590 | * |
| 2591 | * hw - Struct containing variables accessed by shared code |
| 2592 | *********************************************************************/ |
| 2593 | static int32_t |
| 2594 | e1000_copper_link_ggp_setup(struct e1000_hw *hw) |
| 2595 | { |
| 2596 | int32_t ret_val; |
| 2597 | uint16_t phy_data; |
| 2598 | uint32_t reg_data; |
| 2599 | |
| 2600 | DEBUGFUNC(); |
| 2601 | |
| 2602 | if (!hw->phy_reset_disable) { |
| 2603 | /* Enable CRS on TX for half-duplex operation. */ |
| 2604 | ret_val = e1000_read_phy_reg(hw, |
| 2605 | GG82563_PHY_MAC_SPEC_CTRL, &phy_data); |
| 2606 | if (ret_val) |
| 2607 | return ret_val; |
| 2608 | |
| 2609 | phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; |
| 2610 | /* Use 25MHz for both link down and 1000BASE-T for Tx clock */ |
| 2611 | phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ; |
| 2612 | |
| 2613 | ret_val = e1000_write_phy_reg(hw, |
| 2614 | GG82563_PHY_MAC_SPEC_CTRL, phy_data); |
| 2615 | if (ret_val) |
| 2616 | return ret_val; |
| 2617 | |
| 2618 | /* Options: |
| 2619 | * MDI/MDI-X = 0 (default) |
| 2620 | * 0 - Auto for all speeds |
| 2621 | * 1 - MDI mode |
| 2622 | * 2 - MDI-X mode |
| 2623 | * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) |
| 2624 | */ |
| 2625 | ret_val = e1000_read_phy_reg(hw, |
| 2626 | GG82563_PHY_SPEC_CTRL, &phy_data); |
| 2627 | if (ret_val) |
| 2628 | return ret_val; |
| 2629 | |
| 2630 | phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK; |
| 2631 | |
| 2632 | switch (hw->mdix) { |
| 2633 | case 1: |
| 2634 | phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI; |
| 2635 | break; |
| 2636 | case 2: |
| 2637 | phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX; |
| 2638 | break; |
| 2639 | case 0: |
| 2640 | default: |
| 2641 | phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO; |
| 2642 | break; |
| 2643 | } |
| 2644 | |
| 2645 | /* Options: |
| 2646 | * disable_polarity_correction = 0 (default) |
| 2647 | * Automatic Correction for Reversed Cable Polarity |
| 2648 | * 0 - Disabled |
| 2649 | * 1 - Enabled |
| 2650 | */ |
| 2651 | phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; |
| 2652 | ret_val = e1000_write_phy_reg(hw, |
| 2653 | GG82563_PHY_SPEC_CTRL, phy_data); |
| 2654 | |
| 2655 | if (ret_val) |
| 2656 | return ret_val; |
| 2657 | |
| 2658 | /* SW Reset the PHY so all changes take effect */ |
| 2659 | ret_val = e1000_phy_reset(hw); |
| 2660 | if (ret_val) { |
| 2661 | DEBUGOUT("Error Resetting the PHY\n"); |
| 2662 | return ret_val; |
| 2663 | } |
| 2664 | } /* phy_reset_disable */ |
| 2665 | |
| 2666 | if (hw->mac_type == e1000_80003es2lan) { |
| 2667 | /* Bypass RX and TX FIFO's */ |
| 2668 | ret_val = e1000_write_kmrn_reg(hw, |
| 2669 | E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL, |
| 2670 | E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
| 2671 | | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS); |
| 2672 | if (ret_val) |
| 2673 | return ret_val; |
| 2674 | |
| 2675 | ret_val = e1000_read_phy_reg(hw, |
| 2676 | GG82563_PHY_SPEC_CTRL_2, &phy_data); |
| 2677 | if (ret_val) |
| 2678 | return ret_val; |
| 2679 | |
| 2680 | phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG; |
| 2681 | ret_val = e1000_write_phy_reg(hw, |
| 2682 | GG82563_PHY_SPEC_CTRL_2, phy_data); |
| 2683 | |
| 2684 | if (ret_val) |
| 2685 | return ret_val; |
| 2686 | |
| 2687 | reg_data = E1000_READ_REG(hw, CTRL_EXT); |
| 2688 | reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK); |
| 2689 | E1000_WRITE_REG(hw, CTRL_EXT, reg_data); |
| 2690 | |
| 2691 | ret_val = e1000_read_phy_reg(hw, |
| 2692 | GG82563_PHY_PWR_MGMT_CTRL, &phy_data); |
| 2693 | if (ret_val) |
| 2694 | return ret_val; |
| 2695 | |
| 2696 | /* Do not init these registers when the HW is in IAMT mode, since the |
| 2697 | * firmware will have already initialized them. We only initialize |
| 2698 | * them if the HW is not in IAMT mode. |
| 2699 | */ |
| 2700 | if (e1000_check_mng_mode(hw) == FALSE) { |
| 2701 | /* Enable Electrical Idle on the PHY */ |
| 2702 | phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE; |
| 2703 | ret_val = e1000_write_phy_reg(hw, |
| 2704 | GG82563_PHY_PWR_MGMT_CTRL, phy_data); |
| 2705 | if (ret_val) |
| 2706 | return ret_val; |
| 2707 | |
| 2708 | ret_val = e1000_read_phy_reg(hw, |
| 2709 | GG82563_PHY_KMRN_MODE_CTRL, &phy_data); |
| 2710 | if (ret_val) |
| 2711 | return ret_val; |
| 2712 | |
| 2713 | phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; |
| 2714 | ret_val = e1000_write_phy_reg(hw, |
| 2715 | GG82563_PHY_KMRN_MODE_CTRL, phy_data); |
| 2716 | |
| 2717 | if (ret_val) |
| 2718 | return ret_val; |
| 2719 | } |
| 2720 | |
| 2721 | /* Workaround: Disable padding in Kumeran interface in the MAC |
| 2722 | * and in the PHY to avoid CRC errors. |
| 2723 | */ |
| 2724 | ret_val = e1000_read_phy_reg(hw, |
| 2725 | GG82563_PHY_INBAND_CTRL, &phy_data); |
| 2726 | if (ret_val) |
| 2727 | return ret_val; |
| 2728 | phy_data |= GG82563_ICR_DIS_PADDING; |
| 2729 | ret_val = e1000_write_phy_reg(hw, |
| 2730 | GG82563_PHY_INBAND_CTRL, phy_data); |
| 2731 | if (ret_val) |
| 2732 | return ret_val; |
| 2733 | } |
| 2734 | return E1000_SUCCESS; |
| 2735 | } |
| 2736 | |
| 2737 | /******************************************************************** |
| 2738 | * Copper link setup for e1000_phy_m88 series. |
| 2739 | * |
| 2740 | * hw - Struct containing variables accessed by shared code |
| 2741 | *********************************************************************/ |
| 2742 | static int32_t |
| 2743 | e1000_copper_link_mgp_setup(struct e1000_hw *hw) |
| 2744 | { |
| 2745 | int32_t ret_val; |
| 2746 | uint16_t phy_data; |
| 2747 | |
| 2748 | DEBUGFUNC(); |
| 2749 | |
| 2750 | if (hw->phy_reset_disable) |
| 2751 | return E1000_SUCCESS; |
| 2752 | |
| 2753 | /* Enable CRS on TX. This must be set for half-duplex operation. */ |
| 2754 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| 2755 | if (ret_val) |
| 2756 | return ret_val; |
| 2757 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2758 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; |
| 2759 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2760 | /* Options: |
| 2761 | * MDI/MDI-X = 0 (default) |
| 2762 | * 0 - Auto for all speeds |
| 2763 | * 1 - MDI mode |
| 2764 | * 2 - MDI-X mode |
| 2765 | * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) |
| 2766 | */ |
| 2767 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 2768 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2769 | switch (hw->mdix) { |
| 2770 | case 1: |
| 2771 | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; |
| 2772 | break; |
| 2773 | case 2: |
| 2774 | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; |
| 2775 | break; |
| 2776 | case 3: |
| 2777 | phy_data |= M88E1000_PSCR_AUTO_X_1000T; |
| 2778 | break; |
| 2779 | case 0: |
| 2780 | default: |
| 2781 | phy_data |= M88E1000_PSCR_AUTO_X_MODE; |
| 2782 | break; |
| 2783 | } |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2784 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2785 | /* Options: |
| 2786 | * disable_polarity_correction = 0 (default) |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 2787 | * Automatic Correction for Reversed Cable Polarity |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2788 | * 0 - Disabled |
| 2789 | * 1 - Enabled |
| 2790 | */ |
| 2791 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 2792 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
| 2793 | if (ret_val) |
| 2794 | return ret_val; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2795 | |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 2796 | if (hw->phy_revision < M88E1011_I_REV_4) { |
| 2797 | /* Force TX_CLK in the Extended PHY Specific Control Register |
| 2798 | * to 25MHz clock. |
| 2799 | */ |
| 2800 | ret_val = e1000_read_phy_reg(hw, |
| 2801 | M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); |
| 2802 | if (ret_val) |
| 2803 | return ret_val; |
| 2804 | |
| 2805 | phy_data |= M88E1000_EPSCR_TX_CLK_25; |
| 2806 | |
| 2807 | if ((hw->phy_revision == E1000_REVISION_2) && |
| 2808 | (hw->phy_id == M88E1111_I_PHY_ID)) { |
| 2809 | /* Vidalia Phy, set the downshift counter to 5x */ |
| 2810 | phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); |
| 2811 | phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; |
| 2812 | ret_val = e1000_write_phy_reg(hw, |
| 2813 | M88E1000_EXT_PHY_SPEC_CTRL, phy_data); |
| 2814 | if (ret_val) |
| 2815 | return ret_val; |
| 2816 | } else { |
| 2817 | /* Configure Master and Slave downshift values */ |
| 2818 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
| 2819 | | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); |
| 2820 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
| 2821 | | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); |
| 2822 | ret_val = e1000_write_phy_reg(hw, |
| 2823 | M88E1000_EXT_PHY_SPEC_CTRL, phy_data); |
| 2824 | if (ret_val) |
| 2825 | return ret_val; |
| 2826 | } |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2827 | } |
| 2828 | |
| 2829 | /* SW Reset the PHY so all changes take effect */ |
| 2830 | ret_val = e1000_phy_reset(hw); |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 2831 | if (ret_val) { |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2832 | DEBUGOUT("Error Resetting the PHY\n"); |
| 2833 | return ret_val; |
| 2834 | } |
| 2835 | |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 2836 | return E1000_SUCCESS; |
| 2837 | } |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2838 | |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 2839 | /******************************************************************** |
| 2840 | * Setup auto-negotiation and flow control advertisements, |
| 2841 | * and then perform auto-negotiation. |
| 2842 | * |
| 2843 | * hw - Struct containing variables accessed by shared code |
| 2844 | *********************************************************************/ |
| 2845 | static int32_t |
| 2846 | e1000_copper_link_autoneg(struct e1000_hw *hw) |
| 2847 | { |
| 2848 | int32_t ret_val; |
| 2849 | uint16_t phy_data; |
| 2850 | |
| 2851 | DEBUGFUNC(); |
| 2852 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2853 | /* Perform some bounds checking on the hw->autoneg_advertised |
| 2854 | * parameter. If this variable is zero, then set it to the default. |
| 2855 | */ |
| 2856 | hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; |
| 2857 | |
| 2858 | /* If autoneg_advertised is zero, we assume it was not defaulted |
| 2859 | * by the calling code so we set to advertise full capability. |
| 2860 | */ |
| 2861 | if (hw->autoneg_advertised == 0) |
| 2862 | hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
| 2863 | |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 2864 | /* IFE phy only supports 10/100 */ |
| 2865 | if (hw->phy_type == e1000_phy_ife) |
| 2866 | hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL; |
| 2867 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2868 | DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); |
| 2869 | ret_val = e1000_phy_setup_autoneg(hw); |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 2870 | if (ret_val) { |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2871 | DEBUGOUT("Error Setting up Auto-Negotiation\n"); |
| 2872 | return ret_val; |
| 2873 | } |
| 2874 | DEBUGOUT("Restarting Auto-Neg\n"); |
| 2875 | |
| 2876 | /* Restart auto-negotiation by setting the Auto Neg Enable bit and |
| 2877 | * the Auto Neg Restart bit in the PHY control register. |
| 2878 | */ |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 2879 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); |
| 2880 | if (ret_val) |
| 2881 | return ret_val; |
| 2882 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2883 | phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 2884 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); |
| 2885 | if (ret_val) |
| 2886 | return ret_val; |
| 2887 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2888 | /* Does the user want to wait for Auto-Neg to complete here, or |
| 2889 | * check at a later time (for example, callback routine). |
| 2890 | */ |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 2891 | /* If we do not wait for autonegtation to complete I |
| 2892 | * do not see a valid link status. |
| 2893 | * wait_autoneg_complete = 1 . |
| 2894 | */ |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2895 | if (hw->wait_autoneg_complete) { |
| 2896 | ret_val = e1000_wait_autoneg(hw); |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 2897 | if (ret_val) { |
| 2898 | DEBUGOUT("Error while waiting for autoneg" |
| 2899 | "to complete\n"); |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2900 | return ret_val; |
| 2901 | } |
| 2902 | } |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 2903 | |
| 2904 | hw->get_link_status = TRUE; |
| 2905 | |
| 2906 | return E1000_SUCCESS; |
| 2907 | } |
| 2908 | |
| 2909 | /****************************************************************************** |
| 2910 | * Config the MAC and the PHY after link is up. |
| 2911 | * 1) Set up the MAC to the current PHY speed/duplex |
| 2912 | * if we are on 82543. If we |
| 2913 | * are on newer silicon, we only need to configure |
| 2914 | * collision distance in the Transmit Control Register. |
| 2915 | * 2) Set up flow control on the MAC to that established with |
| 2916 | * the link partner. |
| 2917 | * 3) Config DSP to improve Gigabit link quality for some PHY revisions. |
| 2918 | * |
| 2919 | * hw - Struct containing variables accessed by shared code |
| 2920 | ******************************************************************************/ |
| 2921 | static int32_t |
| 2922 | e1000_copper_link_postconfig(struct e1000_hw *hw) |
| 2923 | { |
| 2924 | int32_t ret_val; |
| 2925 | DEBUGFUNC(); |
| 2926 | |
| 2927 | if (hw->mac_type >= e1000_82544) { |
| 2928 | e1000_config_collision_dist(hw); |
| 2929 | } else { |
| 2930 | ret_val = e1000_config_mac_to_phy(hw); |
| 2931 | if (ret_val) { |
| 2932 | DEBUGOUT("Error configuring MAC to PHY settings\n"); |
| 2933 | return ret_val; |
| 2934 | } |
| 2935 | } |
| 2936 | ret_val = e1000_config_fc_after_link_up(hw); |
| 2937 | if (ret_val) { |
| 2938 | DEBUGOUT("Error Configuring Flow Control\n"); |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2939 | return ret_val; |
| 2940 | } |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 2941 | return E1000_SUCCESS; |
| 2942 | } |
| 2943 | |
| 2944 | /****************************************************************************** |
| 2945 | * Detects which PHY is present and setup the speed and duplex |
| 2946 | * |
| 2947 | * hw - Struct containing variables accessed by shared code |
| 2948 | ******************************************************************************/ |
| 2949 | static int |
| 2950 | e1000_setup_copper_link(struct eth_device *nic) |
| 2951 | { |
| 2952 | struct e1000_hw *hw = nic->priv; |
| 2953 | int32_t ret_val; |
| 2954 | uint16_t i; |
| 2955 | uint16_t phy_data; |
| 2956 | uint16_t reg_data; |
| 2957 | |
| 2958 | DEBUGFUNC(); |
| 2959 | |
| 2960 | switch (hw->mac_type) { |
| 2961 | case e1000_80003es2lan: |
| 2962 | case e1000_ich8lan: |
| 2963 | /* Set the mac to wait the maximum time between each |
| 2964 | * iteration and increase the max iterations when |
| 2965 | * polling the phy; this fixes erroneous timeouts at 10Mbps. */ |
| 2966 | ret_val = e1000_write_kmrn_reg(hw, |
| 2967 | GG82563_REG(0x34, 4), 0xFFFF); |
| 2968 | if (ret_val) |
| 2969 | return ret_val; |
| 2970 | ret_val = e1000_read_kmrn_reg(hw, |
| 2971 | GG82563_REG(0x34, 9), ®_data); |
| 2972 | if (ret_val) |
| 2973 | return ret_val; |
| 2974 | reg_data |= 0x3F; |
| 2975 | ret_val = e1000_write_kmrn_reg(hw, |
| 2976 | GG82563_REG(0x34, 9), reg_data); |
| 2977 | if (ret_val) |
| 2978 | return ret_val; |
| 2979 | default: |
| 2980 | break; |
| 2981 | } |
| 2982 | |
| 2983 | /* Check if it is a valid PHY and set PHY mode if necessary. */ |
| 2984 | ret_val = e1000_copper_link_preconfig(hw); |
| 2985 | if (ret_val) |
| 2986 | return ret_val; |
| 2987 | switch (hw->mac_type) { |
| 2988 | case e1000_80003es2lan: |
| 2989 | /* Kumeran registers are written-only */ |
| 2990 | reg_data = |
| 2991 | E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT; |
| 2992 | reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING; |
| 2993 | ret_val = e1000_write_kmrn_reg(hw, |
| 2994 | E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data); |
| 2995 | if (ret_val) |
| 2996 | return ret_val; |
| 2997 | break; |
| 2998 | default: |
| 2999 | break; |
| 3000 | } |
| 3001 | |
| 3002 | if (hw->phy_type == e1000_phy_igp || |
| 3003 | hw->phy_type == e1000_phy_igp_3 || |
| 3004 | hw->phy_type == e1000_phy_igp_2) { |
| 3005 | ret_val = e1000_copper_link_igp_setup(hw); |
| 3006 | if (ret_val) |
| 3007 | return ret_val; |
| 3008 | } else if (hw->phy_type == e1000_phy_m88) { |
| 3009 | ret_val = e1000_copper_link_mgp_setup(hw); |
| 3010 | if (ret_val) |
| 3011 | return ret_val; |
| 3012 | } else if (hw->phy_type == e1000_phy_gg82563) { |
| 3013 | ret_val = e1000_copper_link_ggp_setup(hw); |
| 3014 | if (ret_val) |
| 3015 | return ret_val; |
| 3016 | } |
| 3017 | |
| 3018 | /* always auto */ |
| 3019 | /* Setup autoneg and flow control advertisement |
| 3020 | * and perform autonegotiation */ |
| 3021 | ret_val = e1000_copper_link_autoneg(hw); |
| 3022 | if (ret_val) |
| 3023 | return ret_val; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3024 | |
| 3025 | /* Check link status. Wait up to 100 microseconds for link to become |
| 3026 | * valid. |
| 3027 | */ |
| 3028 | for (i = 0; i < 10; i++) { |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 3029 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
| 3030 | if (ret_val) |
| 3031 | return ret_val; |
| 3032 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
| 3033 | if (ret_val) |
| 3034 | return ret_val; |
| 3035 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3036 | if (phy_data & MII_SR_LINK_STATUS) { |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 3037 | /* Config the MAC and PHY after link is up */ |
| 3038 | ret_val = e1000_copper_link_postconfig(hw); |
| 3039 | if (ret_val) |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3040 | return ret_val; |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 3041 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3042 | DEBUGOUT("Valid link established!!!\n"); |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 3043 | return E1000_SUCCESS; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3044 | } |
| 3045 | udelay(10); |
| 3046 | } |
| 3047 | |
| 3048 | DEBUGOUT("Unable to establish link!!!\n"); |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 3049 | return E1000_SUCCESS; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3050 | } |
| 3051 | |
| 3052 | /****************************************************************************** |
| 3053 | * Configures PHY autoneg and flow control advertisement settings |
| 3054 | * |
| 3055 | * hw - Struct containing variables accessed by shared code |
| 3056 | ******************************************************************************/ |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 3057 | int32_t |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3058 | e1000_phy_setup_autoneg(struct e1000_hw *hw) |
| 3059 | { |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 3060 | int32_t ret_val; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3061 | uint16_t mii_autoneg_adv_reg; |
| 3062 | uint16_t mii_1000t_ctrl_reg; |
| 3063 | |
| 3064 | DEBUGFUNC(); |
| 3065 | |
| 3066 | /* Read the MII Auto-Neg Advertisement Register (Address 4). */ |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 3067 | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); |
| 3068 | if (ret_val) |
| 3069 | return ret_val; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3070 | |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 3071 | if (hw->phy_type != e1000_phy_ife) { |
| 3072 | /* Read the MII 1000Base-T Control Register (Address 9). */ |
| 3073 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, |
| 3074 | &mii_1000t_ctrl_reg); |
| 3075 | if (ret_val) |
| 3076 | return ret_val; |
| 3077 | } else |
| 3078 | mii_1000t_ctrl_reg = 0; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3079 | |
| 3080 | /* Need to parse both autoneg_advertised and fc and set up |
| 3081 | * the appropriate PHY registers. First we will parse for |
| 3082 | * autoneg_advertised software override. Since we can advertise |
| 3083 | * a plethora of combinations, we need to check each bit |
| 3084 | * individually. |
| 3085 | */ |
| 3086 | |
| 3087 | /* First we clear all the 10/100 mb speed bits in the Auto-Neg |
| 3088 | * Advertisement Register (Address 4) and the 1000 mb speed bits in |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 3089 | * the 1000Base-T Control Register (Address 9). |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3090 | */ |
| 3091 | mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; |
| 3092 | mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; |
| 3093 | |
| 3094 | DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised); |
| 3095 | |
| 3096 | /* Do we want to advertise 10 Mb Half Duplex? */ |
| 3097 | if (hw->autoneg_advertised & ADVERTISE_10_HALF) { |
| 3098 | DEBUGOUT("Advertise 10mb Half duplex\n"); |
| 3099 | mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; |
| 3100 | } |
| 3101 | |
| 3102 | /* Do we want to advertise 10 Mb Full Duplex? */ |
| 3103 | if (hw->autoneg_advertised & ADVERTISE_10_FULL) { |
| 3104 | DEBUGOUT("Advertise 10mb Full duplex\n"); |
| 3105 | mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; |
| 3106 | } |
| 3107 | |
| 3108 | /* Do we want to advertise 100 Mb Half Duplex? */ |
| 3109 | if (hw->autoneg_advertised & ADVERTISE_100_HALF) { |
| 3110 | DEBUGOUT("Advertise 100mb Half duplex\n"); |
| 3111 | mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; |
| 3112 | } |
| 3113 | |
| 3114 | /* Do we want to advertise 100 Mb Full Duplex? */ |
| 3115 | if (hw->autoneg_advertised & ADVERTISE_100_FULL) { |
| 3116 | DEBUGOUT("Advertise 100mb Full duplex\n"); |
| 3117 | mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; |
| 3118 | } |
| 3119 | |
| 3120 | /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ |
| 3121 | if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { |
| 3122 | DEBUGOUT |
| 3123 | ("Advertise 1000mb Half duplex requested, request denied!\n"); |
| 3124 | } |
| 3125 | |
| 3126 | /* Do we want to advertise 1000 Mb Full Duplex? */ |
| 3127 | if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { |
| 3128 | DEBUGOUT("Advertise 1000mb Full duplex\n"); |
| 3129 | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; |
| 3130 | } |
| 3131 | |
| 3132 | /* Check for a software override of the flow control settings, and |
| 3133 | * setup the PHY advertisement registers accordingly. If |
| 3134 | * auto-negotiation is enabled, then software will have to set the |
| 3135 | * "PAUSE" bits to the correct value in the Auto-Negotiation |
| 3136 | * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. |
| 3137 | * |
| 3138 | * The possible values of the "fc" parameter are: |
Wolfgang Denk | 1aeed8d | 2008-04-13 09:59:26 -0700 | [diff] [blame] | 3139 | * 0: Flow control is completely disabled |
| 3140 | * 1: Rx flow control is enabled (we can receive pause frames |
| 3141 | * but not send pause frames). |
| 3142 | * 2: Tx flow control is enabled (we can send pause frames |
| 3143 | * but we do not support receiving pause frames). |
| 3144 | * 3: Both Rx and TX flow control (symmetric) are enabled. |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3145 | * other: No software override. The flow control configuration |
Wolfgang Denk | 1aeed8d | 2008-04-13 09:59:26 -0700 | [diff] [blame] | 3146 | * in the EEPROM is used. |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3147 | */ |
| 3148 | switch (hw->fc) { |
| 3149 | case e1000_fc_none: /* 0 */ |
| 3150 | /* Flow control (RX & TX) is completely disabled by a |
| 3151 | * software over-ride. |
| 3152 | */ |
| 3153 | mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| 3154 | break; |
| 3155 | case e1000_fc_rx_pause: /* 1 */ |
| 3156 | /* RX Flow control is enabled, and TX Flow control is |
| 3157 | * disabled, by a software over-ride. |
| 3158 | */ |
| 3159 | /* Since there really isn't a way to advertise that we are |
| 3160 | * capable of RX Pause ONLY, we will advertise that we |
| 3161 | * support both symmetric and asymmetric RX PAUSE. Later |
| 3162 | * (in e1000_config_fc_after_link_up) we will disable the |
| 3163 | *hw's ability to send PAUSE frames. |
| 3164 | */ |
| 3165 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| 3166 | break; |
| 3167 | case e1000_fc_tx_pause: /* 2 */ |
| 3168 | /* TX Flow control is enabled, and RX Flow control is |
| 3169 | * disabled, by a software over-ride. |
| 3170 | */ |
| 3171 | mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; |
| 3172 | mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; |
| 3173 | break; |
| 3174 | case e1000_fc_full: /* 3 */ |
| 3175 | /* Flow control (both RX and TX) is enabled by a software |
| 3176 | * over-ride. |
| 3177 | */ |
| 3178 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| 3179 | break; |
| 3180 | default: |
| 3181 | DEBUGOUT("Flow control param set incorrectly\n"); |
| 3182 | return -E1000_ERR_CONFIG; |
| 3183 | } |
| 3184 | |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 3185 | ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); |
| 3186 | if (ret_val) |
| 3187 | return ret_val; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3188 | |
| 3189 | DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); |
| 3190 | |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 3191 | if (hw->phy_type != e1000_phy_ife) { |
| 3192 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, |
| 3193 | mii_1000t_ctrl_reg); |
| 3194 | if (ret_val) |
| 3195 | return ret_val; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3196 | } |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 3197 | |
| 3198 | return E1000_SUCCESS; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3199 | } |
| 3200 | |
| 3201 | /****************************************************************************** |
| 3202 | * Sets the collision distance in the Transmit Control register |
| 3203 | * |
| 3204 | * hw - Struct containing variables accessed by shared code |
| 3205 | * |
| 3206 | * Link should have been established previously. Reads the speed and duplex |
| 3207 | * information from the Device Status register. |
| 3208 | ******************************************************************************/ |
| 3209 | static void |
| 3210 | e1000_config_collision_dist(struct e1000_hw *hw) |
| 3211 | { |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 3212 | uint32_t tctl, coll_dist; |
| 3213 | |
| 3214 | DEBUGFUNC(); |
| 3215 | |
| 3216 | if (hw->mac_type < e1000_82543) |
| 3217 | coll_dist = E1000_COLLISION_DISTANCE_82542; |
| 3218 | else |
| 3219 | coll_dist = E1000_COLLISION_DISTANCE; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3220 | |
| 3221 | tctl = E1000_READ_REG(hw, TCTL); |
| 3222 | |
| 3223 | tctl &= ~E1000_TCTL_COLD; |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 3224 | tctl |= coll_dist << E1000_COLD_SHIFT; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3225 | |
| 3226 | E1000_WRITE_REG(hw, TCTL, tctl); |
| 3227 | E1000_WRITE_FLUSH(hw); |
| 3228 | } |
| 3229 | |
| 3230 | /****************************************************************************** |
| 3231 | * Sets MAC speed and duplex settings to reflect the those in the PHY |
| 3232 | * |
| 3233 | * hw - Struct containing variables accessed by shared code |
| 3234 | * mii_reg - data to write to the MII control register |
| 3235 | * |
| 3236 | * The contents of the PHY register containing the needed information need to |
| 3237 | * be passed in. |
| 3238 | ******************************************************************************/ |
| 3239 | static int |
| 3240 | e1000_config_mac_to_phy(struct e1000_hw *hw) |
| 3241 | { |
| 3242 | uint32_t ctrl; |
| 3243 | uint16_t phy_data; |
| 3244 | |
| 3245 | DEBUGFUNC(); |
| 3246 | |
| 3247 | /* Read the Device Control Register and set the bits to Force Speed |
| 3248 | * and Duplex. |
| 3249 | */ |
| 3250 | ctrl = E1000_READ_REG(hw, CTRL); |
| 3251 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
| 3252 | ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); |
| 3253 | |
| 3254 | /* Set up duplex in the Device Control and Transmit Control |
| 3255 | * registers depending on negotiated values. |
| 3256 | */ |
| 3257 | if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) { |
| 3258 | DEBUGOUT("PHY Read Error\n"); |
| 3259 | return -E1000_ERR_PHY; |
| 3260 | } |
| 3261 | if (phy_data & M88E1000_PSSR_DPLX) |
| 3262 | ctrl |= E1000_CTRL_FD; |
| 3263 | else |
| 3264 | ctrl &= ~E1000_CTRL_FD; |
| 3265 | |
| 3266 | e1000_config_collision_dist(hw); |
| 3267 | |
| 3268 | /* Set up speed in the Device Control register depending on |
| 3269 | * negotiated values. |
| 3270 | */ |
| 3271 | if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) |
| 3272 | ctrl |= E1000_CTRL_SPD_1000; |
| 3273 | else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) |
| 3274 | ctrl |= E1000_CTRL_SPD_100; |
| 3275 | /* Write the configured values back to the Device Control Reg. */ |
| 3276 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 3277 | return 0; |
| 3278 | } |
| 3279 | |
| 3280 | /****************************************************************************** |
| 3281 | * Forces the MAC's flow control settings. |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 3282 | * |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3283 | * hw - Struct containing variables accessed by shared code |
| 3284 | * |
| 3285 | * Sets the TFCE and RFCE bits in the device control register to reflect |
| 3286 | * the adapter settings. TFCE and RFCE need to be explicitly set by |
| 3287 | * software when a Copper PHY is used because autonegotiation is managed |
| 3288 | * by the PHY rather than the MAC. Software must also configure these |
| 3289 | * bits when link is forced on a fiber connection. |
| 3290 | *****************************************************************************/ |
| 3291 | static int |
| 3292 | e1000_force_mac_fc(struct e1000_hw *hw) |
| 3293 | { |
| 3294 | uint32_t ctrl; |
| 3295 | |
| 3296 | DEBUGFUNC(); |
| 3297 | |
| 3298 | /* Get the current configuration of the Device Control Register */ |
| 3299 | ctrl = E1000_READ_REG(hw, CTRL); |
| 3300 | |
| 3301 | /* Because we didn't get link via the internal auto-negotiation |
| 3302 | * mechanism (we either forced link or we got link via PHY |
| 3303 | * auto-neg), we have to manually enable/disable transmit an |
| 3304 | * receive flow control. |
| 3305 | * |
| 3306 | * The "Case" statement below enables/disable flow control |
| 3307 | * according to the "hw->fc" parameter. |
| 3308 | * |
| 3309 | * The possible values of the "fc" parameter are: |
Wolfgang Denk | 1aeed8d | 2008-04-13 09:59:26 -0700 | [diff] [blame] | 3310 | * 0: Flow control is completely disabled |
| 3311 | * 1: Rx flow control is enabled (we can receive pause |
| 3312 | * frames but not send pause frames). |
| 3313 | * 2: Tx flow control is enabled (we can send pause frames |
| 3314 | * frames but we do not receive pause frames). |
| 3315 | * 3: Both Rx and TX flow control (symmetric) is enabled. |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3316 | * other: No other values should be possible at this point. |
| 3317 | */ |
| 3318 | |
| 3319 | switch (hw->fc) { |
| 3320 | case e1000_fc_none: |
| 3321 | ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); |
| 3322 | break; |
| 3323 | case e1000_fc_rx_pause: |
| 3324 | ctrl &= (~E1000_CTRL_TFCE); |
| 3325 | ctrl |= E1000_CTRL_RFCE; |
| 3326 | break; |
| 3327 | case e1000_fc_tx_pause: |
| 3328 | ctrl &= (~E1000_CTRL_RFCE); |
| 3329 | ctrl |= E1000_CTRL_TFCE; |
| 3330 | break; |
| 3331 | case e1000_fc_full: |
| 3332 | ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); |
| 3333 | break; |
| 3334 | default: |
| 3335 | DEBUGOUT("Flow control param set incorrectly\n"); |
| 3336 | return -E1000_ERR_CONFIG; |
| 3337 | } |
| 3338 | |
| 3339 | /* Disable TX Flow Control for 82542 (rev 2.0) */ |
| 3340 | if (hw->mac_type == e1000_82542_rev2_0) |
| 3341 | ctrl &= (~E1000_CTRL_TFCE); |
| 3342 | |
| 3343 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 3344 | return 0; |
| 3345 | } |
| 3346 | |
| 3347 | /****************************************************************************** |
| 3348 | * Configures flow control settings after link is established |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 3349 | * |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3350 | * hw - Struct containing variables accessed by shared code |
| 3351 | * |
| 3352 | * Should be called immediately after a valid link has been established. |
| 3353 | * Forces MAC flow control settings if link was forced. When in MII/GMII mode |
| 3354 | * and autonegotiation is enabled, the MAC flow control settings will be set |
| 3355 | * based on the flow control negotiated by the PHY. In TBI mode, the TFCE |
| 3356 | * and RFCE bits will be automaticaly set to the negotiated flow control mode. |
| 3357 | *****************************************************************************/ |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 3358 | static int32_t |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3359 | e1000_config_fc_after_link_up(struct e1000_hw *hw) |
| 3360 | { |
| 3361 | int32_t ret_val; |
| 3362 | uint16_t mii_status_reg; |
| 3363 | uint16_t mii_nway_adv_reg; |
| 3364 | uint16_t mii_nway_lp_ability_reg; |
| 3365 | uint16_t speed; |
| 3366 | uint16_t duplex; |
| 3367 | |
| 3368 | DEBUGFUNC(); |
| 3369 | |
| 3370 | /* Check for the case where we have fiber media and auto-neg failed |
| 3371 | * so we had to force link. In this case, we need to force the |
| 3372 | * configuration of the MAC to match the "fc" parameter. |
| 3373 | */ |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 3374 | if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) |
| 3375 | || ((hw->media_type == e1000_media_type_internal_serdes) |
| 3376 | && (hw->autoneg_failed)) |
| 3377 | || ((hw->media_type == e1000_media_type_copper) |
| 3378 | && (!hw->autoneg))) { |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3379 | ret_val = e1000_force_mac_fc(hw); |
| 3380 | if (ret_val < 0) { |
| 3381 | DEBUGOUT("Error forcing flow control settings\n"); |
| 3382 | return ret_val; |
| 3383 | } |
| 3384 | } |
| 3385 | |
| 3386 | /* Check for the case where we have copper media and auto-neg is |
| 3387 | * enabled. In this case, we need to check and see if Auto-Neg |
| 3388 | * has completed, and if so, how the PHY and link partner has |
| 3389 | * flow control configured. |
| 3390 | */ |
| 3391 | if (hw->media_type == e1000_media_type_copper) { |
| 3392 | /* Read the MII Status Register and check to see if AutoNeg |
| 3393 | * has completed. We read this twice because this reg has |
| 3394 | * some "sticky" (latched) bits. |
| 3395 | */ |
| 3396 | if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) { |
| 3397 | DEBUGOUT("PHY Read Error \n"); |
| 3398 | return -E1000_ERR_PHY; |
| 3399 | } |
| 3400 | if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) { |
| 3401 | DEBUGOUT("PHY Read Error \n"); |
| 3402 | return -E1000_ERR_PHY; |
| 3403 | } |
| 3404 | |
| 3405 | if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { |
| 3406 | /* The AutoNeg process has completed, so we now need to |
| 3407 | * read both the Auto Negotiation Advertisement Register |
| 3408 | * (Address 4) and the Auto_Negotiation Base Page Ability |
| 3409 | * Register (Address 5) to determine how flow control was |
| 3410 | * negotiated. |
| 3411 | */ |
| 3412 | if (e1000_read_phy_reg |
| 3413 | (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) { |
| 3414 | DEBUGOUT("PHY Read Error\n"); |
| 3415 | return -E1000_ERR_PHY; |
| 3416 | } |
| 3417 | if (e1000_read_phy_reg |
| 3418 | (hw, PHY_LP_ABILITY, |
| 3419 | &mii_nway_lp_ability_reg) < 0) { |
| 3420 | DEBUGOUT("PHY Read Error\n"); |
| 3421 | return -E1000_ERR_PHY; |
| 3422 | } |
| 3423 | |
| 3424 | /* Two bits in the Auto Negotiation Advertisement Register |
| 3425 | * (Address 4) and two bits in the Auto Negotiation Base |
| 3426 | * Page Ability Register (Address 5) determine flow control |
| 3427 | * for both the PHY and the link partner. The following |
| 3428 | * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, |
| 3429 | * 1999, describes these PAUSE resolution bits and how flow |
| 3430 | * control is determined based upon these settings. |
| 3431 | * NOTE: DC = Don't Care |
| 3432 | * |
| 3433 | * LOCAL DEVICE | LINK PARTNER |
| 3434 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution |
| 3435 | *-------|---------|-------|---------|-------------------- |
Wolfgang Denk | 1aeed8d | 2008-04-13 09:59:26 -0700 | [diff] [blame] | 3436 | * 0 | 0 | DC | DC | e1000_fc_none |
| 3437 | * 0 | 1 | 0 | DC | e1000_fc_none |
| 3438 | * 0 | 1 | 1 | 0 | e1000_fc_none |
| 3439 | * 0 | 1 | 1 | 1 | e1000_fc_tx_pause |
| 3440 | * 1 | 0 | 0 | DC | e1000_fc_none |
| 3441 | * 1 | DC | 1 | DC | e1000_fc_full |
| 3442 | * 1 | 1 | 0 | 0 | e1000_fc_none |
| 3443 | * 1 | 1 | 0 | 1 | e1000_fc_rx_pause |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3444 | * |
| 3445 | */ |
| 3446 | /* Are both PAUSE bits set to 1? If so, this implies |
| 3447 | * Symmetric Flow Control is enabled at both ends. The |
| 3448 | * ASM_DIR bits are irrelevant per the spec. |
| 3449 | * |
| 3450 | * For Symmetric Flow Control: |
| 3451 | * |
| 3452 | * LOCAL DEVICE | LINK PARTNER |
| 3453 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| 3454 | *-------|---------|-------|---------|-------------------- |
Wolfgang Denk | 1aeed8d | 2008-04-13 09:59:26 -0700 | [diff] [blame] | 3455 | * 1 | DC | 1 | DC | e1000_fc_full |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3456 | * |
| 3457 | */ |
| 3458 | if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && |
| 3459 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { |
| 3460 | /* Now we need to check if the user selected RX ONLY |
| 3461 | * of pause frames. In this case, we had to advertise |
| 3462 | * FULL flow control because we could not advertise RX |
| 3463 | * ONLY. Hence, we must now check to see if we need to |
| 3464 | * turn OFF the TRANSMISSION of PAUSE frames. |
| 3465 | */ |
| 3466 | if (hw->original_fc == e1000_fc_full) { |
| 3467 | hw->fc = e1000_fc_full; |
| 3468 | DEBUGOUT("Flow Control = FULL.\r\n"); |
| 3469 | } else { |
| 3470 | hw->fc = e1000_fc_rx_pause; |
| 3471 | DEBUGOUT |
| 3472 | ("Flow Control = RX PAUSE frames only.\r\n"); |
| 3473 | } |
| 3474 | } |
| 3475 | /* For receiving PAUSE frames ONLY. |
| 3476 | * |
| 3477 | * LOCAL DEVICE | LINK PARTNER |
| 3478 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| 3479 | *-------|---------|-------|---------|-------------------- |
Wolfgang Denk | 1aeed8d | 2008-04-13 09:59:26 -0700 | [diff] [blame] | 3480 | * 0 | 1 | 1 | 1 | e1000_fc_tx_pause |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3481 | * |
| 3482 | */ |
| 3483 | else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && |
| 3484 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && |
| 3485 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && |
| 3486 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) |
| 3487 | { |
| 3488 | hw->fc = e1000_fc_tx_pause; |
| 3489 | DEBUGOUT |
| 3490 | ("Flow Control = TX PAUSE frames only.\r\n"); |
| 3491 | } |
| 3492 | /* For transmitting PAUSE frames ONLY. |
| 3493 | * |
| 3494 | * LOCAL DEVICE | LINK PARTNER |
| 3495 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| 3496 | *-------|---------|-------|---------|-------------------- |
Wolfgang Denk | 1aeed8d | 2008-04-13 09:59:26 -0700 | [diff] [blame] | 3497 | * 1 | 1 | 0 | 1 | e1000_fc_rx_pause |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3498 | * |
| 3499 | */ |
| 3500 | else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && |
| 3501 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && |
| 3502 | !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && |
| 3503 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) |
| 3504 | { |
| 3505 | hw->fc = e1000_fc_rx_pause; |
| 3506 | DEBUGOUT |
| 3507 | ("Flow Control = RX PAUSE frames only.\r\n"); |
| 3508 | } |
| 3509 | /* Per the IEEE spec, at this point flow control should be |
| 3510 | * disabled. However, we want to consider that we could |
| 3511 | * be connected to a legacy switch that doesn't advertise |
| 3512 | * desired flow control, but can be forced on the link |
| 3513 | * partner. So if we advertised no flow control, that is |
| 3514 | * what we will resolve to. If we advertised some kind of |
| 3515 | * receive capability (Rx Pause Only or Full Flow Control) |
| 3516 | * and the link partner advertised none, we will configure |
| 3517 | * ourselves to enable Rx Flow Control only. We can do |
| 3518 | * this safely for two reasons: If the link partner really |
| 3519 | * didn't want flow control enabled, and we enable Rx, no |
| 3520 | * harm done since we won't be receiving any PAUSE frames |
| 3521 | * anyway. If the intent on the link partner was to have |
| 3522 | * flow control enabled, then by us enabling RX only, we |
| 3523 | * can at least receive pause frames and process them. |
| 3524 | * This is a good idea because in most cases, since we are |
| 3525 | * predominantly a server NIC, more times than not we will |
| 3526 | * be asked to delay transmission of packets than asking |
| 3527 | * our link partner to pause transmission of frames. |
| 3528 | */ |
| 3529 | else if (hw->original_fc == e1000_fc_none || |
| 3530 | hw->original_fc == e1000_fc_tx_pause) { |
| 3531 | hw->fc = e1000_fc_none; |
| 3532 | DEBUGOUT("Flow Control = NONE.\r\n"); |
| 3533 | } else { |
| 3534 | hw->fc = e1000_fc_rx_pause; |
| 3535 | DEBUGOUT |
| 3536 | ("Flow Control = RX PAUSE frames only.\r\n"); |
| 3537 | } |
| 3538 | |
Wolfgang Denk | 1aeed8d | 2008-04-13 09:59:26 -0700 | [diff] [blame] | 3539 | /* Now we need to do one last check... If we auto- |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3540 | * negotiated to HALF DUPLEX, flow control should not be |
| 3541 | * enabled per IEEE 802.3 spec. |
| 3542 | */ |
| 3543 | e1000_get_speed_and_duplex(hw, &speed, &duplex); |
| 3544 | |
| 3545 | if (duplex == HALF_DUPLEX) |
| 3546 | hw->fc = e1000_fc_none; |
| 3547 | |
| 3548 | /* Now we call a subroutine to actually force the MAC |
| 3549 | * controller to use the correct flow control settings. |
| 3550 | */ |
| 3551 | ret_val = e1000_force_mac_fc(hw); |
| 3552 | if (ret_val < 0) { |
| 3553 | DEBUGOUT |
| 3554 | ("Error forcing flow control settings\n"); |
| 3555 | return ret_val; |
| 3556 | } |
| 3557 | } else { |
| 3558 | DEBUGOUT |
| 3559 | ("Copper PHY and Auto Neg has not completed.\r\n"); |
| 3560 | } |
| 3561 | } |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 3562 | return E1000_SUCCESS; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3563 | } |
| 3564 | |
| 3565 | /****************************************************************************** |
| 3566 | * Checks to see if the link status of the hardware has changed. |
| 3567 | * |
| 3568 | * hw - Struct containing variables accessed by shared code |
| 3569 | * |
| 3570 | * Called by any function that needs to check the link status of the adapter. |
| 3571 | *****************************************************************************/ |
| 3572 | static int |
| 3573 | e1000_check_for_link(struct eth_device *nic) |
| 3574 | { |
| 3575 | struct e1000_hw *hw = nic->priv; |
| 3576 | uint32_t rxcw; |
| 3577 | uint32_t ctrl; |
| 3578 | uint32_t status; |
| 3579 | uint32_t rctl; |
| 3580 | uint32_t signal; |
| 3581 | int32_t ret_val; |
| 3582 | uint16_t phy_data; |
| 3583 | uint16_t lp_capability; |
| 3584 | |
| 3585 | DEBUGFUNC(); |
| 3586 | |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 3587 | /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be |
| 3588 | * set when the optics detect a signal. On older adapters, it will be |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3589 | * cleared when there is a signal |
| 3590 | */ |
| 3591 | ctrl = E1000_READ_REG(hw, CTRL); |
| 3592 | if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS)) |
| 3593 | signal = E1000_CTRL_SWDPIN1; |
| 3594 | else |
| 3595 | signal = 0; |
| 3596 | |
| 3597 | status = E1000_READ_REG(hw, STATUS); |
| 3598 | rxcw = E1000_READ_REG(hw, RXCW); |
| 3599 | DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw); |
| 3600 | |
| 3601 | /* If we have a copper PHY then we only want to go out to the PHY |
| 3602 | * registers to see if Auto-Neg has completed and/or if our link |
Wolfgang Denk | 1aeed8d | 2008-04-13 09:59:26 -0700 | [diff] [blame] | 3603 | * status has changed. The get_link_status flag will be set if we |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3604 | * receive a Link Status Change interrupt or we have Rx Sequence |
| 3605 | * Errors. |
| 3606 | */ |
| 3607 | if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { |
| 3608 | /* First we want to see if the MII Status Register reports |
| 3609 | * link. If so, then we want to get the current speed/duplex |
| 3610 | * of the PHY. |
| 3611 | * Read the register twice since the link bit is sticky. |
| 3612 | */ |
| 3613 | if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { |
| 3614 | DEBUGOUT("PHY Read Error\n"); |
| 3615 | return -E1000_ERR_PHY; |
| 3616 | } |
| 3617 | if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { |
| 3618 | DEBUGOUT("PHY Read Error\n"); |
| 3619 | return -E1000_ERR_PHY; |
| 3620 | } |
| 3621 | |
| 3622 | if (phy_data & MII_SR_LINK_STATUS) { |
| 3623 | hw->get_link_status = FALSE; |
| 3624 | } else { |
| 3625 | /* No link detected */ |
| 3626 | return -E1000_ERR_NOLINK; |
| 3627 | } |
| 3628 | |
| 3629 | /* We have a M88E1000 PHY and Auto-Neg is enabled. If we |
| 3630 | * have Si on board that is 82544 or newer, Auto |
| 3631 | * Speed Detection takes care of MAC speed/duplex |
| 3632 | * configuration. So we only need to configure Collision |
| 3633 | * Distance in the MAC. Otherwise, we need to force |
| 3634 | * speed/duplex on the MAC to the current PHY speed/duplex |
| 3635 | * settings. |
| 3636 | */ |
| 3637 | if (hw->mac_type >= e1000_82544) |
| 3638 | e1000_config_collision_dist(hw); |
| 3639 | else { |
| 3640 | ret_val = e1000_config_mac_to_phy(hw); |
| 3641 | if (ret_val < 0) { |
| 3642 | DEBUGOUT |
| 3643 | ("Error configuring MAC to PHY settings\n"); |
| 3644 | return ret_val; |
| 3645 | } |
| 3646 | } |
| 3647 | |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 3648 | /* Configure Flow Control now that Auto-Neg has completed. First, we |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3649 | * need to restore the desired flow control settings because we may |
| 3650 | * have had to re-autoneg with a different link partner. |
| 3651 | */ |
| 3652 | ret_val = e1000_config_fc_after_link_up(hw); |
| 3653 | if (ret_val < 0) { |
| 3654 | DEBUGOUT("Error configuring flow control\n"); |
| 3655 | return ret_val; |
| 3656 | } |
| 3657 | |
| 3658 | /* At this point we know that we are on copper and we have |
| 3659 | * auto-negotiated link. These are conditions for checking the link |
Wolfgang Denk | 1aeed8d | 2008-04-13 09:59:26 -0700 | [diff] [blame] | 3660 | * parter capability register. We use the link partner capability to |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3661 | * determine if TBI Compatibility needs to be turned on or off. If |
| 3662 | * the link partner advertises any speed in addition to Gigabit, then |
| 3663 | * we assume that they are GMII-based, and TBI compatibility is not |
| 3664 | * needed. If no other speeds are advertised, we assume the link |
| 3665 | * partner is TBI-based, and we turn on TBI Compatibility. |
| 3666 | */ |
| 3667 | if (hw->tbi_compatibility_en) { |
| 3668 | if (e1000_read_phy_reg |
| 3669 | (hw, PHY_LP_ABILITY, &lp_capability) < 0) { |
| 3670 | DEBUGOUT("PHY Read Error\n"); |
| 3671 | return -E1000_ERR_PHY; |
| 3672 | } |
| 3673 | if (lp_capability & (NWAY_LPAR_10T_HD_CAPS | |
| 3674 | NWAY_LPAR_10T_FD_CAPS | |
| 3675 | NWAY_LPAR_100TX_HD_CAPS | |
| 3676 | NWAY_LPAR_100TX_FD_CAPS | |
| 3677 | NWAY_LPAR_100T4_CAPS)) { |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 3678 | /* If our link partner advertises anything in addition to |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3679 | * gigabit, we do not need to enable TBI compatibility. |
| 3680 | */ |
| 3681 | if (hw->tbi_compatibility_on) { |
| 3682 | /* If we previously were in the mode, turn it off. */ |
| 3683 | rctl = E1000_READ_REG(hw, RCTL); |
| 3684 | rctl &= ~E1000_RCTL_SBP; |
| 3685 | E1000_WRITE_REG(hw, RCTL, rctl); |
| 3686 | hw->tbi_compatibility_on = FALSE; |
| 3687 | } |
| 3688 | } else { |
| 3689 | /* If TBI compatibility is was previously off, turn it on. For |
| 3690 | * compatibility with a TBI link partner, we will store bad |
| 3691 | * packets. Some frames have an additional byte on the end and |
| 3692 | * will look like CRC errors to to the hardware. |
| 3693 | */ |
| 3694 | if (!hw->tbi_compatibility_on) { |
| 3695 | hw->tbi_compatibility_on = TRUE; |
| 3696 | rctl = E1000_READ_REG(hw, RCTL); |
| 3697 | rctl |= E1000_RCTL_SBP; |
| 3698 | E1000_WRITE_REG(hw, RCTL, rctl); |
| 3699 | } |
| 3700 | } |
| 3701 | } |
| 3702 | } |
| 3703 | /* If we don't have link (auto-negotiation failed or link partner cannot |
| 3704 | * auto-negotiate), the cable is plugged in (we have signal), and our |
| 3705 | * link partner is not trying to auto-negotiate with us (we are receiving |
| 3706 | * idles or data), we need to force link up. We also need to give |
| 3707 | * auto-negotiation time to complete, in case the cable was just plugged |
| 3708 | * in. The autoneg_failed flag does this. |
| 3709 | */ |
| 3710 | else if ((hw->media_type == e1000_media_type_fiber) && |
| 3711 | (!(status & E1000_STATUS_LU)) && |
| 3712 | ((ctrl & E1000_CTRL_SWDPIN1) == signal) && |
| 3713 | (!(rxcw & E1000_RXCW_C))) { |
| 3714 | if (hw->autoneg_failed == 0) { |
| 3715 | hw->autoneg_failed = 1; |
| 3716 | return 0; |
| 3717 | } |
| 3718 | DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n"); |
| 3719 | |
| 3720 | /* Disable auto-negotiation in the TXCW register */ |
| 3721 | E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE)); |
| 3722 | |
| 3723 | /* Force link-up and also force full-duplex. */ |
| 3724 | ctrl = E1000_READ_REG(hw, CTRL); |
| 3725 | ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); |
| 3726 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 3727 | |
| 3728 | /* Configure Flow Control after forcing link up. */ |
| 3729 | ret_val = e1000_config_fc_after_link_up(hw); |
| 3730 | if (ret_val < 0) { |
| 3731 | DEBUGOUT("Error configuring flow control\n"); |
| 3732 | return ret_val; |
| 3733 | } |
| 3734 | } |
| 3735 | /* If we are forcing link and we are receiving /C/ ordered sets, re-enable |
| 3736 | * auto-negotiation in the TXCW register and disable forced link in the |
| 3737 | * Device Control register in an attempt to auto-negotiate with our link |
| 3738 | * partner. |
| 3739 | */ |
| 3740 | else if ((hw->media_type == e1000_media_type_fiber) && |
| 3741 | (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { |
| 3742 | DEBUGOUT |
| 3743 | ("RXing /C/, enable AutoNeg and stop forcing link.\r\n"); |
| 3744 | E1000_WRITE_REG(hw, TXCW, hw->txcw); |
| 3745 | E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU)); |
| 3746 | } |
| 3747 | return 0; |
| 3748 | } |
| 3749 | |
| 3750 | /****************************************************************************** |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 3751 | * Configure the MAC-to-PHY interface for 10/100Mbps |
| 3752 | * |
| 3753 | * hw - Struct containing variables accessed by shared code |
| 3754 | ******************************************************************************/ |
| 3755 | static int32_t |
| 3756 | e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex) |
| 3757 | { |
| 3758 | int32_t ret_val = E1000_SUCCESS; |
| 3759 | uint32_t tipg; |
| 3760 | uint16_t reg_data; |
| 3761 | |
| 3762 | DEBUGFUNC(); |
| 3763 | |
| 3764 | reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT; |
| 3765 | ret_val = e1000_write_kmrn_reg(hw, |
| 3766 | E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data); |
| 3767 | if (ret_val) |
| 3768 | return ret_val; |
| 3769 | |
| 3770 | /* Configure Transmit Inter-Packet Gap */ |
| 3771 | tipg = E1000_READ_REG(hw, TIPG); |
| 3772 | tipg &= ~E1000_TIPG_IPGT_MASK; |
| 3773 | tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100; |
| 3774 | E1000_WRITE_REG(hw, TIPG, tipg); |
| 3775 | |
| 3776 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); |
| 3777 | |
| 3778 | if (ret_val) |
| 3779 | return ret_val; |
| 3780 | |
| 3781 | if (duplex == HALF_DUPLEX) |
| 3782 | reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; |
| 3783 | else |
| 3784 | reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; |
| 3785 | |
| 3786 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); |
| 3787 | |
| 3788 | return ret_val; |
| 3789 | } |
| 3790 | |
| 3791 | static int32_t |
| 3792 | e1000_configure_kmrn_for_1000(struct e1000_hw *hw) |
| 3793 | { |
| 3794 | int32_t ret_val = E1000_SUCCESS; |
| 3795 | uint16_t reg_data; |
| 3796 | uint32_t tipg; |
| 3797 | |
| 3798 | DEBUGFUNC(); |
| 3799 | |
| 3800 | reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT; |
| 3801 | ret_val = e1000_write_kmrn_reg(hw, |
| 3802 | E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data); |
| 3803 | if (ret_val) |
| 3804 | return ret_val; |
| 3805 | |
| 3806 | /* Configure Transmit Inter-Packet Gap */ |
| 3807 | tipg = E1000_READ_REG(hw, TIPG); |
| 3808 | tipg &= ~E1000_TIPG_IPGT_MASK; |
| 3809 | tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; |
| 3810 | E1000_WRITE_REG(hw, TIPG, tipg); |
| 3811 | |
| 3812 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); |
| 3813 | |
| 3814 | if (ret_val) |
| 3815 | return ret_val; |
| 3816 | |
| 3817 | reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; |
| 3818 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); |
| 3819 | |
| 3820 | return ret_val; |
| 3821 | } |
| 3822 | |
| 3823 | /****************************************************************************** |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3824 | * Detects the current speed and duplex settings of the hardware. |
| 3825 | * |
| 3826 | * hw - Struct containing variables accessed by shared code |
| 3827 | * speed - Speed of the connection |
| 3828 | * duplex - Duplex setting of the connection |
| 3829 | *****************************************************************************/ |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 3830 | static int |
| 3831 | e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed, |
| 3832 | uint16_t *duplex) |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3833 | { |
| 3834 | uint32_t status; |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 3835 | int32_t ret_val; |
| 3836 | uint16_t phy_data; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3837 | |
| 3838 | DEBUGFUNC(); |
| 3839 | |
| 3840 | if (hw->mac_type >= e1000_82543) { |
| 3841 | status = E1000_READ_REG(hw, STATUS); |
| 3842 | if (status & E1000_STATUS_SPEED_1000) { |
| 3843 | *speed = SPEED_1000; |
| 3844 | DEBUGOUT("1000 Mbs, "); |
| 3845 | } else if (status & E1000_STATUS_SPEED_100) { |
| 3846 | *speed = SPEED_100; |
| 3847 | DEBUGOUT("100 Mbs, "); |
| 3848 | } else { |
| 3849 | *speed = SPEED_10; |
| 3850 | DEBUGOUT("10 Mbs, "); |
| 3851 | } |
| 3852 | |
| 3853 | if (status & E1000_STATUS_FD) { |
| 3854 | *duplex = FULL_DUPLEX; |
| 3855 | DEBUGOUT("Full Duplex\r\n"); |
| 3856 | } else { |
| 3857 | *duplex = HALF_DUPLEX; |
| 3858 | DEBUGOUT(" Half Duplex\r\n"); |
| 3859 | } |
| 3860 | } else { |
| 3861 | DEBUGOUT("1000 Mbs, Full Duplex\r\n"); |
| 3862 | *speed = SPEED_1000; |
| 3863 | *duplex = FULL_DUPLEX; |
| 3864 | } |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 3865 | |
| 3866 | /* IGP01 PHY may advertise full duplex operation after speed downgrade |
| 3867 | * even if it is operating at half duplex. Here we set the duplex |
| 3868 | * settings to match the duplex in the link partner's capabilities. |
| 3869 | */ |
| 3870 | if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) { |
| 3871 | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); |
| 3872 | if (ret_val) |
| 3873 | return ret_val; |
| 3874 | |
| 3875 | if (!(phy_data & NWAY_ER_LP_NWAY_CAPS)) |
| 3876 | *duplex = HALF_DUPLEX; |
| 3877 | else { |
| 3878 | ret_val = e1000_read_phy_reg(hw, |
| 3879 | PHY_LP_ABILITY, &phy_data); |
| 3880 | if (ret_val) |
| 3881 | return ret_val; |
| 3882 | if ((*speed == SPEED_100 && |
| 3883 | !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) |
| 3884 | || (*speed == SPEED_10 |
| 3885 | && !(phy_data & NWAY_LPAR_10T_FD_CAPS))) |
| 3886 | *duplex = HALF_DUPLEX; |
| 3887 | } |
| 3888 | } |
| 3889 | |
| 3890 | if ((hw->mac_type == e1000_80003es2lan) && |
| 3891 | (hw->media_type == e1000_media_type_copper)) { |
| 3892 | if (*speed == SPEED_1000) |
| 3893 | ret_val = e1000_configure_kmrn_for_1000(hw); |
| 3894 | else |
| 3895 | ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex); |
| 3896 | if (ret_val) |
| 3897 | return ret_val; |
| 3898 | } |
| 3899 | return E1000_SUCCESS; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3900 | } |
| 3901 | |
| 3902 | /****************************************************************************** |
| 3903 | * Blocks until autoneg completes or times out (~4.5 seconds) |
| 3904 | * |
| 3905 | * hw - Struct containing variables accessed by shared code |
| 3906 | ******************************************************************************/ |
| 3907 | static int |
| 3908 | e1000_wait_autoneg(struct e1000_hw *hw) |
| 3909 | { |
| 3910 | uint16_t i; |
| 3911 | uint16_t phy_data; |
| 3912 | |
| 3913 | DEBUGFUNC(); |
| 3914 | DEBUGOUT("Waiting for Auto-Neg to complete.\n"); |
| 3915 | |
| 3916 | /* We will wait for autoneg to complete or 4.5 seconds to expire. */ |
| 3917 | for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { |
| 3918 | /* Read the MII Status Register and wait for Auto-Neg |
| 3919 | * Complete bit to be set. |
| 3920 | */ |
| 3921 | if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { |
| 3922 | DEBUGOUT("PHY Read Error\n"); |
| 3923 | return -E1000_ERR_PHY; |
| 3924 | } |
| 3925 | if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { |
| 3926 | DEBUGOUT("PHY Read Error\n"); |
| 3927 | return -E1000_ERR_PHY; |
| 3928 | } |
| 3929 | if (phy_data & MII_SR_AUTONEG_COMPLETE) { |
| 3930 | DEBUGOUT("Auto-Neg complete.\n"); |
| 3931 | return 0; |
| 3932 | } |
| 3933 | mdelay(100); |
| 3934 | } |
| 3935 | DEBUGOUT("Auto-Neg timedout.\n"); |
| 3936 | return -E1000_ERR_TIMEOUT; |
| 3937 | } |
| 3938 | |
| 3939 | /****************************************************************************** |
| 3940 | * Raises the Management Data Clock |
| 3941 | * |
| 3942 | * hw - Struct containing variables accessed by shared code |
| 3943 | * ctrl - Device control register's current value |
| 3944 | ******************************************************************************/ |
| 3945 | static void |
| 3946 | e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl) |
| 3947 | { |
| 3948 | /* Raise the clock input to the Management Data Clock (by setting the MDC |
| 3949 | * bit), and then delay 2 microseconds. |
| 3950 | */ |
| 3951 | E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC)); |
| 3952 | E1000_WRITE_FLUSH(hw); |
| 3953 | udelay(2); |
| 3954 | } |
| 3955 | |
| 3956 | /****************************************************************************** |
| 3957 | * Lowers the Management Data Clock |
| 3958 | * |
| 3959 | * hw - Struct containing variables accessed by shared code |
| 3960 | * ctrl - Device control register's current value |
| 3961 | ******************************************************************************/ |
| 3962 | static void |
| 3963 | e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl) |
| 3964 | { |
| 3965 | /* Lower the clock input to the Management Data Clock (by clearing the MDC |
| 3966 | * bit), and then delay 2 microseconds. |
| 3967 | */ |
| 3968 | E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC)); |
| 3969 | E1000_WRITE_FLUSH(hw); |
| 3970 | udelay(2); |
| 3971 | } |
| 3972 | |
| 3973 | /****************************************************************************** |
| 3974 | * Shifts data bits out to the PHY |
| 3975 | * |
| 3976 | * hw - Struct containing variables accessed by shared code |
| 3977 | * data - Data to send out to the PHY |
| 3978 | * count - Number of bits to shift out |
| 3979 | * |
| 3980 | * Bits are shifted out in MSB to LSB order. |
| 3981 | ******************************************************************************/ |
| 3982 | static void |
| 3983 | e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count) |
| 3984 | { |
| 3985 | uint32_t ctrl; |
| 3986 | uint32_t mask; |
| 3987 | |
| 3988 | /* We need to shift "count" number of bits out to the PHY. So, the value |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 3989 | * in the "data" parameter will be shifted out to the PHY one bit at a |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 3990 | * time. In order to do this, "data" must be broken down into bits. |
| 3991 | */ |
| 3992 | mask = 0x01; |
| 3993 | mask <<= (count - 1); |
| 3994 | |
| 3995 | ctrl = E1000_READ_REG(hw, CTRL); |
| 3996 | |
| 3997 | /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ |
| 3998 | ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); |
| 3999 | |
| 4000 | while (mask) { |
| 4001 | /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and |
| 4002 | * then raising and lowering the Management Data Clock. A "0" is |
| 4003 | * shifted out to the PHY by setting the MDIO bit to "0" and then |
| 4004 | * raising and lowering the clock. |
| 4005 | */ |
| 4006 | if (data & mask) |
| 4007 | ctrl |= E1000_CTRL_MDIO; |
| 4008 | else |
| 4009 | ctrl &= ~E1000_CTRL_MDIO; |
| 4010 | |
| 4011 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 4012 | E1000_WRITE_FLUSH(hw); |
| 4013 | |
| 4014 | udelay(2); |
| 4015 | |
| 4016 | e1000_raise_mdi_clk(hw, &ctrl); |
| 4017 | e1000_lower_mdi_clk(hw, &ctrl); |
| 4018 | |
| 4019 | mask = mask >> 1; |
| 4020 | } |
| 4021 | } |
| 4022 | |
| 4023 | /****************************************************************************** |
| 4024 | * Shifts data bits in from the PHY |
| 4025 | * |
| 4026 | * hw - Struct containing variables accessed by shared code |
| 4027 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 4028 | * Bits are shifted in in MSB to LSB order. |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4029 | ******************************************************************************/ |
| 4030 | static uint16_t |
| 4031 | e1000_shift_in_mdi_bits(struct e1000_hw *hw) |
| 4032 | { |
| 4033 | uint32_t ctrl; |
| 4034 | uint16_t data = 0; |
| 4035 | uint8_t i; |
| 4036 | |
| 4037 | /* In order to read a register from the PHY, we need to shift in a total |
| 4038 | * of 18 bits from the PHY. The first two bit (turnaround) times are used |
| 4039 | * to avoid contention on the MDIO pin when a read operation is performed. |
| 4040 | * These two bits are ignored by us and thrown away. Bits are "shifted in" |
| 4041 | * by raising the input to the Management Data Clock (setting the MDC bit), |
| 4042 | * and then reading the value of the MDIO bit. |
| 4043 | */ |
| 4044 | ctrl = E1000_READ_REG(hw, CTRL); |
| 4045 | |
| 4046 | /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ |
| 4047 | ctrl &= ~E1000_CTRL_MDIO_DIR; |
| 4048 | ctrl &= ~E1000_CTRL_MDIO; |
| 4049 | |
| 4050 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 4051 | E1000_WRITE_FLUSH(hw); |
| 4052 | |
| 4053 | /* Raise and Lower the clock before reading in the data. This accounts for |
| 4054 | * the turnaround bits. The first clock occurred when we clocked out the |
| 4055 | * last bit of the Register Address. |
| 4056 | */ |
| 4057 | e1000_raise_mdi_clk(hw, &ctrl); |
| 4058 | e1000_lower_mdi_clk(hw, &ctrl); |
| 4059 | |
| 4060 | for (data = 0, i = 0; i < 16; i++) { |
| 4061 | data = data << 1; |
| 4062 | e1000_raise_mdi_clk(hw, &ctrl); |
| 4063 | ctrl = E1000_READ_REG(hw, CTRL); |
| 4064 | /* Check to see if we shifted in a "1". */ |
| 4065 | if (ctrl & E1000_CTRL_MDIO) |
| 4066 | data |= 1; |
| 4067 | e1000_lower_mdi_clk(hw, &ctrl); |
| 4068 | } |
| 4069 | |
| 4070 | e1000_raise_mdi_clk(hw, &ctrl); |
| 4071 | e1000_lower_mdi_clk(hw, &ctrl); |
| 4072 | |
| 4073 | return data; |
| 4074 | } |
| 4075 | |
| 4076 | /***************************************************************************** |
| 4077 | * Reads the value from a PHY register |
| 4078 | * |
| 4079 | * hw - Struct containing variables accessed by shared code |
| 4080 | * reg_addr - address of the PHY register to read |
| 4081 | ******************************************************************************/ |
| 4082 | static int |
| 4083 | e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data) |
| 4084 | { |
| 4085 | uint32_t i; |
| 4086 | uint32_t mdic = 0; |
| 4087 | const uint32_t phy_addr = 1; |
| 4088 | |
| 4089 | if (reg_addr > MAX_PHY_REG_ADDRESS) { |
| 4090 | DEBUGOUT("PHY Address %d is out of range\n", reg_addr); |
| 4091 | return -E1000_ERR_PARAM; |
| 4092 | } |
| 4093 | |
| 4094 | if (hw->mac_type > e1000_82543) { |
| 4095 | /* Set up Op-code, Phy Address, and register address in the MDI |
| 4096 | * Control register. The MAC will take care of interfacing with the |
| 4097 | * PHY to retrieve the desired data. |
| 4098 | */ |
| 4099 | mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | |
| 4100 | (phy_addr << E1000_MDIC_PHY_SHIFT) | |
| 4101 | (E1000_MDIC_OP_READ)); |
| 4102 | |
| 4103 | E1000_WRITE_REG(hw, MDIC, mdic); |
| 4104 | |
| 4105 | /* Poll the ready bit to see if the MDI read completed */ |
| 4106 | for (i = 0; i < 64; i++) { |
| 4107 | udelay(10); |
| 4108 | mdic = E1000_READ_REG(hw, MDIC); |
| 4109 | if (mdic & E1000_MDIC_READY) |
| 4110 | break; |
| 4111 | } |
| 4112 | if (!(mdic & E1000_MDIC_READY)) { |
| 4113 | DEBUGOUT("MDI Read did not complete\n"); |
| 4114 | return -E1000_ERR_PHY; |
| 4115 | } |
| 4116 | if (mdic & E1000_MDIC_ERROR) { |
| 4117 | DEBUGOUT("MDI Error\n"); |
| 4118 | return -E1000_ERR_PHY; |
| 4119 | } |
| 4120 | *phy_data = (uint16_t) mdic; |
| 4121 | } else { |
| 4122 | /* We must first send a preamble through the MDIO pin to signal the |
| 4123 | * beginning of an MII instruction. This is done by sending 32 |
| 4124 | * consecutive "1" bits. |
| 4125 | */ |
| 4126 | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); |
| 4127 | |
| 4128 | /* Now combine the next few fields that are required for a read |
| 4129 | * operation. We use this method instead of calling the |
| 4130 | * e1000_shift_out_mdi_bits routine five different times. The format of |
| 4131 | * a MII read instruction consists of a shift out of 14 bits and is |
| 4132 | * defined as follows: |
| 4133 | * <Preamble><SOF><Op Code><Phy Addr><Reg Addr> |
| 4134 | * followed by a shift in of 18 bits. This first two bits shifted in |
| 4135 | * are TurnAround bits used to avoid contention on the MDIO pin when a |
| 4136 | * READ operation is performed. These two bits are thrown away |
| 4137 | * followed by a shift in of 16 bits which contains the desired data. |
| 4138 | */ |
| 4139 | mdic = ((reg_addr) | (phy_addr << 5) | |
| 4140 | (PHY_OP_READ << 10) | (PHY_SOF << 12)); |
| 4141 | |
| 4142 | e1000_shift_out_mdi_bits(hw, mdic, 14); |
| 4143 | |
| 4144 | /* Now that we've shifted out the read command to the MII, we need to |
| 4145 | * "shift in" the 16-bit value (18 total bits) of the requested PHY |
| 4146 | * register address. |
| 4147 | */ |
| 4148 | *phy_data = e1000_shift_in_mdi_bits(hw); |
| 4149 | } |
| 4150 | return 0; |
| 4151 | } |
| 4152 | |
| 4153 | /****************************************************************************** |
| 4154 | * Writes a value to a PHY register |
| 4155 | * |
| 4156 | * hw - Struct containing variables accessed by shared code |
| 4157 | * reg_addr - address of the PHY register to write |
| 4158 | * data - data to write to the PHY |
| 4159 | ******************************************************************************/ |
| 4160 | static int |
| 4161 | e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data) |
| 4162 | { |
| 4163 | uint32_t i; |
| 4164 | uint32_t mdic = 0; |
| 4165 | const uint32_t phy_addr = 1; |
| 4166 | |
| 4167 | if (reg_addr > MAX_PHY_REG_ADDRESS) { |
| 4168 | DEBUGOUT("PHY Address %d is out of range\n", reg_addr); |
| 4169 | return -E1000_ERR_PARAM; |
| 4170 | } |
| 4171 | |
| 4172 | if (hw->mac_type > e1000_82543) { |
| 4173 | /* Set up Op-code, Phy Address, register address, and data intended |
| 4174 | * for the PHY register in the MDI Control register. The MAC will take |
| 4175 | * care of interfacing with the PHY to send the desired data. |
| 4176 | */ |
| 4177 | mdic = (((uint32_t) phy_data) | |
| 4178 | (reg_addr << E1000_MDIC_REG_SHIFT) | |
| 4179 | (phy_addr << E1000_MDIC_PHY_SHIFT) | |
| 4180 | (E1000_MDIC_OP_WRITE)); |
| 4181 | |
| 4182 | E1000_WRITE_REG(hw, MDIC, mdic); |
| 4183 | |
| 4184 | /* Poll the ready bit to see if the MDI read completed */ |
| 4185 | for (i = 0; i < 64; i++) { |
| 4186 | udelay(10); |
| 4187 | mdic = E1000_READ_REG(hw, MDIC); |
| 4188 | if (mdic & E1000_MDIC_READY) |
| 4189 | break; |
| 4190 | } |
| 4191 | if (!(mdic & E1000_MDIC_READY)) { |
| 4192 | DEBUGOUT("MDI Write did not complete\n"); |
| 4193 | return -E1000_ERR_PHY; |
| 4194 | } |
| 4195 | } else { |
| 4196 | /* We'll need to use the SW defined pins to shift the write command |
| 4197 | * out to the PHY. We first send a preamble to the PHY to signal the |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 4198 | * beginning of the MII instruction. This is done by sending 32 |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4199 | * consecutive "1" bits. |
| 4200 | */ |
| 4201 | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); |
| 4202 | |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 4203 | /* Now combine the remaining required fields that will indicate a |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4204 | * write operation. We use this method instead of calling the |
| 4205 | * e1000_shift_out_mdi_bits routine for each field in the command. The |
| 4206 | * format of a MII write instruction is as follows: |
| 4207 | * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. |
| 4208 | */ |
| 4209 | mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | |
| 4210 | (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); |
| 4211 | mdic <<= 16; |
| 4212 | mdic |= (uint32_t) phy_data; |
| 4213 | |
| 4214 | e1000_shift_out_mdi_bits(hw, mdic, 32); |
| 4215 | } |
| 4216 | return 0; |
| 4217 | } |
| 4218 | |
| 4219 | /****************************************************************************** |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4220 | * Checks if PHY reset is blocked due to SOL/IDER session, for example. |
| 4221 | * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to |
| 4222 | * the caller to figure out how to deal with it. |
| 4223 | * |
| 4224 | * hw - Struct containing variables accessed by shared code |
| 4225 | * |
| 4226 | * returns: - E1000_BLK_PHY_RESET |
| 4227 | * E1000_SUCCESS |
| 4228 | * |
| 4229 | *****************************************************************************/ |
| 4230 | int32_t |
| 4231 | e1000_check_phy_reset_block(struct e1000_hw *hw) |
| 4232 | { |
| 4233 | uint32_t manc = 0; |
| 4234 | uint32_t fwsm = 0; |
| 4235 | |
| 4236 | if (hw->mac_type == e1000_ich8lan) { |
| 4237 | fwsm = E1000_READ_REG(hw, FWSM); |
| 4238 | return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS |
| 4239 | : E1000_BLK_PHY_RESET; |
| 4240 | } |
| 4241 | |
| 4242 | if (hw->mac_type > e1000_82547_rev_2) |
| 4243 | manc = E1000_READ_REG(hw, MANC); |
| 4244 | return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? |
| 4245 | E1000_BLK_PHY_RESET : E1000_SUCCESS; |
| 4246 | } |
| 4247 | |
| 4248 | /*************************************************************************** |
| 4249 | * Checks if the PHY configuration is done |
| 4250 | * |
| 4251 | * hw: Struct containing variables accessed by shared code |
| 4252 | * |
| 4253 | * returns: - E1000_ERR_RESET if fail to reset MAC |
| 4254 | * E1000_SUCCESS at any other case. |
| 4255 | * |
| 4256 | ***************************************************************************/ |
| 4257 | static int32_t |
| 4258 | e1000_get_phy_cfg_done(struct e1000_hw *hw) |
| 4259 | { |
| 4260 | int32_t timeout = PHY_CFG_TIMEOUT; |
| 4261 | uint32_t cfg_mask = E1000_EEPROM_CFG_DONE; |
| 4262 | |
| 4263 | DEBUGFUNC(); |
| 4264 | |
| 4265 | switch (hw->mac_type) { |
| 4266 | default: |
| 4267 | mdelay(10); |
| 4268 | break; |
| 4269 | case e1000_80003es2lan: |
| 4270 | /* Separate *_CFG_DONE_* bit for each port */ |
| 4271 | if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) |
| 4272 | cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1; |
| 4273 | /* Fall Through */ |
| 4274 | case e1000_82571: |
| 4275 | case e1000_82572: |
| 4276 | while (timeout) { |
| 4277 | if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask) |
| 4278 | break; |
| 4279 | else |
| 4280 | mdelay(1); |
| 4281 | timeout--; |
| 4282 | } |
| 4283 | if (!timeout) { |
| 4284 | DEBUGOUT("MNG configuration cycle has not " |
| 4285 | "completed.\n"); |
| 4286 | return -E1000_ERR_RESET; |
| 4287 | } |
| 4288 | break; |
| 4289 | } |
| 4290 | |
| 4291 | return E1000_SUCCESS; |
| 4292 | } |
| 4293 | |
| 4294 | /****************************************************************************** |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4295 | * Returns the PHY to the power-on reset state |
| 4296 | * |
| 4297 | * hw - Struct containing variables accessed by shared code |
| 4298 | ******************************************************************************/ |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4299 | int32_t |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4300 | e1000_phy_hw_reset(struct e1000_hw *hw) |
| 4301 | { |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4302 | uint32_t ctrl, ctrl_ext; |
| 4303 | uint32_t led_ctrl; |
| 4304 | int32_t ret_val; |
| 4305 | uint16_t swfw; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4306 | |
| 4307 | DEBUGFUNC(); |
| 4308 | |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4309 | /* In the case of the phy reset being blocked, it's not an error, we |
| 4310 | * simply return success without performing the reset. */ |
| 4311 | ret_val = e1000_check_phy_reset_block(hw); |
| 4312 | if (ret_val) |
| 4313 | return E1000_SUCCESS; |
| 4314 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4315 | DEBUGOUT("Resetting Phy...\n"); |
| 4316 | |
| 4317 | if (hw->mac_type > e1000_82543) { |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4318 | if ((hw->mac_type == e1000_80003es2lan) && |
| 4319 | (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { |
| 4320 | swfw = E1000_SWFW_PHY1_SM; |
| 4321 | } else { |
| 4322 | swfw = E1000_SWFW_PHY0_SM; |
| 4323 | } |
| 4324 | if (e1000_swfw_sync_acquire(hw, swfw)) { |
| 4325 | DEBUGOUT("Unable to acquire swfw sync\n"); |
| 4326 | return -E1000_ERR_SWFW_SYNC; |
| 4327 | } |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4328 | /* Read the device control register and assert the E1000_CTRL_PHY_RST |
| 4329 | * bit. Then, take it out of reset. |
| 4330 | */ |
| 4331 | ctrl = E1000_READ_REG(hw, CTRL); |
| 4332 | E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST); |
| 4333 | E1000_WRITE_FLUSH(hw); |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4334 | |
| 4335 | if (hw->mac_type < e1000_82571) |
| 4336 | udelay(10); |
| 4337 | else |
| 4338 | udelay(100); |
| 4339 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4340 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 4341 | E1000_WRITE_FLUSH(hw); |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4342 | |
| 4343 | if (hw->mac_type >= e1000_82571) |
| 4344 | mdelay(10); |
| 4345 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4346 | } else { |
| 4347 | /* Read the Extended Device Control Register, assert the PHY_RESET_DIR |
| 4348 | * bit to put the PHY into reset. Then, take it out of reset. |
| 4349 | */ |
| 4350 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); |
| 4351 | ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; |
| 4352 | ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; |
| 4353 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| 4354 | E1000_WRITE_FLUSH(hw); |
| 4355 | mdelay(10); |
| 4356 | ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; |
| 4357 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| 4358 | E1000_WRITE_FLUSH(hw); |
| 4359 | } |
| 4360 | udelay(150); |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4361 | |
| 4362 | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
| 4363 | /* Configure activity LED after PHY reset */ |
| 4364 | led_ctrl = E1000_READ_REG(hw, LEDCTL); |
| 4365 | led_ctrl &= IGP_ACTIVITY_LED_MASK; |
| 4366 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
| 4367 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl); |
| 4368 | } |
| 4369 | |
| 4370 | /* Wait for FW to finish PHY configuration. */ |
| 4371 | ret_val = e1000_get_phy_cfg_done(hw); |
| 4372 | if (ret_val != E1000_SUCCESS) |
| 4373 | return ret_val; |
| 4374 | |
| 4375 | return ret_val; |
| 4376 | } |
| 4377 | |
| 4378 | /****************************************************************************** |
| 4379 | * IGP phy init script - initializes the GbE PHY |
| 4380 | * |
| 4381 | * hw - Struct containing variables accessed by shared code |
| 4382 | *****************************************************************************/ |
| 4383 | static void |
| 4384 | e1000_phy_init_script(struct e1000_hw *hw) |
| 4385 | { |
| 4386 | uint32_t ret_val; |
| 4387 | uint16_t phy_saved_data; |
| 4388 | DEBUGFUNC(); |
| 4389 | |
| 4390 | if (hw->phy_init_script) { |
| 4391 | mdelay(20); |
| 4392 | |
| 4393 | /* Save off the current value of register 0x2F5B to be |
| 4394 | * restored at the end of this routine. */ |
| 4395 | ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); |
| 4396 | |
| 4397 | /* Disabled the PHY transmitter */ |
| 4398 | e1000_write_phy_reg(hw, 0x2F5B, 0x0003); |
| 4399 | |
| 4400 | mdelay(20); |
| 4401 | |
| 4402 | e1000_write_phy_reg(hw, 0x0000, 0x0140); |
| 4403 | |
| 4404 | mdelay(5); |
| 4405 | |
| 4406 | switch (hw->mac_type) { |
| 4407 | case e1000_82541: |
| 4408 | case e1000_82547: |
| 4409 | e1000_write_phy_reg(hw, 0x1F95, 0x0001); |
| 4410 | |
| 4411 | e1000_write_phy_reg(hw, 0x1F71, 0xBD21); |
| 4412 | |
| 4413 | e1000_write_phy_reg(hw, 0x1F79, 0x0018); |
| 4414 | |
| 4415 | e1000_write_phy_reg(hw, 0x1F30, 0x1600); |
| 4416 | |
| 4417 | e1000_write_phy_reg(hw, 0x1F31, 0x0014); |
| 4418 | |
| 4419 | e1000_write_phy_reg(hw, 0x1F32, 0x161C); |
| 4420 | |
| 4421 | e1000_write_phy_reg(hw, 0x1F94, 0x0003); |
| 4422 | |
| 4423 | e1000_write_phy_reg(hw, 0x1F96, 0x003F); |
| 4424 | |
| 4425 | e1000_write_phy_reg(hw, 0x2010, 0x0008); |
| 4426 | break; |
| 4427 | |
| 4428 | case e1000_82541_rev_2: |
| 4429 | case e1000_82547_rev_2: |
| 4430 | e1000_write_phy_reg(hw, 0x1F73, 0x0099); |
| 4431 | break; |
| 4432 | default: |
| 4433 | break; |
| 4434 | } |
| 4435 | |
| 4436 | e1000_write_phy_reg(hw, 0x0000, 0x3300); |
| 4437 | |
| 4438 | mdelay(20); |
| 4439 | |
| 4440 | /* Now enable the transmitter */ |
| 4441 | e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); |
| 4442 | |
| 4443 | if (hw->mac_type == e1000_82547) { |
| 4444 | uint16_t fused, fine, coarse; |
| 4445 | |
| 4446 | /* Move to analog registers page */ |
| 4447 | e1000_read_phy_reg(hw, |
| 4448 | IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused); |
| 4449 | |
| 4450 | if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { |
| 4451 | e1000_read_phy_reg(hw, |
| 4452 | IGP01E1000_ANALOG_FUSE_STATUS, &fused); |
| 4453 | |
| 4454 | fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; |
| 4455 | coarse = fused |
| 4456 | & IGP01E1000_ANALOG_FUSE_COARSE_MASK; |
| 4457 | |
| 4458 | if (coarse > |
| 4459 | IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { |
| 4460 | coarse -= |
| 4461 | IGP01E1000_ANALOG_FUSE_COARSE_10; |
| 4462 | fine -= IGP01E1000_ANALOG_FUSE_FINE_1; |
| 4463 | } else if (coarse |
| 4464 | == IGP01E1000_ANALOG_FUSE_COARSE_THRESH) |
| 4465 | fine -= IGP01E1000_ANALOG_FUSE_FINE_10; |
| 4466 | |
| 4467 | fused = (fused |
| 4468 | & IGP01E1000_ANALOG_FUSE_POLY_MASK) | |
| 4469 | (fine |
| 4470 | & IGP01E1000_ANALOG_FUSE_FINE_MASK) | |
| 4471 | (coarse |
| 4472 | & IGP01E1000_ANALOG_FUSE_COARSE_MASK); |
| 4473 | |
| 4474 | e1000_write_phy_reg(hw, |
| 4475 | IGP01E1000_ANALOG_FUSE_CONTROL, fused); |
| 4476 | e1000_write_phy_reg(hw, |
| 4477 | IGP01E1000_ANALOG_FUSE_BYPASS, |
| 4478 | IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); |
| 4479 | } |
| 4480 | } |
| 4481 | } |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4482 | } |
| 4483 | |
| 4484 | /****************************************************************************** |
| 4485 | * Resets the PHY |
| 4486 | * |
| 4487 | * hw - Struct containing variables accessed by shared code |
| 4488 | * |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4489 | * Sets bit 15 of the MII Control register |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4490 | ******************************************************************************/ |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4491 | int32_t |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4492 | e1000_phy_reset(struct e1000_hw *hw) |
| 4493 | { |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4494 | int32_t ret_val; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4495 | uint16_t phy_data; |
| 4496 | |
| 4497 | DEBUGFUNC(); |
| 4498 | |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4499 | /* In the case of the phy reset being blocked, it's not an error, we |
| 4500 | * simply return success without performing the reset. */ |
| 4501 | ret_val = e1000_check_phy_reset_block(hw); |
| 4502 | if (ret_val) |
| 4503 | return E1000_SUCCESS; |
| 4504 | |
| 4505 | switch (hw->phy_type) { |
| 4506 | case e1000_phy_igp: |
| 4507 | case e1000_phy_igp_2: |
| 4508 | case e1000_phy_igp_3: |
| 4509 | case e1000_phy_ife: |
| 4510 | ret_val = e1000_phy_hw_reset(hw); |
| 4511 | if (ret_val) |
| 4512 | return ret_val; |
| 4513 | break; |
| 4514 | default: |
| 4515 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); |
| 4516 | if (ret_val) |
| 4517 | return ret_val; |
| 4518 | |
| 4519 | phy_data |= MII_CR_RESET; |
| 4520 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); |
| 4521 | if (ret_val) |
| 4522 | return ret_val; |
| 4523 | |
| 4524 | udelay(1); |
| 4525 | break; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4526 | } |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4527 | |
| 4528 | if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2) |
| 4529 | e1000_phy_init_script(hw); |
| 4530 | |
| 4531 | return E1000_SUCCESS; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4532 | } |
| 4533 | |
Wolfgang Denk | 1aeed8d | 2008-04-13 09:59:26 -0700 | [diff] [blame] | 4534 | static int e1000_set_phy_type (struct e1000_hw *hw) |
Andre Schwarz | ac3315c | 2008-03-06 16:45:44 +0100 | [diff] [blame] | 4535 | { |
Wolfgang Denk | 1aeed8d | 2008-04-13 09:59:26 -0700 | [diff] [blame] | 4536 | DEBUGFUNC (); |
Andre Schwarz | ac3315c | 2008-03-06 16:45:44 +0100 | [diff] [blame] | 4537 | |
Wolfgang Denk | 1aeed8d | 2008-04-13 09:59:26 -0700 | [diff] [blame] | 4538 | if (hw->mac_type == e1000_undefined) |
| 4539 | return -E1000_ERR_PHY_TYPE; |
Andre Schwarz | ac3315c | 2008-03-06 16:45:44 +0100 | [diff] [blame] | 4540 | |
Wolfgang Denk | 1aeed8d | 2008-04-13 09:59:26 -0700 | [diff] [blame] | 4541 | switch (hw->phy_id) { |
| 4542 | case M88E1000_E_PHY_ID: |
| 4543 | case M88E1000_I_PHY_ID: |
| 4544 | case M88E1011_I_PHY_ID: |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4545 | case M88E1111_I_PHY_ID: |
Wolfgang Denk | 1aeed8d | 2008-04-13 09:59:26 -0700 | [diff] [blame] | 4546 | hw->phy_type = e1000_phy_m88; |
| 4547 | break; |
| 4548 | case IGP01E1000_I_PHY_ID: |
| 4549 | if (hw->mac_type == e1000_82541 || |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4550 | hw->mac_type == e1000_82541_rev_2 || |
| 4551 | hw->mac_type == e1000_82547 || |
| 4552 | hw->mac_type == e1000_82547_rev_2) { |
Wolfgang Denk | 1aeed8d | 2008-04-13 09:59:26 -0700 | [diff] [blame] | 4553 | hw->phy_type = e1000_phy_igp; |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4554 | hw->phy_type = e1000_phy_igp; |
| 4555 | break; |
| 4556 | } |
| 4557 | case IGP03E1000_E_PHY_ID: |
| 4558 | hw->phy_type = e1000_phy_igp_3; |
| 4559 | break; |
| 4560 | case IFE_E_PHY_ID: |
| 4561 | case IFE_PLUS_E_PHY_ID: |
| 4562 | case IFE_C_E_PHY_ID: |
| 4563 | hw->phy_type = e1000_phy_ife; |
| 4564 | break; |
| 4565 | case GG82563_E_PHY_ID: |
| 4566 | if (hw->mac_type == e1000_80003es2lan) { |
| 4567 | hw->phy_type = e1000_phy_gg82563; |
Wolfgang Denk | 1aeed8d | 2008-04-13 09:59:26 -0700 | [diff] [blame] | 4568 | break; |
| 4569 | } |
Roy Zang | 2c2668f | 2011-01-21 11:29:38 +0800 | [diff] [blame] | 4570 | case BME1000_E_PHY_ID: |
| 4571 | hw->phy_type = e1000_phy_bm; |
| 4572 | break; |
Wolfgang Denk | 1aeed8d | 2008-04-13 09:59:26 -0700 | [diff] [blame] | 4573 | /* Fall Through */ |
| 4574 | default: |
| 4575 | /* Should never have loaded on this device */ |
| 4576 | hw->phy_type = e1000_phy_undefined; |
| 4577 | return -E1000_ERR_PHY_TYPE; |
| 4578 | } |
Andre Schwarz | ac3315c | 2008-03-06 16:45:44 +0100 | [diff] [blame] | 4579 | |
Wolfgang Denk | 1aeed8d | 2008-04-13 09:59:26 -0700 | [diff] [blame] | 4580 | return E1000_SUCCESS; |
Andre Schwarz | ac3315c | 2008-03-06 16:45:44 +0100 | [diff] [blame] | 4581 | } |
| 4582 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4583 | /****************************************************************************** |
| 4584 | * Probes the expected PHY address for known PHY IDs |
| 4585 | * |
| 4586 | * hw - Struct containing variables accessed by shared code |
| 4587 | ******************************************************************************/ |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4588 | static int32_t |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4589 | e1000_detect_gig_phy(struct e1000_hw *hw) |
| 4590 | { |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4591 | int32_t phy_init_status, ret_val; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4592 | uint16_t phy_id_high, phy_id_low; |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4593 | boolean_t match = FALSE; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4594 | |
| 4595 | DEBUGFUNC(); |
| 4596 | |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4597 | /* The 82571 firmware may still be configuring the PHY. In this |
| 4598 | * case, we cannot access the PHY until the configuration is done. So |
| 4599 | * we explicitly set the PHY values. */ |
| 4600 | if (hw->mac_type == e1000_82571 || |
| 4601 | hw->mac_type == e1000_82572) { |
| 4602 | hw->phy_id = IGP01E1000_I_PHY_ID; |
| 4603 | hw->phy_type = e1000_phy_igp_2; |
| 4604 | return E1000_SUCCESS; |
| 4605 | } |
| 4606 | |
| 4607 | /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a |
| 4608 | * work- around that forces PHY page 0 to be set or the reads fail. |
| 4609 | * The rest of the code in this routine uses e1000_read_phy_reg to |
| 4610 | * read the PHY ID. So for ESB-2 we need to have this set so our |
| 4611 | * reads won't fail. If the attached PHY is not a e1000_phy_gg82563, |
| 4612 | * the routines below will figure this out as well. */ |
| 4613 | if (hw->mac_type == e1000_80003es2lan) |
| 4614 | hw->phy_type = e1000_phy_gg82563; |
| 4615 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4616 | /* Read the PHY ID Registers to identify which PHY is onboard. */ |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4617 | ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); |
| 4618 | if (ret_val) |
| 4619 | return ret_val; |
| 4620 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4621 | hw->phy_id = (uint32_t) (phy_id_high << 16); |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4622 | udelay(20); |
| 4623 | ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low); |
| 4624 | if (ret_val) |
| 4625 | return ret_val; |
| 4626 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4627 | hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK); |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4628 | hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4629 | |
| 4630 | switch (hw->mac_type) { |
| 4631 | case e1000_82543: |
| 4632 | if (hw->phy_id == M88E1000_E_PHY_ID) |
| 4633 | match = TRUE; |
| 4634 | break; |
| 4635 | case e1000_82544: |
| 4636 | if (hw->phy_id == M88E1000_I_PHY_ID) |
| 4637 | match = TRUE; |
| 4638 | break; |
| 4639 | case e1000_82540: |
| 4640 | case e1000_82545: |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4641 | case e1000_82545_rev_3: |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4642 | case e1000_82546: |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4643 | case e1000_82546_rev_3: |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4644 | if (hw->phy_id == M88E1011_I_PHY_ID) |
| 4645 | match = TRUE; |
| 4646 | break; |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4647 | case e1000_82541: |
Andre Schwarz | ac3315c | 2008-03-06 16:45:44 +0100 | [diff] [blame] | 4648 | case e1000_82541_rev_2: |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4649 | case e1000_82547: |
| 4650 | case e1000_82547_rev_2: |
Andre Schwarz | ac3315c | 2008-03-06 16:45:44 +0100 | [diff] [blame] | 4651 | if(hw->phy_id == IGP01E1000_I_PHY_ID) |
| 4652 | match = TRUE; |
| 4653 | |
| 4654 | break; |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4655 | case e1000_82573: |
| 4656 | if (hw->phy_id == M88E1111_I_PHY_ID) |
| 4657 | match = TRUE; |
| 4658 | break; |
Roy Zang | 2c2668f | 2011-01-21 11:29:38 +0800 | [diff] [blame] | 4659 | case e1000_82574: |
| 4660 | if (hw->phy_id == BME1000_E_PHY_ID) |
| 4661 | match = TRUE; |
| 4662 | break; |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4663 | case e1000_80003es2lan: |
| 4664 | if (hw->phy_id == GG82563_E_PHY_ID) |
| 4665 | match = TRUE; |
| 4666 | break; |
| 4667 | case e1000_ich8lan: |
| 4668 | if (hw->phy_id == IGP03E1000_E_PHY_ID) |
| 4669 | match = TRUE; |
| 4670 | if (hw->phy_id == IFE_E_PHY_ID) |
| 4671 | match = TRUE; |
| 4672 | if (hw->phy_id == IFE_PLUS_E_PHY_ID) |
| 4673 | match = TRUE; |
| 4674 | if (hw->phy_id == IFE_C_E_PHY_ID) |
| 4675 | match = TRUE; |
| 4676 | break; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4677 | default: |
| 4678 | DEBUGOUT("Invalid MAC type %d\n", hw->mac_type); |
| 4679 | return -E1000_ERR_CONFIG; |
| 4680 | } |
Andre Schwarz | ac3315c | 2008-03-06 16:45:44 +0100 | [diff] [blame] | 4681 | |
| 4682 | phy_init_status = e1000_set_phy_type(hw); |
| 4683 | |
| 4684 | if ((match) && (phy_init_status == E1000_SUCCESS)) { |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4685 | DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id); |
| 4686 | return 0; |
| 4687 | } |
| 4688 | DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id); |
| 4689 | return -E1000_ERR_PHY; |
| 4690 | } |
| 4691 | |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4692 | /***************************************************************************** |
| 4693 | * Set media type and TBI compatibility. |
| 4694 | * |
| 4695 | * hw - Struct containing variables accessed by shared code |
| 4696 | * **************************************************************************/ |
| 4697 | void |
| 4698 | e1000_set_media_type(struct e1000_hw *hw) |
| 4699 | { |
| 4700 | uint32_t status; |
| 4701 | |
| 4702 | DEBUGFUNC(); |
| 4703 | |
| 4704 | if (hw->mac_type != e1000_82543) { |
| 4705 | /* tbi_compatibility is only valid on 82543 */ |
| 4706 | hw->tbi_compatibility_en = FALSE; |
| 4707 | } |
| 4708 | |
| 4709 | switch (hw->device_id) { |
| 4710 | case E1000_DEV_ID_82545GM_SERDES: |
| 4711 | case E1000_DEV_ID_82546GB_SERDES: |
| 4712 | case E1000_DEV_ID_82571EB_SERDES: |
| 4713 | case E1000_DEV_ID_82571EB_SERDES_DUAL: |
| 4714 | case E1000_DEV_ID_82571EB_SERDES_QUAD: |
| 4715 | case E1000_DEV_ID_82572EI_SERDES: |
| 4716 | case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: |
| 4717 | hw->media_type = e1000_media_type_internal_serdes; |
| 4718 | break; |
| 4719 | default: |
| 4720 | switch (hw->mac_type) { |
| 4721 | case e1000_82542_rev2_0: |
| 4722 | case e1000_82542_rev2_1: |
| 4723 | hw->media_type = e1000_media_type_fiber; |
| 4724 | break; |
| 4725 | case e1000_ich8lan: |
| 4726 | case e1000_82573: |
Roy Zang | 2c2668f | 2011-01-21 11:29:38 +0800 | [diff] [blame] | 4727 | case e1000_82574: |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4728 | /* The STATUS_TBIMODE bit is reserved or reused |
| 4729 | * for the this device. |
| 4730 | */ |
| 4731 | hw->media_type = e1000_media_type_copper; |
| 4732 | break; |
| 4733 | default: |
| 4734 | status = E1000_READ_REG(hw, STATUS); |
| 4735 | if (status & E1000_STATUS_TBIMODE) { |
| 4736 | hw->media_type = e1000_media_type_fiber; |
| 4737 | /* tbi_compatibility not valid on fiber */ |
| 4738 | hw->tbi_compatibility_en = FALSE; |
| 4739 | } else { |
| 4740 | hw->media_type = e1000_media_type_copper; |
| 4741 | } |
| 4742 | break; |
| 4743 | } |
| 4744 | } |
| 4745 | } |
| 4746 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4747 | /** |
| 4748 | * e1000_sw_init - Initialize general software structures (struct e1000_adapter) |
| 4749 | * |
| 4750 | * e1000_sw_init initializes the Adapter private data structure. |
| 4751 | * Fields are initialized based on PCI device information and |
| 4752 | * OS network device settings (MTU size). |
| 4753 | **/ |
| 4754 | |
| 4755 | static int |
| 4756 | e1000_sw_init(struct eth_device *nic, int cardnum) |
| 4757 | { |
| 4758 | struct e1000_hw *hw = (typeof(hw)) nic->priv; |
| 4759 | int result; |
| 4760 | |
| 4761 | /* PCI config space info */ |
| 4762 | pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id); |
| 4763 | pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id); |
| 4764 | pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID, |
| 4765 | &hw->subsystem_vendor_id); |
| 4766 | pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id); |
| 4767 | |
| 4768 | pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id); |
| 4769 | pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word); |
| 4770 | |
| 4771 | /* identify the MAC */ |
| 4772 | result = e1000_set_mac_type(hw); |
| 4773 | if (result) { |
| 4774 | E1000_ERR("Unknown MAC Type\n"); |
| 4775 | return result; |
| 4776 | } |
| 4777 | |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4778 | switch (hw->mac_type) { |
| 4779 | default: |
| 4780 | break; |
| 4781 | case e1000_82541: |
| 4782 | case e1000_82547: |
| 4783 | case e1000_82541_rev_2: |
| 4784 | case e1000_82547_rev_2: |
| 4785 | hw->phy_init_script = 1; |
| 4786 | break; |
| 4787 | } |
| 4788 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4789 | /* lan a vs. lan b settings */ |
| 4790 | if (hw->mac_type == e1000_82546) |
| 4791 | /*this also works w/ multiple 82546 cards */ |
| 4792 | /*but not if they're intermingled /w other e1000s */ |
| 4793 | hw->lan_loc = (cardnum % 2) ? e1000_lan_b : e1000_lan_a; |
| 4794 | else |
| 4795 | hw->lan_loc = e1000_lan_a; |
| 4796 | |
| 4797 | /* flow control settings */ |
| 4798 | hw->fc_high_water = E1000_FC_HIGH_THRESH; |
| 4799 | hw->fc_low_water = E1000_FC_LOW_THRESH; |
| 4800 | hw->fc_pause_time = E1000_FC_PAUSE_TIME; |
| 4801 | hw->fc_send_xon = 1; |
| 4802 | |
| 4803 | /* Media type - copper or fiber */ |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4804 | e1000_set_media_type(hw); |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4805 | |
| 4806 | if (hw->mac_type >= e1000_82543) { |
| 4807 | uint32_t status = E1000_READ_REG(hw, STATUS); |
| 4808 | |
| 4809 | if (status & E1000_STATUS_TBIMODE) { |
| 4810 | DEBUGOUT("fiber interface\n"); |
| 4811 | hw->media_type = e1000_media_type_fiber; |
| 4812 | } else { |
| 4813 | DEBUGOUT("copper interface\n"); |
| 4814 | hw->media_type = e1000_media_type_copper; |
| 4815 | } |
| 4816 | } else { |
| 4817 | hw->media_type = e1000_media_type_fiber; |
| 4818 | } |
| 4819 | |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4820 | hw->tbi_compatibility_en = TRUE; |
| 4821 | hw->wait_autoneg_complete = TRUE; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4822 | if (hw->mac_type < e1000_82543) |
| 4823 | hw->report_tx_early = 0; |
| 4824 | else |
| 4825 | hw->report_tx_early = 1; |
| 4826 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4827 | return E1000_SUCCESS; |
| 4828 | } |
| 4829 | |
| 4830 | void |
| 4831 | fill_rx(struct e1000_hw *hw) |
| 4832 | { |
| 4833 | struct e1000_rx_desc *rd; |
| 4834 | |
| 4835 | rx_last = rx_tail; |
| 4836 | rd = rx_base + rx_tail; |
| 4837 | rx_tail = (rx_tail + 1) % 8; |
| 4838 | memset(rd, 0, 16); |
| 4839 | rd->buffer_addr = cpu_to_le64((u32) & packet); |
| 4840 | E1000_WRITE_REG(hw, RDT, rx_tail); |
| 4841 | } |
| 4842 | |
| 4843 | /** |
| 4844 | * e1000_configure_tx - Configure 8254x Transmit Unit after Reset |
| 4845 | * @adapter: board private structure |
| 4846 | * |
| 4847 | * Configure the Tx unit of the MAC after a reset. |
| 4848 | **/ |
| 4849 | |
| 4850 | static void |
| 4851 | e1000_configure_tx(struct e1000_hw *hw) |
| 4852 | { |
| 4853 | unsigned long ptr; |
| 4854 | unsigned long tctl; |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4855 | unsigned long tipg, tarc; |
| 4856 | uint32_t ipgr1, ipgr2; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4857 | |
| 4858 | ptr = (u32) tx_pool; |
| 4859 | if (ptr & 0xf) |
| 4860 | ptr = (ptr + 0x10) & (~0xf); |
| 4861 | |
| 4862 | tx_base = (typeof(tx_base)) ptr; |
| 4863 | |
| 4864 | E1000_WRITE_REG(hw, TDBAL, (u32) tx_base); |
| 4865 | E1000_WRITE_REG(hw, TDBAH, 0); |
| 4866 | |
| 4867 | E1000_WRITE_REG(hw, TDLEN, 128); |
| 4868 | |
| 4869 | /* Setup the HW Tx Head and Tail descriptor pointers */ |
| 4870 | E1000_WRITE_REG(hw, TDH, 0); |
| 4871 | E1000_WRITE_REG(hw, TDT, 0); |
| 4872 | tx_tail = 0; |
| 4873 | |
| 4874 | /* Set the default values for the Tx Inter Packet Gap timer */ |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4875 | if (hw->mac_type <= e1000_82547_rev_2 && |
| 4876 | (hw->media_type == e1000_media_type_fiber || |
| 4877 | hw->media_type == e1000_media_type_internal_serdes)) |
| 4878 | tipg = DEFAULT_82543_TIPG_IPGT_FIBER; |
| 4879 | else |
| 4880 | tipg = DEFAULT_82543_TIPG_IPGT_COPPER; |
| 4881 | |
| 4882 | /* Set the default values for the Tx Inter Packet Gap timer */ |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4883 | switch (hw->mac_type) { |
| 4884 | case e1000_82542_rev2_0: |
| 4885 | case e1000_82542_rev2_1: |
| 4886 | tipg = DEFAULT_82542_TIPG_IPGT; |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4887 | ipgr1 = DEFAULT_82542_TIPG_IPGR1; |
| 4888 | ipgr2 = DEFAULT_82542_TIPG_IPGR2; |
| 4889 | break; |
| 4890 | case e1000_80003es2lan: |
| 4891 | ipgr1 = DEFAULT_82543_TIPG_IPGR1; |
| 4892 | ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4893 | break; |
| 4894 | default: |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4895 | ipgr1 = DEFAULT_82543_TIPG_IPGR1; |
| 4896 | ipgr2 = DEFAULT_82543_TIPG_IPGR2; |
| 4897 | break; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4898 | } |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4899 | tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; |
| 4900 | tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4901 | E1000_WRITE_REG(hw, TIPG, tipg); |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4902 | /* Program the Transmit Control Register */ |
| 4903 | tctl = E1000_READ_REG(hw, TCTL); |
| 4904 | tctl &= ~E1000_TCTL_CT; |
| 4905 | tctl |= E1000_TCTL_EN | E1000_TCTL_PSP | |
| 4906 | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4907 | |
| 4908 | if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) { |
| 4909 | tarc = E1000_READ_REG(hw, TARC0); |
| 4910 | /* set the speed mode bit, we'll clear it if we're not at |
| 4911 | * gigabit link later */ |
| 4912 | /* git bit can be set to 1*/ |
| 4913 | } else if (hw->mac_type == e1000_80003es2lan) { |
| 4914 | tarc = E1000_READ_REG(hw, TARC0); |
| 4915 | tarc |= 1; |
| 4916 | E1000_WRITE_REG(hw, TARC0, tarc); |
| 4917 | tarc = E1000_READ_REG(hw, TARC1); |
| 4918 | tarc |= 1; |
| 4919 | E1000_WRITE_REG(hw, TARC1, tarc); |
| 4920 | } |
| 4921 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4922 | |
| 4923 | e1000_config_collision_dist(hw); |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4924 | /* Setup Transmit Descriptor Settings for eop descriptor */ |
| 4925 | hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4926 | |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4927 | /* Need to set up RS bit */ |
| 4928 | if (hw->mac_type < e1000_82543) |
| 4929 | hw->txd_cmd |= E1000_TXD_CMD_RPS; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4930 | else |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4931 | hw->txd_cmd |= E1000_TXD_CMD_RS; |
| 4932 | E1000_WRITE_REG(hw, TCTL, tctl); |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4933 | } |
| 4934 | |
| 4935 | /** |
| 4936 | * e1000_setup_rctl - configure the receive control register |
| 4937 | * @adapter: Board private structure |
| 4938 | **/ |
| 4939 | static void |
| 4940 | e1000_setup_rctl(struct e1000_hw *hw) |
| 4941 | { |
| 4942 | uint32_t rctl; |
| 4943 | |
| 4944 | rctl = E1000_READ_REG(hw, RCTL); |
| 4945 | |
| 4946 | rctl &= ~(3 << E1000_RCTL_MO_SHIFT); |
| 4947 | |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4948 | rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
| 4949 | | E1000_RCTL_RDMTS_HALF; /* | |
| 4950 | (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */ |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4951 | |
| 4952 | if (hw->tbi_compatibility_on == 1) |
| 4953 | rctl |= E1000_RCTL_SBP; |
| 4954 | else |
| 4955 | rctl &= ~E1000_RCTL_SBP; |
| 4956 | |
| 4957 | rctl &= ~(E1000_RCTL_SZ_4096); |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4958 | rctl |= E1000_RCTL_SZ_2048; |
| 4959 | rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE); |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4960 | E1000_WRITE_REG(hw, RCTL, rctl); |
| 4961 | } |
| 4962 | |
| 4963 | /** |
| 4964 | * e1000_configure_rx - Configure 8254x Receive Unit after Reset |
| 4965 | * @adapter: board private structure |
| 4966 | * |
| 4967 | * Configure the Rx unit of the MAC after a reset. |
| 4968 | **/ |
| 4969 | static void |
| 4970 | e1000_configure_rx(struct e1000_hw *hw) |
| 4971 | { |
| 4972 | unsigned long ptr; |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4973 | unsigned long rctl, ctrl_ext; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4974 | rx_tail = 0; |
| 4975 | /* make sure receives are disabled while setting up the descriptors */ |
| 4976 | rctl = E1000_READ_REG(hw, RCTL); |
| 4977 | E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN); |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4978 | if (hw->mac_type >= e1000_82540) { |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4979 | /* Set the interrupt throttling rate. Value is calculated |
| 4980 | * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */ |
Wolfgang Denk | 1aeed8d | 2008-04-13 09:59:26 -0700 | [diff] [blame] | 4981 | #define MAX_INTS_PER_SEC 8000 |
| 4982 | #define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256) |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4983 | E1000_WRITE_REG(hw, ITR, DEFAULT_ITR); |
| 4984 | } |
| 4985 | |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 4986 | if (hw->mac_type >= e1000_82571) { |
| 4987 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); |
| 4988 | /* Reset delay timers after every interrupt */ |
| 4989 | ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR; |
| 4990 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| 4991 | E1000_WRITE_FLUSH(hw); |
| 4992 | } |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 4993 | /* Setup the Base and Length of the Rx Descriptor Ring */ |
| 4994 | ptr = (u32) rx_pool; |
| 4995 | if (ptr & 0xf) |
| 4996 | ptr = (ptr + 0x10) & (~0xf); |
| 4997 | rx_base = (typeof(rx_base)) ptr; |
| 4998 | E1000_WRITE_REG(hw, RDBAL, (u32) rx_base); |
| 4999 | E1000_WRITE_REG(hw, RDBAH, 0); |
| 5000 | |
| 5001 | E1000_WRITE_REG(hw, RDLEN, 128); |
| 5002 | |
| 5003 | /* Setup the HW Rx Head and Tail Descriptor Pointers */ |
| 5004 | E1000_WRITE_REG(hw, RDH, 0); |
| 5005 | E1000_WRITE_REG(hw, RDT, 0); |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 5006 | /* Enable Receives */ |
| 5007 | |
| 5008 | E1000_WRITE_REG(hw, RCTL, rctl); |
| 5009 | fill_rx(hw); |
| 5010 | } |
| 5011 | |
| 5012 | /************************************************************************** |
| 5013 | POLL - Wait for a frame |
| 5014 | ***************************************************************************/ |
| 5015 | static int |
| 5016 | e1000_poll(struct eth_device *nic) |
| 5017 | { |
| 5018 | struct e1000_hw *hw = nic->priv; |
| 5019 | struct e1000_rx_desc *rd; |
| 5020 | /* return true if there's an ethernet packet ready to read */ |
| 5021 | rd = rx_base + rx_last; |
| 5022 | if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD) |
| 5023 | return 0; |
| 5024 | /*DEBUGOUT("recv: packet len=%d \n", rd->length); */ |
Wolfgang Denk | 77ddac9 | 2005-10-13 16:45:02 +0200 | [diff] [blame] | 5025 | NetReceive((uchar *)packet, le32_to_cpu(rd->length)); |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 5026 | fill_rx(hw); |
| 5027 | return 1; |
| 5028 | } |
| 5029 | |
| 5030 | /************************************************************************** |
| 5031 | TRANSMIT - Transmit a frame |
| 5032 | ***************************************************************************/ |
| 5033 | static int |
| 5034 | e1000_transmit(struct eth_device *nic, volatile void *packet, int length) |
| 5035 | { |
Wolfgang Denk | 8aa858c | 2010-11-22 09:48:45 +0100 | [diff] [blame] | 5036 | void * nv_packet = (void *)packet; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 5037 | struct e1000_hw *hw = nic->priv; |
| 5038 | struct e1000_tx_desc *txp; |
| 5039 | int i = 0; |
| 5040 | |
| 5041 | txp = tx_base + tx_tail; |
| 5042 | tx_tail = (tx_tail + 1) % 8; |
| 5043 | |
Wolfgang Denk | 8aa858c | 2010-11-22 09:48:45 +0100 | [diff] [blame] | 5044 | txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet)); |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 5045 | txp->lower.data = cpu_to_le32(hw->txd_cmd | length); |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 5046 | txp->upper.data = 0; |
| 5047 | E1000_WRITE_REG(hw, TDT, tx_tail); |
| 5048 | |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 5049 | E1000_WRITE_FLUSH(hw); |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 5050 | while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) { |
| 5051 | if (i++ > TOUT_LOOP) { |
| 5052 | DEBUGOUT("e1000: tx timeout\n"); |
| 5053 | return 0; |
| 5054 | } |
| 5055 | udelay(10); /* give the nic a chance to write to the register */ |
| 5056 | } |
| 5057 | return 1; |
| 5058 | } |
| 5059 | |
| 5060 | /*reset function*/ |
| 5061 | static inline int |
| 5062 | e1000_reset(struct eth_device *nic) |
| 5063 | { |
| 5064 | struct e1000_hw *hw = nic->priv; |
| 5065 | |
| 5066 | e1000_reset_hw(hw); |
| 5067 | if (hw->mac_type >= e1000_82544) { |
| 5068 | E1000_WRITE_REG(hw, WUC, 0); |
| 5069 | } |
| 5070 | return e1000_init_hw(nic); |
| 5071 | } |
| 5072 | |
| 5073 | /************************************************************************** |
| 5074 | DISABLE - Turn off ethernet interface |
| 5075 | ***************************************************************************/ |
| 5076 | static void |
| 5077 | e1000_disable(struct eth_device *nic) |
| 5078 | { |
| 5079 | struct e1000_hw *hw = nic->priv; |
| 5080 | |
| 5081 | /* Turn off the ethernet interface */ |
| 5082 | E1000_WRITE_REG(hw, RCTL, 0); |
| 5083 | E1000_WRITE_REG(hw, TCTL, 0); |
| 5084 | |
| 5085 | /* Clear the transmit ring */ |
| 5086 | E1000_WRITE_REG(hw, TDH, 0); |
| 5087 | E1000_WRITE_REG(hw, TDT, 0); |
| 5088 | |
| 5089 | /* Clear the receive ring */ |
| 5090 | E1000_WRITE_REG(hw, RDH, 0); |
| 5091 | E1000_WRITE_REG(hw, RDT, 0); |
| 5092 | |
| 5093 | /* put the card in its initial state */ |
| 5094 | #if 0 |
| 5095 | E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST); |
| 5096 | #endif |
| 5097 | mdelay(10); |
| 5098 | |
| 5099 | } |
| 5100 | |
| 5101 | /************************************************************************** |
| 5102 | INIT - set up ethernet interface(s) |
| 5103 | ***************************************************************************/ |
| 5104 | static int |
| 5105 | e1000_init(struct eth_device *nic, bd_t * bis) |
| 5106 | { |
| 5107 | struct e1000_hw *hw = nic->priv; |
| 5108 | int ret_val = 0; |
| 5109 | |
| 5110 | ret_val = e1000_reset(nic); |
| 5111 | if (ret_val < 0) { |
| 5112 | if ((ret_val == -E1000_ERR_NOLINK) || |
| 5113 | (ret_val == -E1000_ERR_TIMEOUT)) { |
| 5114 | E1000_ERR("Valid Link not detected\n"); |
| 5115 | } else { |
| 5116 | E1000_ERR("Hardware Initialization Failed\n"); |
| 5117 | } |
| 5118 | return 0; |
| 5119 | } |
| 5120 | e1000_configure_tx(hw); |
| 5121 | e1000_setup_rctl(hw); |
| 5122 | e1000_configure_rx(hw); |
| 5123 | return 1; |
| 5124 | } |
| 5125 | |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 5126 | /****************************************************************************** |
| 5127 | * Gets the current PCI bus type of hardware |
| 5128 | * |
| 5129 | * hw - Struct containing variables accessed by shared code |
| 5130 | *****************************************************************************/ |
| 5131 | void e1000_get_bus_type(struct e1000_hw *hw) |
| 5132 | { |
| 5133 | uint32_t status; |
| 5134 | |
| 5135 | switch (hw->mac_type) { |
| 5136 | case e1000_82542_rev2_0: |
| 5137 | case e1000_82542_rev2_1: |
| 5138 | hw->bus_type = e1000_bus_type_pci; |
| 5139 | break; |
| 5140 | case e1000_82571: |
| 5141 | case e1000_82572: |
| 5142 | case e1000_82573: |
Roy Zang | 2c2668f | 2011-01-21 11:29:38 +0800 | [diff] [blame] | 5143 | case e1000_82574: |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 5144 | case e1000_80003es2lan: |
| 5145 | hw->bus_type = e1000_bus_type_pci_express; |
| 5146 | break; |
| 5147 | case e1000_ich8lan: |
| 5148 | hw->bus_type = e1000_bus_type_pci_express; |
| 5149 | break; |
| 5150 | default: |
| 5151 | status = E1000_READ_REG(hw, STATUS); |
| 5152 | hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? |
| 5153 | e1000_bus_type_pcix : e1000_bus_type_pci; |
| 5154 | break; |
| 5155 | } |
| 5156 | } |
| 5157 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 5158 | /************************************************************************** |
| 5159 | PROBE - Look for an adapter, this routine's visible to the outside |
| 5160 | You should omit the last argument struct pci_device * for a non-PCI NIC |
| 5161 | ***************************************************************************/ |
| 5162 | int |
| 5163 | e1000_initialize(bd_t * bis) |
| 5164 | { |
| 5165 | pci_dev_t devno; |
| 5166 | int card_number = 0; |
| 5167 | struct eth_device *nic = NULL; |
| 5168 | struct e1000_hw *hw = NULL; |
| 5169 | u32 iobase; |
| 5170 | int idx = 0; |
| 5171 | u32 PciCommandWord; |
| 5172 | |
Timur Tabi | f81ecb5 | 2009-08-17 15:55:38 -0500 | [diff] [blame] | 5173 | DEBUGFUNC(); |
| 5174 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 5175 | while (1) { /* Find PCI device(s) */ |
| 5176 | if ((devno = pci_find_devices(supported, idx++)) < 0) { |
| 5177 | break; |
| 5178 | } |
| 5179 | |
| 5180 | pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &iobase); |
| 5181 | iobase &= ~0xf; /* Mask the bits that say "this is an io addr" */ |
| 5182 | DEBUGOUT("e1000#%d: iobase 0x%08x\n", card_number, iobase); |
| 5183 | |
| 5184 | pci_write_config_dword(devno, PCI_COMMAND, |
| 5185 | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); |
| 5186 | /* Check if I/O accesses and Bus Mastering are enabled. */ |
| 5187 | pci_read_config_dword(devno, PCI_COMMAND, &PciCommandWord); |
| 5188 | if (!(PciCommandWord & PCI_COMMAND_MEMORY)) { |
| 5189 | printf("Error: Can not enable MEM access.\n"); |
| 5190 | continue; |
| 5191 | } else if (!(PciCommandWord & PCI_COMMAND_MASTER)) { |
| 5192 | printf("Error: Can not enable Bus Mastering.\n"); |
| 5193 | continue; |
| 5194 | } |
| 5195 | |
| 5196 | nic = (struct eth_device *) malloc(sizeof (*nic)); |
Kumar Gala | 4b29bdb | 2010-11-12 04:13:06 -0600 | [diff] [blame] | 5197 | if (!nic) { |
| 5198 | printf("Error: e1000 - Can not alloc memory\n"); |
| 5199 | return 0; |
| 5200 | } |
| 5201 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 5202 | hw = (struct e1000_hw *) malloc(sizeof (*hw)); |
Kumar Gala | 4b29bdb | 2010-11-12 04:13:06 -0600 | [diff] [blame] | 5203 | if (!hw) { |
| 5204 | free(nic); |
| 5205 | printf("Error: e1000 - Can not alloc memory\n"); |
| 5206 | return 0; |
| 5207 | } |
| 5208 | |
Matthew McClintock | f7ac99f | 2010-11-15 18:02:53 -0600 | [diff] [blame] | 5209 | memset(nic, 0, sizeof(*nic)); |
Kumar Gala | 4b29bdb | 2010-11-12 04:13:06 -0600 | [diff] [blame] | 5210 | memset(hw, 0, sizeof(*hw)); |
| 5211 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 5212 | hw->pdev = devno; |
| 5213 | nic->priv = hw; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 5214 | |
| 5215 | sprintf(nic->name, "e1000#%d", card_number); |
| 5216 | |
| 5217 | /* Are these variables needed? */ |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 5218 | hw->fc = e1000_fc_default; |
| 5219 | hw->original_fc = e1000_fc_default; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 5220 | hw->autoneg_failed = 0; |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 5221 | hw->autoneg = 1; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 5222 | hw->get_link_status = TRUE; |
Timur Tabi | f81ecb5 | 2009-08-17 15:55:38 -0500 | [diff] [blame] | 5223 | hw->hw_addr = |
| 5224 | pci_map_bar(devno, PCI_BASE_ADDRESS_0, PCI_REGION_MEM); |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 5225 | hw->mac_type = e1000_undefined; |
| 5226 | |
| 5227 | /* MAC and Phy settings */ |
| 5228 | if (e1000_sw_init(nic, card_number) < 0) { |
| 5229 | free(hw); |
| 5230 | free(nic); |
| 5231 | return 0; |
| 5232 | } |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 5233 | if (e1000_check_phy_reset_block(hw)) |
| 5234 | printf("phy reset block error \n"); |
| 5235 | e1000_reset_hw(hw); |
Andre Schwarz | ac3315c | 2008-03-06 16:45:44 +0100 | [diff] [blame] | 5236 | #if !(defined(CONFIG_AP1000) || defined(CONFIG_MVBC_1G)) |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 5237 | if (e1000_init_eeprom_params(hw)) { |
| 5238 | printf("The EEPROM Checksum Is Not Valid\n"); |
| 5239 | free(hw); |
| 5240 | free(nic); |
| 5241 | return 0; |
| 5242 | } |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 5243 | if (e1000_validate_eeprom_checksum(nic) < 0) { |
| 5244 | printf("The EEPROM Checksum Is Not Valid\n"); |
| 5245 | free(hw); |
| 5246 | free(nic); |
| 5247 | return 0; |
| 5248 | } |
Wolfgang Denk | 7521af1 | 2005-10-09 01:04:33 +0200 | [diff] [blame] | 5249 | #endif |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 5250 | e1000_read_mac_addr(nic); |
| 5251 | |
Roy Zang | aa07078 | 2009-07-31 13:34:02 +0800 | [diff] [blame] | 5252 | /* get the bus type information */ |
| 5253 | e1000_get_bus_type(hw); |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 5254 | |
| 5255 | printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n", |
| 5256 | nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2], |
| 5257 | nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]); |
| 5258 | |
| 5259 | nic->init = e1000_init; |
| 5260 | nic->recv = e1000_poll; |
| 5261 | nic->send = e1000_transmit; |
| 5262 | nic->halt = e1000_disable; |
| 5263 | |
| 5264 | eth_register(nic); |
| 5265 | |
| 5266 | card_number++; |
| 5267 | } |
Ben Warren | ad3381c | 2008-08-31 10:44:19 -0700 | [diff] [blame] | 5268 | return card_number; |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 5269 | } |