blob: 187517b7d1395a75023bda876331f9b730e1f2d5 [file] [log] [blame]
wdenk682011f2003-06-03 23:54:09 +00001/**************************************************************************
Andre Schwarzac3315c2008-03-06 16:45:44 +01002Intel Pro 1000 for ppcboot/das-u-boot
wdenk682011f2003-06-03 23:54:09 +00003Drivers are port from Intel's Linux driver e1000-4.3.15
4and from Etherboot pro 1000 driver by mrakes at vivato dot net
5tested on both gig copper and gig fiber boards
6***************************************************************************/
7/*******************************************************************************
8
wdenk8bde7f72003-06-27 21:31:46 +00009
wdenk682011f2003-06-03 23:54:09 +000010 Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
wdenk8bde7f72003-06-27 21:31:46 +000011
Wolfgang Denk1a459662013-07-08 09:37:19 +020012 * SPDX-License-Identifier: GPL-2.0+
wdenk8bde7f72003-06-27 21:31:46 +000013
wdenk682011f2003-06-03 23:54:09 +000014 Contact Information:
15 Linux NICS <linux.nics@intel.com>
16 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
17
18*******************************************************************************/
19/*
20 * Copyright (C) Archway Digital Solutions.
21 *
22 * written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
23 * 2/9/2002
24 *
25 * Copyright (C) Linux Networx.
26 * Massive upgrade to work with the new intel gigabit NICs.
27 * <ebiederman at lnxi dot com>
Roy Zang2c2668f2011-01-21 11:29:38 +080028 *
29 * Copyright 2011 Freescale Semiconductor, Inc.
wdenk682011f2003-06-03 23:54:09 +000030 */
31
Simon Glassc752cd22015-08-19 09:33:38 -060032#include <common.h>
wdenk682011f2003-06-03 23:54:09 +000033#include "e1000.h"
34
wdenk682011f2003-06-03 23:54:09 +000035#define TOUT_LOOP 100000
36
Timur Tabif81ecb52009-08-17 15:55:38 -050037#define virt_to_bus(devno, v) pci_virt_to_mem(devno, (void *) (v))
wdenk682011f2003-06-03 23:54:09 +000038#define bus_to_phys(devno, a) pci_mem_to_phys(devno, a)
wdenk682011f2003-06-03 23:54:09 +000039
Roy Zang9ea005f2009-08-22 03:49:52 +080040#define E1000_DEFAULT_PCI_PBA 0x00000030
41#define E1000_DEFAULT_PCIE_PBA 0x000a0026
wdenk682011f2003-06-03 23:54:09 +000042
43/* NIC specific static variables go here */
44
Marek Vasut873e8e02014-08-08 07:41:38 -070045/* Intel i210 needs the DMA descriptor rings aligned to 128b */
46#define E1000_BUFFER_ALIGN 128
wdenk682011f2003-06-03 23:54:09 +000047
Marek Vasut873e8e02014-08-08 07:41:38 -070048DEFINE_ALIGN_BUFFER(struct e1000_tx_desc, tx_base, 16, E1000_BUFFER_ALIGN);
49DEFINE_ALIGN_BUFFER(struct e1000_rx_desc, rx_base, 16, E1000_BUFFER_ALIGN);
50DEFINE_ALIGN_BUFFER(unsigned char, packet, 4096, E1000_BUFFER_ALIGN);
wdenk682011f2003-06-03 23:54:09 +000051
52static int tx_tail;
53static int rx_tail, rx_last;
54
Kyle Moffettd60626f82011-10-18 11:05:26 +000055static struct pci_device_id e1000_supported[] = {
wdenk682011f2003-06-03 23:54:09 +000056 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
57 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
58 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
59 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
60 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
61 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
62 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
63 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
64 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
Paul Gortmaker8915f112008-07-09 17:50:45 -040065 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER},
wdenk682011f2003-06-03 23:54:09 +000066 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
67 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
68 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
Reinhard Arlt2ab4a4d2009-12-04 09:52:17 +010069 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER},
wdenk682011f2003-06-03 23:54:09 +000070 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
Andre Schwarzac3315c2008-03-06 16:45:44 +010071 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
Wolfgang Grandeggeraa3b8bf2008-05-28 19:55:19 +020072 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF},
Roy Zangaa070782009-07-31 13:34:02 +080073 /* E1000 PCIe card */
74 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER},
75 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER },
76 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES },
77 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER},
78 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER},
79 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER},
80 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE},
81 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL},
82 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD},
83 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER},
84 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER},
85 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES},
86 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI},
87 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E},
88 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT},
89 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L},
Roy Zang2c2668f2011-01-21 11:29:38 +080090 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L},
Roy Zangaa070782009-07-31 13:34:02 +080091 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3},
92 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT},
93 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT},
94 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT},
95 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT},
Marcel Ziswiler6c499ab2014-09-08 00:03:50 +020096 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED},
97 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED},
Marek Vasut95186062014-08-08 07:41:39 -070098 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER},
Marcel Ziswiler6c499ab2014-09-08 00:03:50 +020099 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_COPPER},
Marek Vasut95186062014-08-08 07:41:39 -0700100 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS},
101 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES},
102 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS},
103 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_1000BASEKX},
104
Stefan Althoefer1bc43432008-12-20 19:40:41 +0100105 {}
wdenk682011f2003-06-03 23:54:09 +0000106};
107
108/* Function forward declarations */
109static int e1000_setup_link(struct eth_device *nic);
110static int e1000_setup_fiber_link(struct eth_device *nic);
111static int e1000_setup_copper_link(struct eth_device *nic);
112static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
113static void e1000_config_collision_dist(struct e1000_hw *hw);
114static int e1000_config_mac_to_phy(struct e1000_hw *hw);
115static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
116static int e1000_check_for_link(struct eth_device *nic);
117static int e1000_wait_autoneg(struct e1000_hw *hw);
Roy Zangaa070782009-07-31 13:34:02 +0800118static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
wdenk682011f2003-06-03 23:54:09 +0000119 uint16_t * duplex);
120static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
121 uint16_t * phy_data);
122static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
123 uint16_t phy_data);
Roy Zangaa070782009-07-31 13:34:02 +0800124static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
wdenk682011f2003-06-03 23:54:09 +0000125static int e1000_phy_reset(struct e1000_hw *hw);
126static int e1000_detect_gig_phy(struct e1000_hw *hw);
Roy Zangaa070782009-07-31 13:34:02 +0800127static void e1000_set_media_type(struct e1000_hw *hw);
wdenk682011f2003-06-03 23:54:09 +0000128
Roy Zangaa070782009-07-31 13:34:02 +0800129static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
Tim Harvey7e2d9912015-05-19 10:01:18 -0700130static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
Roy Zangaa070782009-07-31 13:34:02 +0800131static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
wdenk682011f2003-06-03 23:54:09 +0000132
Rojhalat Ibrahim8712adf2013-10-07 18:30:39 +0200133#ifndef CONFIG_E1000_NO_NVM
134static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
Roy Zangecbd2072009-08-11 03:48:05 +0800135static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
136 uint16_t words,
137 uint16_t *data);
wdenk682011f2003-06-03 23:54:09 +0000138/******************************************************************************
139 * Raises the EEPROM's clock input.
140 *
141 * hw - Struct containing variables accessed by shared code
142 * eecd - EECD's current value
143 *****************************************************************************/
Kyle Moffett2326a942011-10-18 11:05:28 +0000144void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
wdenk682011f2003-06-03 23:54:09 +0000145{
146 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
147 * wait 50 microseconds.
148 */
149 *eecd = *eecd | E1000_EECD_SK;
150 E1000_WRITE_REG(hw, EECD, *eecd);
151 E1000_WRITE_FLUSH(hw);
152 udelay(50);
153}
154
155/******************************************************************************
156 * Lowers the EEPROM's clock input.
157 *
wdenk8bde7f72003-06-27 21:31:46 +0000158 * hw - Struct containing variables accessed by shared code
wdenk682011f2003-06-03 23:54:09 +0000159 * eecd - EECD's current value
160 *****************************************************************************/
Kyle Moffett2326a942011-10-18 11:05:28 +0000161void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
wdenk682011f2003-06-03 23:54:09 +0000162{
wdenk8bde7f72003-06-27 21:31:46 +0000163 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
164 * wait 50 microseconds.
wdenk682011f2003-06-03 23:54:09 +0000165 */
166 *eecd = *eecd & ~E1000_EECD_SK;
167 E1000_WRITE_REG(hw, EECD, *eecd);
168 E1000_WRITE_FLUSH(hw);
169 udelay(50);
170}
171
172/******************************************************************************
173 * Shift data bits out to the EEPROM.
174 *
175 * hw - Struct containing variables accessed by shared code
176 * data - data to send to the EEPROM
177 * count - number of bits to shift out
178 *****************************************************************************/
179static void
180e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
181{
182 uint32_t eecd;
183 uint32_t mask;
184
185 /* We need to shift "count" bits out to the EEPROM. So, value in the
186 * "data" parameter will be shifted out to the EEPROM one bit at a time.
wdenk8bde7f72003-06-27 21:31:46 +0000187 * In order to do this, "data" must be broken down into bits.
wdenk682011f2003-06-03 23:54:09 +0000188 */
189 mask = 0x01 << (count - 1);
190 eecd = E1000_READ_REG(hw, EECD);
191 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
192 do {
193 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
194 * and then raising and then lowering the clock (the SK bit controls
195 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
196 * by setting "DI" to "0" and then raising and then lowering the clock.
197 */
198 eecd &= ~E1000_EECD_DI;
199
200 if (data & mask)
201 eecd |= E1000_EECD_DI;
202
203 E1000_WRITE_REG(hw, EECD, eecd);
204 E1000_WRITE_FLUSH(hw);
205
206 udelay(50);
207
208 e1000_raise_ee_clk(hw, &eecd);
209 e1000_lower_ee_clk(hw, &eecd);
210
211 mask = mask >> 1;
212
213 } while (mask);
214
215 /* We leave the "DI" bit set to "0" when we leave this routine. */
216 eecd &= ~E1000_EECD_DI;
217 E1000_WRITE_REG(hw, EECD, eecd);
218}
219
220/******************************************************************************
221 * Shift data bits in from the EEPROM
222 *
223 * hw - Struct containing variables accessed by shared code
224 *****************************************************************************/
225static uint16_t
Roy Zangaa070782009-07-31 13:34:02 +0800226e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
wdenk682011f2003-06-03 23:54:09 +0000227{
228 uint32_t eecd;
229 uint32_t i;
230 uint16_t data;
231
Roy Zangaa070782009-07-31 13:34:02 +0800232 /* In order to read a register from the EEPROM, we need to shift 'count'
233 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
234 * input to the EEPROM (setting the SK bit), and then reading the
235 * value of the "DO" bit. During this "shifting in" process the
236 * "DI" bit should always be clear.
wdenk682011f2003-06-03 23:54:09 +0000237 */
238
239 eecd = E1000_READ_REG(hw, EECD);
240
241 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
242 data = 0;
243
Roy Zangaa070782009-07-31 13:34:02 +0800244 for (i = 0; i < count; i++) {
wdenk682011f2003-06-03 23:54:09 +0000245 data = data << 1;
246 e1000_raise_ee_clk(hw, &eecd);
247
248 eecd = E1000_READ_REG(hw, EECD);
249
250 eecd &= ~(E1000_EECD_DI);
251 if (eecd & E1000_EECD_DO)
252 data |= 1;
253
254 e1000_lower_ee_clk(hw, &eecd);
255 }
256
257 return data;
258}
259
260/******************************************************************************
wdenk682011f2003-06-03 23:54:09 +0000261 * Returns EEPROM to a "standby" state
wdenk8bde7f72003-06-27 21:31:46 +0000262 *
wdenk682011f2003-06-03 23:54:09 +0000263 * hw - Struct containing variables accessed by shared code
264 *****************************************************************************/
Kyle Moffett2326a942011-10-18 11:05:28 +0000265void e1000_standby_eeprom(struct e1000_hw *hw)
wdenk682011f2003-06-03 23:54:09 +0000266{
Roy Zangaa070782009-07-31 13:34:02 +0800267 struct e1000_eeprom_info *eeprom = &hw->eeprom;
wdenk682011f2003-06-03 23:54:09 +0000268 uint32_t eecd;
269
270 eecd = E1000_READ_REG(hw, EECD);
271
Roy Zangaa070782009-07-31 13:34:02 +0800272 if (eeprom->type == e1000_eeprom_microwire) {
273 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
274 E1000_WRITE_REG(hw, EECD, eecd);
275 E1000_WRITE_FLUSH(hw);
276 udelay(eeprom->delay_usec);
wdenk682011f2003-06-03 23:54:09 +0000277
Roy Zangaa070782009-07-31 13:34:02 +0800278 /* Clock high */
279 eecd |= E1000_EECD_SK;
280 E1000_WRITE_REG(hw, EECD, eecd);
281 E1000_WRITE_FLUSH(hw);
282 udelay(eeprom->delay_usec);
wdenk682011f2003-06-03 23:54:09 +0000283
Roy Zangaa070782009-07-31 13:34:02 +0800284 /* Select EEPROM */
285 eecd |= E1000_EECD_CS;
286 E1000_WRITE_REG(hw, EECD, eecd);
287 E1000_WRITE_FLUSH(hw);
288 udelay(eeprom->delay_usec);
wdenk682011f2003-06-03 23:54:09 +0000289
Roy Zangaa070782009-07-31 13:34:02 +0800290 /* Clock low */
291 eecd &= ~E1000_EECD_SK;
292 E1000_WRITE_REG(hw, EECD, eecd);
293 E1000_WRITE_FLUSH(hw);
294 udelay(eeprom->delay_usec);
295 } else if (eeprom->type == e1000_eeprom_spi) {
296 /* Toggle CS to flush commands */
297 eecd |= E1000_EECD_CS;
298 E1000_WRITE_REG(hw, EECD, eecd);
299 E1000_WRITE_FLUSH(hw);
300 udelay(eeprom->delay_usec);
301 eecd &= ~E1000_EECD_CS;
302 E1000_WRITE_REG(hw, EECD, eecd);
303 E1000_WRITE_FLUSH(hw);
304 udelay(eeprom->delay_usec);
305 }
306}
307
308/***************************************************************************
309* Description: Determines if the onboard NVM is FLASH or EEPROM.
310*
311* hw - Struct containing variables accessed by shared code
312****************************************************************************/
York Sun472d5462013-04-01 11:29:11 -0700313static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
Roy Zangaa070782009-07-31 13:34:02 +0800314{
315 uint32_t eecd = 0;
316
317 DEBUGFUNC();
318
319 if (hw->mac_type == e1000_ich8lan)
York Sun472d5462013-04-01 11:29:11 -0700320 return false;
Roy Zangaa070782009-07-31 13:34:02 +0800321
Roy Zang2c2668f2011-01-21 11:29:38 +0800322 if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
Roy Zangaa070782009-07-31 13:34:02 +0800323 eecd = E1000_READ_REG(hw, EECD);
324
325 /* Isolate bits 15 & 16 */
326 eecd = ((eecd >> 15) & 0x03);
327
328 /* If both bits are set, device is Flash type */
329 if (eecd == 0x03)
York Sun472d5462013-04-01 11:29:11 -0700330 return false;
Roy Zangaa070782009-07-31 13:34:02 +0800331 }
York Sun472d5462013-04-01 11:29:11 -0700332 return true;
Roy Zangaa070782009-07-31 13:34:02 +0800333}
334
335/******************************************************************************
336 * Prepares EEPROM for access
337 *
338 * hw - Struct containing variables accessed by shared code
339 *
340 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
341 * function should be called before issuing a command to the EEPROM.
342 *****************************************************************************/
Kyle Moffett2326a942011-10-18 11:05:28 +0000343int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
Roy Zangaa070782009-07-31 13:34:02 +0800344{
345 struct e1000_eeprom_info *eeprom = &hw->eeprom;
346 uint32_t eecd, i = 0;
347
Timur Tabif81ecb52009-08-17 15:55:38 -0500348 DEBUGFUNC();
Roy Zangaa070782009-07-31 13:34:02 +0800349
350 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
351 return -E1000_ERR_SWFW_SYNC;
352 eecd = E1000_READ_REG(hw, EECD);
353
Marek Vasut95186062014-08-08 07:41:39 -0700354 if (hw->mac_type != e1000_82573 && hw->mac_type != e1000_82574) {
Roy Zangaa070782009-07-31 13:34:02 +0800355 /* Request EEPROM Access */
356 if (hw->mac_type > e1000_82544) {
357 eecd |= E1000_EECD_REQ;
358 E1000_WRITE_REG(hw, EECD, eecd);
359 eecd = E1000_READ_REG(hw, EECD);
360 while ((!(eecd & E1000_EECD_GNT)) &&
361 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
362 i++;
363 udelay(5);
364 eecd = E1000_READ_REG(hw, EECD);
365 }
366 if (!(eecd & E1000_EECD_GNT)) {
367 eecd &= ~E1000_EECD_REQ;
368 E1000_WRITE_REG(hw, EECD, eecd);
369 DEBUGOUT("Could not acquire EEPROM grant\n");
370 return -E1000_ERR_EEPROM;
371 }
372 }
373 }
374
375 /* Setup EEPROM for Read/Write */
376
377 if (eeprom->type == e1000_eeprom_microwire) {
378 /* Clear SK and DI */
379 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
380 E1000_WRITE_REG(hw, EECD, eecd);
381
382 /* Set CS */
383 eecd |= E1000_EECD_CS;
384 E1000_WRITE_REG(hw, EECD, eecd);
385 } else if (eeprom->type == e1000_eeprom_spi) {
386 /* Clear SK and CS */
387 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
388 E1000_WRITE_REG(hw, EECD, eecd);
389 udelay(1);
390 }
391
392 return E1000_SUCCESS;
393}
394
395/******************************************************************************
396 * Sets up eeprom variables in the hw struct. Must be called after mac_type
397 * is configured. Additionally, if this is ICH8, the flash controller GbE
398 * registers must be mapped, or this will crash.
399 *
400 * hw - Struct containing variables accessed by shared code
401 *****************************************************************************/
402static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
403{
404 struct e1000_eeprom_info *eeprom = &hw->eeprom;
Marek Vasut95186062014-08-08 07:41:39 -0700405 uint32_t eecd;
Roy Zangaa070782009-07-31 13:34:02 +0800406 int32_t ret_val = E1000_SUCCESS;
407 uint16_t eeprom_size;
408
Marek Vasut95186062014-08-08 07:41:39 -0700409 if (hw->mac_type == e1000_igb)
410 eecd = E1000_READ_REG(hw, I210_EECD);
411 else
412 eecd = E1000_READ_REG(hw, EECD);
413
Timur Tabif81ecb52009-08-17 15:55:38 -0500414 DEBUGFUNC();
Roy Zangaa070782009-07-31 13:34:02 +0800415
416 switch (hw->mac_type) {
417 case e1000_82542_rev2_0:
418 case e1000_82542_rev2_1:
419 case e1000_82543:
420 case e1000_82544:
421 eeprom->type = e1000_eeprom_microwire;
422 eeprom->word_size = 64;
423 eeprom->opcode_bits = 3;
424 eeprom->address_bits = 6;
425 eeprom->delay_usec = 50;
York Sun472d5462013-04-01 11:29:11 -0700426 eeprom->use_eerd = false;
427 eeprom->use_eewr = false;
Roy Zangaa070782009-07-31 13:34:02 +0800428 break;
429 case e1000_82540:
430 case e1000_82545:
431 case e1000_82545_rev_3:
432 case e1000_82546:
433 case e1000_82546_rev_3:
434 eeprom->type = e1000_eeprom_microwire;
435 eeprom->opcode_bits = 3;
436 eeprom->delay_usec = 50;
437 if (eecd & E1000_EECD_SIZE) {
438 eeprom->word_size = 256;
439 eeprom->address_bits = 8;
440 } else {
441 eeprom->word_size = 64;
442 eeprom->address_bits = 6;
443 }
York Sun472d5462013-04-01 11:29:11 -0700444 eeprom->use_eerd = false;
445 eeprom->use_eewr = false;
Roy Zangaa070782009-07-31 13:34:02 +0800446 break;
447 case e1000_82541:
448 case e1000_82541_rev_2:
449 case e1000_82547:
450 case e1000_82547_rev_2:
451 if (eecd & E1000_EECD_TYPE) {
452 eeprom->type = e1000_eeprom_spi;
453 eeprom->opcode_bits = 8;
454 eeprom->delay_usec = 1;
455 if (eecd & E1000_EECD_ADDR_BITS) {
456 eeprom->page_size = 32;
457 eeprom->address_bits = 16;
458 } else {
459 eeprom->page_size = 8;
460 eeprom->address_bits = 8;
461 }
462 } else {
463 eeprom->type = e1000_eeprom_microwire;
464 eeprom->opcode_bits = 3;
465 eeprom->delay_usec = 50;
466 if (eecd & E1000_EECD_ADDR_BITS) {
467 eeprom->word_size = 256;
468 eeprom->address_bits = 8;
469 } else {
470 eeprom->word_size = 64;
471 eeprom->address_bits = 6;
472 }
473 }
York Sun472d5462013-04-01 11:29:11 -0700474 eeprom->use_eerd = false;
475 eeprom->use_eewr = false;
Roy Zangaa070782009-07-31 13:34:02 +0800476 break;
477 case e1000_82571:
478 case e1000_82572:
479 eeprom->type = e1000_eeprom_spi;
480 eeprom->opcode_bits = 8;
481 eeprom->delay_usec = 1;
482 if (eecd & E1000_EECD_ADDR_BITS) {
483 eeprom->page_size = 32;
484 eeprom->address_bits = 16;
485 } else {
486 eeprom->page_size = 8;
487 eeprom->address_bits = 8;
488 }
York Sun472d5462013-04-01 11:29:11 -0700489 eeprom->use_eerd = false;
490 eeprom->use_eewr = false;
Roy Zangaa070782009-07-31 13:34:02 +0800491 break;
492 case e1000_82573:
Roy Zang2c2668f2011-01-21 11:29:38 +0800493 case e1000_82574:
Roy Zangaa070782009-07-31 13:34:02 +0800494 eeprom->type = e1000_eeprom_spi;
495 eeprom->opcode_bits = 8;
496 eeprom->delay_usec = 1;
497 if (eecd & E1000_EECD_ADDR_BITS) {
498 eeprom->page_size = 32;
499 eeprom->address_bits = 16;
500 } else {
501 eeprom->page_size = 8;
502 eeprom->address_bits = 8;
503 }
York Sun472d5462013-04-01 11:29:11 -0700504 if (e1000_is_onboard_nvm_eeprom(hw) == false) {
Marek Vasut95186062014-08-08 07:41:39 -0700505 eeprom->use_eerd = true;
506 eeprom->use_eewr = true;
507
Roy Zangaa070782009-07-31 13:34:02 +0800508 eeprom->type = e1000_eeprom_flash;
509 eeprom->word_size = 2048;
510
511 /* Ensure that the Autonomous FLASH update bit is cleared due to
512 * Flash update issue on parts which use a FLASH for NVM. */
513 eecd &= ~E1000_EECD_AUPDEN;
514 E1000_WRITE_REG(hw, EECD, eecd);
515 }
516 break;
517 case e1000_80003es2lan:
518 eeprom->type = e1000_eeprom_spi;
519 eeprom->opcode_bits = 8;
520 eeprom->delay_usec = 1;
521 if (eecd & E1000_EECD_ADDR_BITS) {
522 eeprom->page_size = 32;
523 eeprom->address_bits = 16;
524 } else {
525 eeprom->page_size = 8;
526 eeprom->address_bits = 8;
527 }
York Sun472d5462013-04-01 11:29:11 -0700528 eeprom->use_eerd = true;
529 eeprom->use_eewr = false;
Roy Zangaa070782009-07-31 13:34:02 +0800530 break;
Marek Vasut95186062014-08-08 07:41:39 -0700531 case e1000_igb:
532 /* i210 has 4k of iNVM mapped as EEPROM */
533 eeprom->type = e1000_eeprom_invm;
534 eeprom->opcode_bits = 8;
535 eeprom->delay_usec = 1;
536 eeprom->page_size = 32;
537 eeprom->address_bits = 16;
538 eeprom->use_eerd = true;
539 eeprom->use_eewr = false;
540 break;
Roy Zangaa070782009-07-31 13:34:02 +0800541
542 /* ich8lan does not support currently. if needed, please
543 * add corresponding code and functions.
544 */
545#if 0
546 case e1000_ich8lan:
547 {
548 int32_t i = 0;
549
550 eeprom->type = e1000_eeprom_ich8;
York Sun472d5462013-04-01 11:29:11 -0700551 eeprom->use_eerd = false;
552 eeprom->use_eewr = false;
Roy Zangaa070782009-07-31 13:34:02 +0800553 eeprom->word_size = E1000_SHADOW_RAM_WORDS;
554 uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw,
555 ICH_FLASH_GFPREG);
556 /* Zero the shadow RAM structure. But don't load it from NVM
557 * so as to save time for driver init */
558 if (hw->eeprom_shadow_ram != NULL) {
559 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
York Sun472d5462013-04-01 11:29:11 -0700560 hw->eeprom_shadow_ram[i].modified = false;
Roy Zangaa070782009-07-31 13:34:02 +0800561 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
562 }
563 }
564
565 hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
566 ICH_FLASH_SECTOR_SIZE;
567
568 hw->flash_bank_size = ((flash_size >> 16)
569 & ICH_GFPREG_BASE_MASK) + 1;
570 hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
571
572 hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
573
574 hw->flash_bank_size /= 2 * sizeof(uint16_t);
575 break;
576 }
577#endif
578 default:
579 break;
580 }
581
Marek Vasut95186062014-08-08 07:41:39 -0700582 if (eeprom->type == e1000_eeprom_spi ||
583 eeprom->type == e1000_eeprom_invm) {
Roy Zangaa070782009-07-31 13:34:02 +0800584 /* eeprom_size will be an enum [0..8] that maps
585 * to eeprom sizes 128B to
586 * 32KB (incremented by powers of 2).
587 */
588 if (hw->mac_type <= e1000_82547_rev_2) {
589 /* Set to default value for initial eeprom read. */
590 eeprom->word_size = 64;
591 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
592 &eeprom_size);
593 if (ret_val)
594 return ret_val;
595 eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
596 >> EEPROM_SIZE_SHIFT;
597 /* 256B eeprom size was not supported in earlier
598 * hardware, so we bump eeprom_size up one to
599 * ensure that "1" (which maps to 256B) is never
600 * the result used in the shifting logic below. */
601 if (eeprom_size)
602 eeprom_size++;
603 } else {
604 eeprom_size = (uint16_t)((eecd &
605 E1000_EECD_SIZE_EX_MASK) >>
606 E1000_EECD_SIZE_EX_SHIFT);
607 }
608
609 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
610 }
611 return ret_val;
612}
613
614/******************************************************************************
615 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
616 *
617 * hw - Struct containing variables accessed by shared code
618 *****************************************************************************/
619static int32_t
620e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
621{
622 uint32_t attempts = 100000;
623 uint32_t i, reg = 0;
624 int32_t done = E1000_ERR_EEPROM;
625
626 for (i = 0; i < attempts; i++) {
Marek Vasut95186062014-08-08 07:41:39 -0700627 if (eerd == E1000_EEPROM_POLL_READ) {
628 if (hw->mac_type == e1000_igb)
629 reg = E1000_READ_REG(hw, I210_EERD);
630 else
631 reg = E1000_READ_REG(hw, EERD);
632 } else {
633 if (hw->mac_type == e1000_igb)
634 reg = E1000_READ_REG(hw, I210_EEWR);
635 else
636 reg = E1000_READ_REG(hw, EEWR);
637 }
Roy Zangaa070782009-07-31 13:34:02 +0800638
639 if (reg & E1000_EEPROM_RW_REG_DONE) {
640 done = E1000_SUCCESS;
641 break;
642 }
643 udelay(5);
644 }
645
646 return done;
647}
648
649/******************************************************************************
650 * Reads a 16 bit word from the EEPROM using the EERD register.
651 *
652 * hw - Struct containing variables accessed by shared code
653 * offset - offset of word in the EEPROM to read
654 * data - word read from the EEPROM
655 * words - number of words to read
656 *****************************************************************************/
657static int32_t
658e1000_read_eeprom_eerd(struct e1000_hw *hw,
659 uint16_t offset,
660 uint16_t words,
661 uint16_t *data)
662{
663 uint32_t i, eerd = 0;
664 int32_t error = 0;
665
666 for (i = 0; i < words; i++) {
667 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
668 E1000_EEPROM_RW_REG_START;
669
Marek Vasut95186062014-08-08 07:41:39 -0700670 if (hw->mac_type == e1000_igb)
671 E1000_WRITE_REG(hw, I210_EERD, eerd);
672 else
673 E1000_WRITE_REG(hw, EERD, eerd);
674
Roy Zangaa070782009-07-31 13:34:02 +0800675 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
676
677 if (error)
678 break;
Marek Vasut95186062014-08-08 07:41:39 -0700679
680 if (hw->mac_type == e1000_igb) {
681 data[i] = (E1000_READ_REG(hw, I210_EERD) >>
Roy Zangaa070782009-07-31 13:34:02 +0800682 E1000_EEPROM_RW_REG_DATA);
Marek Vasut95186062014-08-08 07:41:39 -0700683 } else {
684 data[i] = (E1000_READ_REG(hw, EERD) >>
685 E1000_EEPROM_RW_REG_DATA);
686 }
Roy Zangaa070782009-07-31 13:34:02 +0800687
688 }
689
690 return error;
691}
692
Kyle Moffett2326a942011-10-18 11:05:28 +0000693void e1000_release_eeprom(struct e1000_hw *hw)
Roy Zangaa070782009-07-31 13:34:02 +0800694{
695 uint32_t eecd;
696
697 DEBUGFUNC();
698
699 eecd = E1000_READ_REG(hw, EECD);
700
701 if (hw->eeprom.type == e1000_eeprom_spi) {
702 eecd |= E1000_EECD_CS; /* Pull CS high */
703 eecd &= ~E1000_EECD_SK; /* Lower SCK */
704
705 E1000_WRITE_REG(hw, EECD, eecd);
706
707 udelay(hw->eeprom.delay_usec);
708 } else if (hw->eeprom.type == e1000_eeprom_microwire) {
709 /* cleanup eeprom */
710
711 /* CS on Microwire is active-high */
712 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
713
714 E1000_WRITE_REG(hw, EECD, eecd);
715
716 /* Rising edge of clock */
717 eecd |= E1000_EECD_SK;
718 E1000_WRITE_REG(hw, EECD, eecd);
719 E1000_WRITE_FLUSH(hw);
720 udelay(hw->eeprom.delay_usec);
721
722 /* Falling edge of clock */
723 eecd &= ~E1000_EECD_SK;
724 E1000_WRITE_REG(hw, EECD, eecd);
725 E1000_WRITE_FLUSH(hw);
726 udelay(hw->eeprom.delay_usec);
727 }
728
729 /* Stop requesting EEPROM access */
730 if (hw->mac_type > e1000_82544) {
731 eecd &= ~E1000_EECD_REQ;
732 E1000_WRITE_REG(hw, EECD, eecd);
733 }
Tim Harvey7e2d9912015-05-19 10:01:18 -0700734
735 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
Roy Zangaa070782009-07-31 13:34:02 +0800736}
Tim Harvey7e2d9912015-05-19 10:01:18 -0700737
Roy Zangaa070782009-07-31 13:34:02 +0800738/******************************************************************************
739 * Reads a 16 bit word from the EEPROM.
740 *
741 * hw - Struct containing variables accessed by shared code
742 *****************************************************************************/
743static int32_t
744e1000_spi_eeprom_ready(struct e1000_hw *hw)
745{
746 uint16_t retry_count = 0;
747 uint8_t spi_stat_reg;
748
749 DEBUGFUNC();
750
751 /* Read "Status Register" repeatedly until the LSB is cleared. The
752 * EEPROM will signal that the command has been completed by clearing
753 * bit 0 of the internal status register. If it's not cleared within
754 * 5 milliseconds, then error out.
755 */
756 retry_count = 0;
757 do {
758 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
759 hw->eeprom.opcode_bits);
760 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
761 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
762 break;
763
764 udelay(5);
765 retry_count += 5;
766
767 e1000_standby_eeprom(hw);
768 } while (retry_count < EEPROM_MAX_RETRY_SPI);
769
770 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
771 * only 0-5mSec on 5V devices)
772 */
773 if (retry_count >= EEPROM_MAX_RETRY_SPI) {
774 DEBUGOUT("SPI EEPROM Status error\n");
775 return -E1000_ERR_EEPROM;
776 }
777
778 return E1000_SUCCESS;
wdenk682011f2003-06-03 23:54:09 +0000779}
780
781/******************************************************************************
782 * Reads a 16 bit word from the EEPROM.
783 *
784 * hw - Struct containing variables accessed by shared code
785 * offset - offset of word in the EEPROM to read
wdenk8bde7f72003-06-27 21:31:46 +0000786 * data - word read from the EEPROM
wdenk682011f2003-06-03 23:54:09 +0000787 *****************************************************************************/
Roy Zangaa070782009-07-31 13:34:02 +0800788static int32_t
789e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
790 uint16_t words, uint16_t *data)
wdenk682011f2003-06-03 23:54:09 +0000791{
Roy Zangaa070782009-07-31 13:34:02 +0800792 struct e1000_eeprom_info *eeprom = &hw->eeprom;
wdenk682011f2003-06-03 23:54:09 +0000793 uint32_t i = 0;
wdenk682011f2003-06-03 23:54:09 +0000794
Roy Zangaa070782009-07-31 13:34:02 +0800795 DEBUGFUNC();
796
797 /* If eeprom is not yet detected, do so now */
798 if (eeprom->word_size == 0)
799 e1000_init_eeprom_params(hw);
800
801 /* A check for invalid values: offset too large, too many words,
802 * and not enough words.
803 */
804 if ((offset >= eeprom->word_size) ||
805 (words > eeprom->word_size - offset) ||
806 (words == 0)) {
807 DEBUGOUT("\"words\" parameter out of bounds."
808 "Words = %d, size = %d\n", offset, eeprom->word_size);
809 return -E1000_ERR_EEPROM;
810 }
811
812 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
813 * directly. In this case, we need to acquire the EEPROM so that
814 * FW or other port software does not interrupt.
815 */
York Sun472d5462013-04-01 11:29:11 -0700816 if (e1000_is_onboard_nvm_eeprom(hw) == true &&
817 hw->eeprom.use_eerd == false) {
Roy Zangaa070782009-07-31 13:34:02 +0800818
819 /* Prepare the EEPROM for bit-bang reading */
820 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
821 return -E1000_ERR_EEPROM;
822 }
823
824 /* Eerd register EEPROM access requires no eeprom aquire/release */
York Sun472d5462013-04-01 11:29:11 -0700825 if (eeprom->use_eerd == true)
Roy Zangaa070782009-07-31 13:34:02 +0800826 return e1000_read_eeprom_eerd(hw, offset, words, data);
827
828 /* ich8lan does not support currently. if needed, please
829 * add corresponding code and functions.
830 */
831#if 0
832 /* ICH EEPROM access is done via the ICH flash controller */
833 if (eeprom->type == e1000_eeprom_ich8)
834 return e1000_read_eeprom_ich8(hw, offset, words, data);
835#endif
836 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
837 * acquired the EEPROM at this point, so any returns should relase it */
838 if (eeprom->type == e1000_eeprom_spi) {
839 uint16_t word_in;
840 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
841
842 if (e1000_spi_eeprom_ready(hw)) {
843 e1000_release_eeprom(hw);
wdenk682011f2003-06-03 23:54:09 +0000844 return -E1000_ERR_EEPROM;
845 }
Roy Zangaa070782009-07-31 13:34:02 +0800846
847 e1000_standby_eeprom(hw);
848
849 /* Some SPI eeproms use the 8th address bit embedded in
850 * the opcode */
851 if ((eeprom->address_bits == 8) && (offset >= 128))
852 read_opcode |= EEPROM_A8_OPCODE_SPI;
853
854 /* Send the READ command (opcode + addr) */
855 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
856 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
857 eeprom->address_bits);
858
859 /* Read the data. The address of the eeprom internally
860 * increments with each byte (spi) being read, saving on the
861 * overhead of eeprom setup and tear-down. The address
862 * counter will roll over if reading beyond the size of
863 * the eeprom, thus allowing the entire memory to be read
864 * starting from any offset. */
865 for (i = 0; i < words; i++) {
866 word_in = e1000_shift_in_ee_bits(hw, 16);
867 data[i] = (word_in >> 8) | (word_in << 8);
868 }
869 } else if (eeprom->type == e1000_eeprom_microwire) {
870 for (i = 0; i < words; i++) {
871 /* Send the READ command (opcode + addr) */
872 e1000_shift_out_ee_bits(hw,
873 EEPROM_READ_OPCODE_MICROWIRE,
874 eeprom->opcode_bits);
875 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
876 eeprom->address_bits);
877
878 /* Read the data. For microwire, each word requires
879 * the overhead of eeprom setup and tear-down. */
880 data[i] = e1000_shift_in_ee_bits(hw, 16);
881 e1000_standby_eeprom(hw);
882 }
wdenk682011f2003-06-03 23:54:09 +0000883 }
884
wdenk682011f2003-06-03 23:54:09 +0000885 /* End this read operation */
Roy Zangaa070782009-07-31 13:34:02 +0800886 e1000_release_eeprom(hw);
wdenk682011f2003-06-03 23:54:09 +0000887
Roy Zangaa070782009-07-31 13:34:02 +0800888 return E1000_SUCCESS;
wdenk682011f2003-06-03 23:54:09 +0000889}
890
wdenk682011f2003-06-03 23:54:09 +0000891/******************************************************************************
892 * Verifies that the EEPROM has a valid checksum
wdenk8bde7f72003-06-27 21:31:46 +0000893 *
wdenk682011f2003-06-03 23:54:09 +0000894 * hw - Struct containing variables accessed by shared code
895 *
896 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
897 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
898 * valid.
899 *****************************************************************************/
Kyle Moffett114d7fc2011-10-18 11:05:27 +0000900static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
wdenk682011f2003-06-03 23:54:09 +0000901{
Kyle Moffett114d7fc2011-10-18 11:05:27 +0000902 uint16_t i, checksum, checksum_reg, *buf;
wdenk682011f2003-06-03 23:54:09 +0000903
904 DEBUGFUNC();
905
Kyle Moffett114d7fc2011-10-18 11:05:27 +0000906 /* Allocate a temporary buffer */
907 buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
908 if (!buf) {
909 E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n");
wdenk682011f2003-06-03 23:54:09 +0000910 return -E1000_ERR_EEPROM;
911 }
Kyle Moffett114d7fc2011-10-18 11:05:27 +0000912
913 /* Read the EEPROM */
914 if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
915 E1000_ERR(hw->nic, "Unable to read EEPROM!\n");
916 return -E1000_ERR_EEPROM;
917 }
918
919 /* Compute the checksum */
Wolfgang Denk7a341062011-10-28 07:37:04 +0200920 checksum = 0;
Kyle Moffett114d7fc2011-10-18 11:05:27 +0000921 for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
922 checksum += buf[i];
923 checksum = ((uint16_t)EEPROM_SUM) - checksum;
924 checksum_reg = buf[i];
925
926 /* Verify it! */
927 if (checksum == checksum_reg)
928 return 0;
929
930 /* Hrm, verification failed, print an error */
931 E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n");
932 E1000_ERR(hw->nic, " ...register was 0x%04hx, calculated 0x%04hx\n",
933 checksum_reg, checksum);
934
935 return -E1000_ERR_EEPROM;
wdenk682011f2003-06-03 23:54:09 +0000936}
Rojhalat Ibrahim8712adf2013-10-07 18:30:39 +0200937#endif /* CONFIG_E1000_NO_NVM */
Roy Zangecbd2072009-08-11 03:48:05 +0800938
939/*****************************************************************************
940 * Set PHY to class A mode
941 * Assumes the following operations will follow to enable the new class mode.
942 * 1. Do a PHY soft reset
943 * 2. Restart auto-negotiation or force link.
944 *
945 * hw - Struct containing variables accessed by shared code
946 ****************************************************************************/
947static int32_t
948e1000_set_phy_mode(struct e1000_hw *hw)
949{
Rojhalat Ibrahim8712adf2013-10-07 18:30:39 +0200950#ifndef CONFIG_E1000_NO_NVM
Roy Zangecbd2072009-08-11 03:48:05 +0800951 int32_t ret_val;
952 uint16_t eeprom_data;
953
954 DEBUGFUNC();
955
956 if ((hw->mac_type == e1000_82545_rev_3) &&
957 (hw->media_type == e1000_media_type_copper)) {
958 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
959 1, &eeprom_data);
960 if (ret_val)
961 return ret_val;
962
963 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
964 (eeprom_data & EEPROM_PHY_CLASS_A)) {
965 ret_val = e1000_write_phy_reg(hw,
966 M88E1000_PHY_PAGE_SELECT, 0x000B);
967 if (ret_val)
968 return ret_val;
969 ret_val = e1000_write_phy_reg(hw,
970 M88E1000_PHY_GEN_CONTROL, 0x8104);
971 if (ret_val)
972 return ret_val;
973
York Sun472d5462013-04-01 11:29:11 -0700974 hw->phy_reset_disable = false;
Roy Zangecbd2072009-08-11 03:48:05 +0800975 }
976 }
Rojhalat Ibrahim8712adf2013-10-07 18:30:39 +0200977#endif
Roy Zangecbd2072009-08-11 03:48:05 +0800978 return E1000_SUCCESS;
979}
wdenk682011f2003-06-03 23:54:09 +0000980
Rojhalat Ibrahim8712adf2013-10-07 18:30:39 +0200981#ifndef CONFIG_E1000_NO_NVM
Roy Zangaa070782009-07-31 13:34:02 +0800982/***************************************************************************
983 *
984 * Obtaining software semaphore bit (SMBI) before resetting PHY.
985 *
986 * hw: Struct containing variables accessed by shared code
987 *
988 * returns: - E1000_ERR_RESET if fail to obtain semaphore.
989 * E1000_SUCCESS at any other case.
990 *
991 ***************************************************************************/
992static int32_t
993e1000_get_software_semaphore(struct e1000_hw *hw)
994{
995 int32_t timeout = hw->eeprom.word_size + 1;
996 uint32_t swsm;
997
998 DEBUGFUNC();
999
1000 if (hw->mac_type != e1000_80003es2lan)
1001 return E1000_SUCCESS;
1002
1003 while (timeout) {
1004 swsm = E1000_READ_REG(hw, SWSM);
1005 /* If SMBI bit cleared, it is now set and we hold
1006 * the semaphore */
1007 if (!(swsm & E1000_SWSM_SMBI))
1008 break;
1009 mdelay(1);
1010 timeout--;
1011 }
1012
1013 if (!timeout) {
1014 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
1015 return -E1000_ERR_RESET;
1016 }
1017
1018 return E1000_SUCCESS;
1019}
Rojhalat Ibrahim8712adf2013-10-07 18:30:39 +02001020#endif
Roy Zangaa070782009-07-31 13:34:02 +08001021
1022/***************************************************************************
1023 * This function clears HW semaphore bits.
1024 *
1025 * hw: Struct containing variables accessed by shared code
1026 *
1027 * returns: - None.
1028 *
1029 ***************************************************************************/
1030static void
1031e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
1032{
Rojhalat Ibrahim8712adf2013-10-07 18:30:39 +02001033#ifndef CONFIG_E1000_NO_NVM
Roy Zangaa070782009-07-31 13:34:02 +08001034 uint32_t swsm;
1035
1036 DEBUGFUNC();
1037
1038 if (!hw->eeprom_semaphore_present)
1039 return;
1040
1041 swsm = E1000_READ_REG(hw, SWSM);
1042 if (hw->mac_type == e1000_80003es2lan) {
1043 /* Release both semaphores. */
1044 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1045 } else
1046 swsm &= ~(E1000_SWSM_SWESMBI);
1047 E1000_WRITE_REG(hw, SWSM, swsm);
Rojhalat Ibrahim8712adf2013-10-07 18:30:39 +02001048#endif
Roy Zangaa070782009-07-31 13:34:02 +08001049}
1050
1051/***************************************************************************
1052 *
1053 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1054 * adapter or Eeprom access.
1055 *
1056 * hw: Struct containing variables accessed by shared code
1057 *
1058 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1059 * E1000_SUCCESS at any other case.
1060 *
1061 ***************************************************************************/
1062static int32_t
1063e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1064{
Rojhalat Ibrahim8712adf2013-10-07 18:30:39 +02001065#ifndef CONFIG_E1000_NO_NVM
Roy Zangaa070782009-07-31 13:34:02 +08001066 int32_t timeout;
1067 uint32_t swsm;
1068
1069 DEBUGFUNC();
1070
1071 if (!hw->eeprom_semaphore_present)
1072 return E1000_SUCCESS;
1073
1074 if (hw->mac_type == e1000_80003es2lan) {
1075 /* Get the SW semaphore. */
1076 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1077 return -E1000_ERR_EEPROM;
1078 }
1079
1080 /* Get the FW semaphore. */
1081 timeout = hw->eeprom.word_size + 1;
1082 while (timeout) {
1083 swsm = E1000_READ_REG(hw, SWSM);
1084 swsm |= E1000_SWSM_SWESMBI;
1085 E1000_WRITE_REG(hw, SWSM, swsm);
1086 /* if we managed to set the bit we got the semaphore. */
1087 swsm = E1000_READ_REG(hw, SWSM);
1088 if (swsm & E1000_SWSM_SWESMBI)
1089 break;
1090
1091 udelay(50);
1092 timeout--;
1093 }
1094
1095 if (!timeout) {
1096 /* Release semaphores */
1097 e1000_put_hw_eeprom_semaphore(hw);
1098 DEBUGOUT("Driver can't access the Eeprom - "
1099 "SWESMBI bit is set.\n");
1100 return -E1000_ERR_EEPROM;
1101 }
Rojhalat Ibrahim8712adf2013-10-07 18:30:39 +02001102#endif
Roy Zangaa070782009-07-31 13:34:02 +08001103 return E1000_SUCCESS;
1104}
1105
Tim Harvey7e2d9912015-05-19 10:01:18 -07001106/* Take ownership of the PHY */
Roy Zangaa070782009-07-31 13:34:02 +08001107static int32_t
1108e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1109{
1110 uint32_t swfw_sync = 0;
1111 uint32_t swmask = mask;
1112 uint32_t fwmask = mask << 16;
1113 int32_t timeout = 200;
1114
1115 DEBUGFUNC();
1116 while (timeout) {
1117 if (e1000_get_hw_eeprom_semaphore(hw))
1118 return -E1000_ERR_SWFW_SYNC;
1119
Tim Harvey3c63dd52015-05-19 10:01:19 -07001120 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
York Sun76f8cdb2014-10-17 13:44:06 -07001121 if (!(swfw_sync & (fwmask | swmask)))
Roy Zangaa070782009-07-31 13:34:02 +08001122 break;
1123
1124 /* firmware currently using resource (fwmask) */
1125 /* or other software thread currently using resource (swmask) */
1126 e1000_put_hw_eeprom_semaphore(hw);
1127 mdelay(5);
1128 timeout--;
1129 }
1130
1131 if (!timeout) {
1132 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1133 return -E1000_ERR_SWFW_SYNC;
1134 }
1135
1136 swfw_sync |= swmask;
1137 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1138
1139 e1000_put_hw_eeprom_semaphore(hw);
1140 return E1000_SUCCESS;
1141}
1142
Tim Harvey7e2d9912015-05-19 10:01:18 -07001143static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
1144{
1145 uint32_t swfw_sync = 0;
1146
1147 DEBUGFUNC();
1148 while (e1000_get_hw_eeprom_semaphore(hw))
1149 ; /* Empty */
1150
1151 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1152 swfw_sync &= ~mask;
1153 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1154
1155 e1000_put_hw_eeprom_semaphore(hw);
1156}
1157
York Sun472d5462013-04-01 11:29:11 -07001158static bool e1000_is_second_port(struct e1000_hw *hw)
Kyle Moffett987b43a2010-09-13 05:52:22 +00001159{
1160 switch (hw->mac_type) {
1161 case e1000_80003es2lan:
1162 case e1000_82546:
1163 case e1000_82571:
1164 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
York Sun472d5462013-04-01 11:29:11 -07001165 return true;
Kyle Moffett987b43a2010-09-13 05:52:22 +00001166 /* Fallthrough */
1167 default:
York Sun472d5462013-04-01 11:29:11 -07001168 return false;
Kyle Moffett987b43a2010-09-13 05:52:22 +00001169 }
1170}
1171
Rojhalat Ibrahim8712adf2013-10-07 18:30:39 +02001172#ifndef CONFIG_E1000_NO_NVM
wdenk682011f2003-06-03 23:54:09 +00001173/******************************************************************************
1174 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1175 * second function of dual function devices
1176 *
1177 * nic - Struct containing variables accessed by shared code
1178 *****************************************************************************/
1179static int
1180e1000_read_mac_addr(struct eth_device *nic)
1181{
1182 struct e1000_hw *hw = nic->priv;
1183 uint16_t offset;
1184 uint16_t eeprom_data;
Marek Vasut95186062014-08-08 07:41:39 -07001185 uint32_t reg_data = 0;
wdenk682011f2003-06-03 23:54:09 +00001186 int i;
1187
1188 DEBUGFUNC();
1189
1190 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1191 offset = i >> 1;
Marek Vasut95186062014-08-08 07:41:39 -07001192 if (hw->mac_type == e1000_igb) {
1193 /* i210 preloads MAC address into RAL/RAH registers */
1194 if (offset == 0)
1195 reg_data = E1000_READ_REG_ARRAY(hw, RA, 0);
1196 else if (offset == 1)
1197 reg_data >>= 16;
1198 else if (offset == 2)
1199 reg_data = E1000_READ_REG_ARRAY(hw, RA, 1);
1200 eeprom_data = reg_data & 0xffff;
1201 } else if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
wdenk682011f2003-06-03 23:54:09 +00001202 DEBUGOUT("EEPROM Read Error\n");
1203 return -E1000_ERR_EEPROM;
1204 }
1205 nic->enetaddr[i] = eeprom_data & 0xff;
1206 nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1207 }
Kyle Moffett987b43a2010-09-13 05:52:22 +00001208
1209 /* Invert the last bit if this is the second device */
1210 if (e1000_is_second_port(hw))
1211 nic->enetaddr[5] ^= 1;
1212
Andre Schwarzac3315c2008-03-06 16:45:44 +01001213#ifdef CONFIG_E1000_FALLBACK_MAC
Joe Hershberger0adb5b72015-04-08 01:41:04 -05001214 if (!is_valid_ethaddr(nic->enetaddr)) {
Stefan Roesef2302d42008-08-06 14:05:38 +02001215 unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC;
1216
1217 memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE);
1218 }
Andre Schwarzac3315c2008-03-06 16:45:44 +01001219#endif
wdenk682011f2003-06-03 23:54:09 +00001220 return 0;
1221}
Rojhalat Ibrahim8712adf2013-10-07 18:30:39 +02001222#endif
wdenk682011f2003-06-03 23:54:09 +00001223
1224/******************************************************************************
1225 * Initializes receive address filters.
1226 *
wdenk8bde7f72003-06-27 21:31:46 +00001227 * hw - Struct containing variables accessed by shared code
wdenk682011f2003-06-03 23:54:09 +00001228 *
1229 * Places the MAC address in receive address register 0 and clears the rest
1230 * of the receive addresss registers. Clears the multicast table. Assumes
1231 * the receiver is in reset when the routine is called.
1232 *****************************************************************************/
1233static void
1234e1000_init_rx_addrs(struct eth_device *nic)
1235{
1236 struct e1000_hw *hw = nic->priv;
1237 uint32_t i;
1238 uint32_t addr_low;
1239 uint32_t addr_high;
1240
1241 DEBUGFUNC();
1242
1243 /* Setup the receive address. */
1244 DEBUGOUT("Programming MAC Address into RAR[0]\n");
1245 addr_low = (nic->enetaddr[0] |
1246 (nic->enetaddr[1] << 8) |
1247 (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
1248
1249 addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
1250
1251 E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1252 E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1253
1254 /* Zero out the other 15 receive addresses. */
1255 DEBUGOUT("Clearing RAR[1-15]\n");
1256 for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1257 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1258 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1259 }
1260}
1261
1262/******************************************************************************
1263 * Clears the VLAN filer table
1264 *
1265 * hw - Struct containing variables accessed by shared code
1266 *****************************************************************************/
1267static void
1268e1000_clear_vfta(struct e1000_hw *hw)
1269{
1270 uint32_t offset;
1271
1272 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1273 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1274}
1275
1276/******************************************************************************
1277 * Set the mac type member in the hw struct.
wdenk8bde7f72003-06-27 21:31:46 +00001278 *
wdenk682011f2003-06-03 23:54:09 +00001279 * hw - Struct containing variables accessed by shared code
1280 *****************************************************************************/
Roy Zangaa070782009-07-31 13:34:02 +08001281int32_t
wdenk682011f2003-06-03 23:54:09 +00001282e1000_set_mac_type(struct e1000_hw *hw)
1283{
1284 DEBUGFUNC();
1285
1286 switch (hw->device_id) {
1287 case E1000_DEV_ID_82542:
1288 switch (hw->revision_id) {
1289 case E1000_82542_2_0_REV_ID:
1290 hw->mac_type = e1000_82542_rev2_0;
1291 break;
1292 case E1000_82542_2_1_REV_ID:
1293 hw->mac_type = e1000_82542_rev2_1;
1294 break;
1295 default:
1296 /* Invalid 82542 revision ID */
1297 return -E1000_ERR_MAC_TYPE;
1298 }
1299 break;
1300 case E1000_DEV_ID_82543GC_FIBER:
1301 case E1000_DEV_ID_82543GC_COPPER:
1302 hw->mac_type = e1000_82543;
1303 break;
1304 case E1000_DEV_ID_82544EI_COPPER:
1305 case E1000_DEV_ID_82544EI_FIBER:
1306 case E1000_DEV_ID_82544GC_COPPER:
1307 case E1000_DEV_ID_82544GC_LOM:
1308 hw->mac_type = e1000_82544;
1309 break;
1310 case E1000_DEV_ID_82540EM:
1311 case E1000_DEV_ID_82540EM_LOM:
Roy Zangaa070782009-07-31 13:34:02 +08001312 case E1000_DEV_ID_82540EP:
1313 case E1000_DEV_ID_82540EP_LOM:
1314 case E1000_DEV_ID_82540EP_LP:
wdenk682011f2003-06-03 23:54:09 +00001315 hw->mac_type = e1000_82540;
1316 break;
1317 case E1000_DEV_ID_82545EM_COPPER:
1318 case E1000_DEV_ID_82545EM_FIBER:
1319 hw->mac_type = e1000_82545;
1320 break;
Roy Zangaa070782009-07-31 13:34:02 +08001321 case E1000_DEV_ID_82545GM_COPPER:
1322 case E1000_DEV_ID_82545GM_FIBER:
1323 case E1000_DEV_ID_82545GM_SERDES:
1324 hw->mac_type = e1000_82545_rev_3;
1325 break;
wdenk682011f2003-06-03 23:54:09 +00001326 case E1000_DEV_ID_82546EB_COPPER:
1327 case E1000_DEV_ID_82546EB_FIBER:
Roy Zangaa070782009-07-31 13:34:02 +08001328 case E1000_DEV_ID_82546EB_QUAD_COPPER:
wdenk682011f2003-06-03 23:54:09 +00001329 hw->mac_type = e1000_82546;
1330 break;
Roy Zangaa070782009-07-31 13:34:02 +08001331 case E1000_DEV_ID_82546GB_COPPER:
1332 case E1000_DEV_ID_82546GB_FIBER:
1333 case E1000_DEV_ID_82546GB_SERDES:
1334 case E1000_DEV_ID_82546GB_PCIE:
1335 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1336 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1337 hw->mac_type = e1000_82546_rev_3;
1338 break;
1339 case E1000_DEV_ID_82541EI:
1340 case E1000_DEV_ID_82541EI_MOBILE:
1341 case E1000_DEV_ID_82541ER_LOM:
1342 hw->mac_type = e1000_82541;
1343 break;
Andre Schwarzac3315c2008-03-06 16:45:44 +01001344 case E1000_DEV_ID_82541ER:
Roy Zangaa070782009-07-31 13:34:02 +08001345 case E1000_DEV_ID_82541GI:
Wolfgang Grandeggeraa3b8bf2008-05-28 19:55:19 +02001346 case E1000_DEV_ID_82541GI_LF:
Roy Zangaa070782009-07-31 13:34:02 +08001347 case E1000_DEV_ID_82541GI_MOBILE:
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07001348 hw->mac_type = e1000_82541_rev_2;
1349 break;
Roy Zangaa070782009-07-31 13:34:02 +08001350 case E1000_DEV_ID_82547EI:
1351 case E1000_DEV_ID_82547EI_MOBILE:
1352 hw->mac_type = e1000_82547;
1353 break;
1354 case E1000_DEV_ID_82547GI:
1355 hw->mac_type = e1000_82547_rev_2;
1356 break;
1357 case E1000_DEV_ID_82571EB_COPPER:
1358 case E1000_DEV_ID_82571EB_FIBER:
1359 case E1000_DEV_ID_82571EB_SERDES:
1360 case E1000_DEV_ID_82571EB_SERDES_DUAL:
1361 case E1000_DEV_ID_82571EB_SERDES_QUAD:
1362 case E1000_DEV_ID_82571EB_QUAD_COPPER:
1363 case E1000_DEV_ID_82571PT_QUAD_COPPER:
1364 case E1000_DEV_ID_82571EB_QUAD_FIBER:
1365 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1366 hw->mac_type = e1000_82571;
1367 break;
1368 case E1000_DEV_ID_82572EI_COPPER:
1369 case E1000_DEV_ID_82572EI_FIBER:
1370 case E1000_DEV_ID_82572EI_SERDES:
1371 case E1000_DEV_ID_82572EI:
1372 hw->mac_type = e1000_82572;
1373 break;
1374 case E1000_DEV_ID_82573E:
1375 case E1000_DEV_ID_82573E_IAMT:
1376 case E1000_DEV_ID_82573L:
1377 hw->mac_type = e1000_82573;
1378 break;
Roy Zang2c2668f2011-01-21 11:29:38 +08001379 case E1000_DEV_ID_82574L:
1380 hw->mac_type = e1000_82574;
1381 break;
Roy Zangaa070782009-07-31 13:34:02 +08001382 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1383 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1384 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1385 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1386 hw->mac_type = e1000_80003es2lan;
1387 break;
1388 case E1000_DEV_ID_ICH8_IGP_M_AMT:
1389 case E1000_DEV_ID_ICH8_IGP_AMT:
1390 case E1000_DEV_ID_ICH8_IGP_C:
1391 case E1000_DEV_ID_ICH8_IFE:
1392 case E1000_DEV_ID_ICH8_IFE_GT:
1393 case E1000_DEV_ID_ICH8_IFE_G:
1394 case E1000_DEV_ID_ICH8_IGP_M:
1395 hw->mac_type = e1000_ich8lan;
1396 break;
Marcel Ziswiler6c499ab2014-09-08 00:03:50 +02001397 case PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED:
1398 case PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED:
Marek Vasut95186062014-08-08 07:41:39 -07001399 case PCI_DEVICE_ID_INTEL_I210_COPPER:
Marcel Ziswiler6c499ab2014-09-08 00:03:50 +02001400 case PCI_DEVICE_ID_INTEL_I211_COPPER:
Marek Vasut95186062014-08-08 07:41:39 -07001401 case PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS:
1402 case PCI_DEVICE_ID_INTEL_I210_SERDES:
1403 case PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS:
1404 case PCI_DEVICE_ID_INTEL_I210_1000BASEKX:
1405 hw->mac_type = e1000_igb;
1406 break;
wdenk682011f2003-06-03 23:54:09 +00001407 default:
1408 /* Should never have loaded on this device */
1409 return -E1000_ERR_MAC_TYPE;
1410 }
1411 return E1000_SUCCESS;
1412}
1413
1414/******************************************************************************
1415 * Reset the transmit and receive units; mask and clear all interrupts.
1416 *
1417 * hw - Struct containing variables accessed by shared code
1418 *****************************************************************************/
1419void
1420e1000_reset_hw(struct e1000_hw *hw)
1421{
1422 uint32_t ctrl;
1423 uint32_t ctrl_ext;
wdenk682011f2003-06-03 23:54:09 +00001424 uint32_t manc;
Roy Zang9ea005f2009-08-22 03:49:52 +08001425 uint32_t pba = 0;
Marek Vasut95186062014-08-08 07:41:39 -07001426 uint32_t reg;
wdenk682011f2003-06-03 23:54:09 +00001427
1428 DEBUGFUNC();
1429
Roy Zang9ea005f2009-08-22 03:49:52 +08001430 /* get the correct pba value for both PCI and PCIe*/
1431 if (hw->mac_type < e1000_82571)
1432 pba = E1000_DEFAULT_PCI_PBA;
1433 else
1434 pba = E1000_DEFAULT_PCIE_PBA;
1435
wdenk682011f2003-06-03 23:54:09 +00001436 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1437 if (hw->mac_type == e1000_82542_rev2_0) {
1438 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1439 pci_write_config_word(hw->pdev, PCI_COMMAND,
Roy Zangaa070782009-07-31 13:34:02 +08001440 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
wdenk682011f2003-06-03 23:54:09 +00001441 }
1442
1443 /* Clear interrupt mask to stop board from generating interrupts */
1444 DEBUGOUT("Masking off all interrupts\n");
Marek Vasut95186062014-08-08 07:41:39 -07001445 if (hw->mac_type == e1000_igb)
1446 E1000_WRITE_REG(hw, I210_IAM, 0);
wdenk682011f2003-06-03 23:54:09 +00001447 E1000_WRITE_REG(hw, IMC, 0xffffffff);
1448
1449 /* Disable the Transmit and Receive units. Then delay to allow
1450 * any pending transactions to complete before we hit the MAC with
1451 * the global reset.
1452 */
1453 E1000_WRITE_REG(hw, RCTL, 0);
1454 E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1455 E1000_WRITE_FLUSH(hw);
1456
1457 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
York Sun472d5462013-04-01 11:29:11 -07001458 hw->tbi_compatibility_on = false;
wdenk682011f2003-06-03 23:54:09 +00001459
1460 /* Delay to allow any outstanding PCI transactions to complete before
1461 * resetting the device
1462 */
1463 mdelay(10);
1464
1465 /* Issue a global reset to the MAC. This will reset the chip's
1466 * transmit, receive, DMA, and link units. It will not effect
1467 * the current PCI configuration. The global reset bit is self-
1468 * clearing, and should clear within a microsecond.
1469 */
1470 DEBUGOUT("Issuing a global reset to MAC\n");
1471 ctrl = E1000_READ_REG(hw, CTRL);
1472
Roy Zangaa070782009-07-31 13:34:02 +08001473 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
wdenk682011f2003-06-03 23:54:09 +00001474
1475 /* Force a reload from the EEPROM if necessary */
Marek Vasut95186062014-08-08 07:41:39 -07001476 if (hw->mac_type == e1000_igb) {
1477 mdelay(20);
1478 reg = E1000_READ_REG(hw, STATUS);
1479 if (reg & E1000_STATUS_PF_RST_DONE)
1480 DEBUGOUT("PF OK\n");
1481 reg = E1000_READ_REG(hw, I210_EECD);
1482 if (reg & E1000_EECD_AUTO_RD)
1483 DEBUGOUT("EEC OK\n");
1484 } else if (hw->mac_type < e1000_82540) {
wdenk682011f2003-06-03 23:54:09 +00001485 /* Wait for reset to complete */
1486 udelay(10);
1487 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1488 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1489 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1490 E1000_WRITE_FLUSH(hw);
1491 /* Wait for EEPROM reload */
1492 mdelay(2);
1493 } else {
1494 /* Wait for EEPROM reload (it happens automatically) */
1495 mdelay(4);
1496 /* Dissable HW ARPs on ASF enabled adapters */
1497 manc = E1000_READ_REG(hw, MANC);
1498 manc &= ~(E1000_MANC_ARP_EN);
1499 E1000_WRITE_REG(hw, MANC, manc);
1500 }
1501
1502 /* Clear interrupt mask to stop board from generating interrupts */
1503 DEBUGOUT("Masking off all interrupts\n");
Marek Vasut95186062014-08-08 07:41:39 -07001504 if (hw->mac_type == e1000_igb)
1505 E1000_WRITE_REG(hw, I210_IAM, 0);
wdenk682011f2003-06-03 23:54:09 +00001506 E1000_WRITE_REG(hw, IMC, 0xffffffff);
1507
1508 /* Clear any pending interrupt events. */
Zang Roy-R6191156b13b12011-11-06 22:22:36 +00001509 E1000_READ_REG(hw, ICR);
wdenk682011f2003-06-03 23:54:09 +00001510
1511 /* If MWI was previously enabled, reenable it. */
1512 if (hw->mac_type == e1000_82542_rev2_0) {
1513 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1514 }
Marek Vasut95186062014-08-08 07:41:39 -07001515 if (hw->mac_type != e1000_igb)
1516 E1000_WRITE_REG(hw, PBA, pba);
Roy Zangaa070782009-07-31 13:34:02 +08001517}
1518
1519/******************************************************************************
1520 *
1521 * Initialize a number of hardware-dependent bits
1522 *
1523 * hw: Struct containing variables accessed by shared code
1524 *
1525 * This function contains hardware limitation workarounds for PCI-E adapters
1526 *
1527 *****************************************************************************/
1528static void
1529e1000_initialize_hardware_bits(struct e1000_hw *hw)
1530{
1531 if ((hw->mac_type >= e1000_82571) &&
1532 (!hw->initialize_hw_bits_disable)) {
1533 /* Settings common to all PCI-express silicon */
1534 uint32_t reg_ctrl, reg_ctrl_ext;
1535 uint32_t reg_tarc0, reg_tarc1;
1536 uint32_t reg_tctl;
1537 uint32_t reg_txdctl, reg_txdctl1;
1538
1539 /* link autonegotiation/sync workarounds */
1540 reg_tarc0 = E1000_READ_REG(hw, TARC0);
1541 reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1542
1543 /* Enable not-done TX descriptor counting */
1544 reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1545 reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1546 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1547
1548 reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1549 reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1550 E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1551
Marek Vasut95186062014-08-08 07:41:39 -07001552 /* IGB is cool */
1553 if (hw->mac_type == e1000_igb)
1554 return;
1555
Roy Zangaa070782009-07-31 13:34:02 +08001556 switch (hw->mac_type) {
1557 case e1000_82571:
1558 case e1000_82572:
1559 /* Clear PHY TX compatible mode bits */
1560 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1561 reg_tarc1 &= ~((1 << 30)|(1 << 29));
1562
1563 /* link autonegotiation/sync workarounds */
1564 reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1565
1566 /* TX ring control fixes */
1567 reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1568
1569 /* Multiple read bit is reversed polarity */
1570 reg_tctl = E1000_READ_REG(hw, TCTL);
1571 if (reg_tctl & E1000_TCTL_MULR)
1572 reg_tarc1 &= ~(1 << 28);
1573 else
1574 reg_tarc1 |= (1 << 28);
1575
1576 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1577 break;
1578 case e1000_82573:
Roy Zang2c2668f2011-01-21 11:29:38 +08001579 case e1000_82574:
Roy Zangaa070782009-07-31 13:34:02 +08001580 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1581 reg_ctrl_ext &= ~(1 << 23);
1582 reg_ctrl_ext |= (1 << 22);
1583
1584 /* TX byte count fix */
1585 reg_ctrl = E1000_READ_REG(hw, CTRL);
1586 reg_ctrl &= ~(1 << 29);
1587
1588 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1589 E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1590 break;
1591 case e1000_80003es2lan:
1592 /* improve small packet performace for fiber/serdes */
1593 if ((hw->media_type == e1000_media_type_fiber)
1594 || (hw->media_type ==
1595 e1000_media_type_internal_serdes)) {
1596 reg_tarc0 &= ~(1 << 20);
1597 }
1598
1599 /* Multiple read bit is reversed polarity */
1600 reg_tctl = E1000_READ_REG(hw, TCTL);
1601 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1602 if (reg_tctl & E1000_TCTL_MULR)
1603 reg_tarc1 &= ~(1 << 28);
1604 else
1605 reg_tarc1 |= (1 << 28);
1606
1607 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1608 break;
1609 case e1000_ich8lan:
1610 /* Reduce concurrent DMA requests to 3 from 4 */
1611 if ((hw->revision_id < 3) ||
1612 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1613 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1614 reg_tarc0 |= ((1 << 29)|(1 << 28));
1615
1616 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1617 reg_ctrl_ext |= (1 << 22);
1618 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1619
1620 /* workaround TX hang with TSO=on */
1621 reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1622
1623 /* Multiple read bit is reversed polarity */
1624 reg_tctl = E1000_READ_REG(hw, TCTL);
1625 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1626 if (reg_tctl & E1000_TCTL_MULR)
1627 reg_tarc1 &= ~(1 << 28);
1628 else
1629 reg_tarc1 |= (1 << 28);
1630
1631 /* workaround TX hang with TSO=on */
1632 reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1633
1634 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1635 break;
1636 default:
1637 break;
1638 }
1639
1640 E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1641 }
wdenk682011f2003-06-03 23:54:09 +00001642}
1643
1644/******************************************************************************
1645 * Performs basic configuration of the adapter.
1646 *
1647 * hw - Struct containing variables accessed by shared code
wdenk8bde7f72003-06-27 21:31:46 +00001648 *
1649 * Assumes that the controller has previously been reset and is in a
wdenk682011f2003-06-03 23:54:09 +00001650 * post-reset uninitialized state. Initializes the receive address registers,
1651 * multicast table, and VLAN filter table. Calls routines to setup link
1652 * configuration and flow control settings. Clears all on-chip counters. Leaves
1653 * the transmit and receive units disabled and uninitialized.
1654 *****************************************************************************/
1655static int
1656e1000_init_hw(struct eth_device *nic)
1657{
1658 struct e1000_hw *hw = nic->priv;
Roy Zangaa070782009-07-31 13:34:02 +08001659 uint32_t ctrl;
wdenk682011f2003-06-03 23:54:09 +00001660 uint32_t i;
1661 int32_t ret_val;
1662 uint16_t pcix_cmd_word;
1663 uint16_t pcix_stat_hi_word;
1664 uint16_t cmd_mmrbc;
1665 uint16_t stat_mmrbc;
Roy Zangaa070782009-07-31 13:34:02 +08001666 uint32_t mta_size;
1667 uint32_t reg_data;
1668 uint32_t ctrl_ext;
wdenk682011f2003-06-03 23:54:09 +00001669 DEBUGFUNC();
Roy Zangaa070782009-07-31 13:34:02 +08001670 /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1671 if ((hw->mac_type == e1000_ich8lan) &&
1672 ((hw->revision_id < 3) ||
1673 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1674 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1675 reg_data = E1000_READ_REG(hw, STATUS);
1676 reg_data &= ~0x80000000;
1677 E1000_WRITE_REG(hw, STATUS, reg_data);
wdenk682011f2003-06-03 23:54:09 +00001678 }
Roy Zangaa070782009-07-31 13:34:02 +08001679 /* Do not need initialize Identification LED */
wdenk682011f2003-06-03 23:54:09 +00001680
Roy Zangaa070782009-07-31 13:34:02 +08001681 /* Set the media type and TBI compatibility */
1682 e1000_set_media_type(hw);
1683
1684 /* Must be called after e1000_set_media_type
1685 * because media_type is used */
1686 e1000_initialize_hardware_bits(hw);
wdenk682011f2003-06-03 23:54:09 +00001687
1688 /* Disabling VLAN filtering. */
1689 DEBUGOUT("Initializing the IEEE VLAN\n");
Roy Zangaa070782009-07-31 13:34:02 +08001690 /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1691 if (hw->mac_type != e1000_ich8lan) {
1692 if (hw->mac_type < e1000_82545_rev_3)
1693 E1000_WRITE_REG(hw, VET, 0);
1694 e1000_clear_vfta(hw);
1695 }
wdenk682011f2003-06-03 23:54:09 +00001696
1697 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1698 if (hw->mac_type == e1000_82542_rev2_0) {
1699 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1700 pci_write_config_word(hw->pdev, PCI_COMMAND,
1701 hw->
1702 pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1703 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1704 E1000_WRITE_FLUSH(hw);
1705 mdelay(5);
1706 }
1707
1708 /* Setup the receive address. This involves initializing all of the Receive
1709 * Address Registers (RARs 0 - 15).
1710 */
1711 e1000_init_rx_addrs(nic);
1712
1713 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1714 if (hw->mac_type == e1000_82542_rev2_0) {
1715 E1000_WRITE_REG(hw, RCTL, 0);
1716 E1000_WRITE_FLUSH(hw);
1717 mdelay(1);
1718 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1719 }
1720
1721 /* Zero out the Multicast HASH table */
1722 DEBUGOUT("Zeroing the MTA\n");
Roy Zangaa070782009-07-31 13:34:02 +08001723 mta_size = E1000_MC_TBL_SIZE;
1724 if (hw->mac_type == e1000_ich8lan)
1725 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1726 for (i = 0; i < mta_size; i++) {
wdenk682011f2003-06-03 23:54:09 +00001727 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
Roy Zangaa070782009-07-31 13:34:02 +08001728 /* use write flush to prevent Memory Write Block (MWB) from
1729 * occuring when accessing our register space */
1730 E1000_WRITE_FLUSH(hw);
1731 }
wdenk682011f2003-06-03 23:54:09 +00001732#if 0
1733 /* Set the PCI priority bit correctly in the CTRL register. This
1734 * determines if the adapter gives priority to receives, or if it
Roy Zangaa070782009-07-31 13:34:02 +08001735 * gives equal priority to transmits and receives. Valid only on
1736 * 82542 and 82543 silicon.
wdenk682011f2003-06-03 23:54:09 +00001737 */
Roy Zangaa070782009-07-31 13:34:02 +08001738 if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
wdenk682011f2003-06-03 23:54:09 +00001739 ctrl = E1000_READ_REG(hw, CTRL);
1740 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
1741 }
1742#endif
Roy Zangaa070782009-07-31 13:34:02 +08001743 switch (hw->mac_type) {
1744 case e1000_82545_rev_3:
1745 case e1000_82546_rev_3:
Marek Vasut95186062014-08-08 07:41:39 -07001746 case e1000_igb:
Roy Zangaa070782009-07-31 13:34:02 +08001747 break;
1748 default:
wdenk682011f2003-06-03 23:54:09 +00001749 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
Roy Zangaa070782009-07-31 13:34:02 +08001750 if (hw->bus_type == e1000_bus_type_pcix) {
wdenk682011f2003-06-03 23:54:09 +00001751 pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1752 &pcix_cmd_word);
1753 pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1754 &pcix_stat_hi_word);
1755 cmd_mmrbc =
1756 (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1757 PCIX_COMMAND_MMRBC_SHIFT;
1758 stat_mmrbc =
1759 (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1760 PCIX_STATUS_HI_MMRBC_SHIFT;
1761 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1762 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1763 if (cmd_mmrbc > stat_mmrbc) {
1764 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1765 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1766 pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1767 pcix_cmd_word);
1768 }
1769 }
Roy Zangaa070782009-07-31 13:34:02 +08001770 break;
1771 }
1772
1773 /* More time needed for PHY to initialize */
1774 if (hw->mac_type == e1000_ich8lan)
1775 mdelay(15);
Marek Vasut95186062014-08-08 07:41:39 -07001776 if (hw->mac_type == e1000_igb)
1777 mdelay(15);
wdenk682011f2003-06-03 23:54:09 +00001778
1779 /* Call a subroutine to configure the link and setup flow control. */
1780 ret_val = e1000_setup_link(nic);
1781
1782 /* Set the transmit descriptor write-back policy */
1783 if (hw->mac_type > e1000_82544) {
1784 ctrl = E1000_READ_REG(hw, TXDCTL);
1785 ctrl =
1786 (ctrl & ~E1000_TXDCTL_WTHRESH) |
1787 E1000_TXDCTL_FULL_TX_DESC_WB;
1788 E1000_WRITE_REG(hw, TXDCTL, ctrl);
1789 }
Roy Zangaa070782009-07-31 13:34:02 +08001790
Ruchika Gupta776e66e2012-04-19 02:27:11 +00001791 /* Set the receive descriptor write back policy */
Ruchika Gupta776e66e2012-04-19 02:27:11 +00001792 if (hw->mac_type >= e1000_82571) {
1793 ctrl = E1000_READ_REG(hw, RXDCTL);
1794 ctrl =
1795 (ctrl & ~E1000_RXDCTL_WTHRESH) |
1796 E1000_RXDCTL_FULL_RX_DESC_WB;
1797 E1000_WRITE_REG(hw, RXDCTL, ctrl);
1798 }
1799
Roy Zangaa070782009-07-31 13:34:02 +08001800 switch (hw->mac_type) {
1801 default:
1802 break;
1803 case e1000_80003es2lan:
1804 /* Enable retransmit on late collisions */
1805 reg_data = E1000_READ_REG(hw, TCTL);
1806 reg_data |= E1000_TCTL_RTLC;
1807 E1000_WRITE_REG(hw, TCTL, reg_data);
1808
1809 /* Configure Gigabit Carry Extend Padding */
1810 reg_data = E1000_READ_REG(hw, TCTL_EXT);
1811 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1812 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1813 E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1814
1815 /* Configure Transmit Inter-Packet Gap */
1816 reg_data = E1000_READ_REG(hw, TIPG);
1817 reg_data &= ~E1000_TIPG_IPGT_MASK;
1818 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1819 E1000_WRITE_REG(hw, TIPG, reg_data);
1820
1821 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1822 reg_data &= ~0x00100000;
1823 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1824 /* Fall through */
1825 case e1000_82571:
1826 case e1000_82572:
1827 case e1000_ich8lan:
1828 ctrl = E1000_READ_REG(hw, TXDCTL1);
1829 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1830 | E1000_TXDCTL_FULL_TX_DESC_WB;
1831 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1832 break;
Roy Zang2c2668f2011-01-21 11:29:38 +08001833 case e1000_82573:
1834 case e1000_82574:
1835 reg_data = E1000_READ_REG(hw, GCR);
1836 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1837 E1000_WRITE_REG(hw, GCR, reg_data);
Marek Vasut95186062014-08-08 07:41:39 -07001838 case e1000_igb:
1839 break;
Roy Zangaa070782009-07-31 13:34:02 +08001840 }
1841
wdenk682011f2003-06-03 23:54:09 +00001842#if 0
1843 /* Clear all of the statistics registers (clear on read). It is
1844 * important that we do this after we have tried to establish link
1845 * because the symbol error count will increment wildly if there
1846 * is no link.
1847 */
1848 e1000_clear_hw_cntrs(hw);
Roy Zangaa070782009-07-31 13:34:02 +08001849
1850 /* ICH8 No-snoop bits are opposite polarity.
1851 * Set to snoop by default after reset. */
1852 if (hw->mac_type == e1000_ich8lan)
1853 e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
wdenk682011f2003-06-03 23:54:09 +00001854#endif
1855
Roy Zangaa070782009-07-31 13:34:02 +08001856 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1857 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1858 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1859 /* Relaxed ordering must be disabled to avoid a parity
1860 * error crash in a PCI slot. */
1861 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1862 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1863 }
1864
wdenk682011f2003-06-03 23:54:09 +00001865 return ret_val;
1866}
1867
1868/******************************************************************************
1869 * Configures flow control and link settings.
wdenk8bde7f72003-06-27 21:31:46 +00001870 *
wdenk682011f2003-06-03 23:54:09 +00001871 * hw - Struct containing variables accessed by shared code
wdenk8bde7f72003-06-27 21:31:46 +00001872 *
wdenk682011f2003-06-03 23:54:09 +00001873 * Determines which flow control settings to use. Calls the apropriate media-
1874 * specific link configuration function. Configures the flow control settings.
1875 * Assuming the adapter has a valid link partner, a valid link should be
wdenk8bde7f72003-06-27 21:31:46 +00001876 * established. Assumes the hardware has previously been reset and the
wdenk682011f2003-06-03 23:54:09 +00001877 * transmitter and receiver are not enabled.
1878 *****************************************************************************/
1879static int
1880e1000_setup_link(struct eth_device *nic)
1881{
1882 struct e1000_hw *hw = nic->priv;
wdenk682011f2003-06-03 23:54:09 +00001883 int32_t ret_val;
Rojhalat Ibrahim8712adf2013-10-07 18:30:39 +02001884#ifndef CONFIG_E1000_NO_NVM
1885 uint32_t ctrl_ext;
wdenk682011f2003-06-03 23:54:09 +00001886 uint16_t eeprom_data;
Rojhalat Ibrahim8712adf2013-10-07 18:30:39 +02001887#endif
wdenk682011f2003-06-03 23:54:09 +00001888
1889 DEBUGFUNC();
1890
Roy Zangaa070782009-07-31 13:34:02 +08001891 /* In the case of the phy reset being blocked, we already have a link.
1892 * We do not have to set it up again. */
1893 if (e1000_check_phy_reset_block(hw))
1894 return E1000_SUCCESS;
1895
Rojhalat Ibrahim8712adf2013-10-07 18:30:39 +02001896#ifndef CONFIG_E1000_NO_NVM
wdenk682011f2003-06-03 23:54:09 +00001897 /* Read and store word 0x0F of the EEPROM. This word contains bits
1898 * that determine the hardware's default PAUSE (flow control) mode,
1899 * a bit that determines whether the HW defaults to enabling or
1900 * disabling auto-negotiation, and the direction of the
1901 * SW defined pins. If there is no SW over-ride of the flow
1902 * control setting, then the variable hw->fc will
1903 * be initialized based on a value in the EEPROM.
1904 */
Roy Zangaa070782009-07-31 13:34:02 +08001905 if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1906 &eeprom_data) < 0) {
wdenk682011f2003-06-03 23:54:09 +00001907 DEBUGOUT("EEPROM Read Error\n");
1908 return -E1000_ERR_EEPROM;
1909 }
Rojhalat Ibrahim8712adf2013-10-07 18:30:39 +02001910#endif
wdenk682011f2003-06-03 23:54:09 +00001911 if (hw->fc == e1000_fc_default) {
Roy Zangaa070782009-07-31 13:34:02 +08001912 switch (hw->mac_type) {
1913 case e1000_ich8lan:
1914 case e1000_82573:
Roy Zang2c2668f2011-01-21 11:29:38 +08001915 case e1000_82574:
Marek Vasut95186062014-08-08 07:41:39 -07001916 case e1000_igb:
wdenk682011f2003-06-03 23:54:09 +00001917 hw->fc = e1000_fc_full;
Roy Zangaa070782009-07-31 13:34:02 +08001918 break;
1919 default:
Rojhalat Ibrahim8712adf2013-10-07 18:30:39 +02001920#ifndef CONFIG_E1000_NO_NVM
Roy Zangaa070782009-07-31 13:34:02 +08001921 ret_val = e1000_read_eeprom(hw,
1922 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1923 if (ret_val) {
1924 DEBUGOUT("EEPROM Read Error\n");
1925 return -E1000_ERR_EEPROM;
1926 }
Roy Zangaa070782009-07-31 13:34:02 +08001927 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1928 hw->fc = e1000_fc_none;
1929 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1930 EEPROM_WORD0F_ASM_DIR)
1931 hw->fc = e1000_fc_tx_pause;
1932 else
Rojhalat Ibrahim8712adf2013-10-07 18:30:39 +02001933#endif
Roy Zangaa070782009-07-31 13:34:02 +08001934 hw->fc = e1000_fc_full;
1935 break;
1936 }
wdenk682011f2003-06-03 23:54:09 +00001937 }
1938
1939 /* We want to save off the original Flow Control configuration just
1940 * in case we get disconnected and then reconnected into a different
1941 * hub or switch with different Flow Control capabilities.
1942 */
1943 if (hw->mac_type == e1000_82542_rev2_0)
1944 hw->fc &= (~e1000_fc_tx_pause);
1945
1946 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1947 hw->fc &= (~e1000_fc_rx_pause);
1948
1949 hw->original_fc = hw->fc;
1950
1951 DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1952
Rojhalat Ibrahim8712adf2013-10-07 18:30:39 +02001953#ifndef CONFIG_E1000_NO_NVM
wdenk682011f2003-06-03 23:54:09 +00001954 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1955 * polarity value for the SW controlled pins, and setup the
1956 * Extended Device Control reg with that info.
1957 * This is needed because one of the SW controlled pins is used for
1958 * signal detection. So this should be done before e1000_setup_pcs_link()
1959 * or e1000_phy_setup() is called.
1960 */
1961 if (hw->mac_type == e1000_82543) {
1962 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1963 SWDPIO__EXT_SHIFT);
1964 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1965 }
Rojhalat Ibrahim8712adf2013-10-07 18:30:39 +02001966#endif
wdenk682011f2003-06-03 23:54:09 +00001967
1968 /* Call the necessary subroutine to configure the link. */
1969 ret_val = (hw->media_type == e1000_media_type_fiber) ?
1970 e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
1971 if (ret_val < 0) {
1972 return ret_val;
1973 }
1974
1975 /* Initialize the flow control address, type, and PAUSE timer
1976 * registers to their default values. This is done even if flow
1977 * control is disabled, because it does not hurt anything to
1978 * initialize these registers.
1979 */
Roy Zangaa070782009-07-31 13:34:02 +08001980 DEBUGOUT("Initializing the Flow Control address, type"
1981 "and timer regs\n");
wdenk682011f2003-06-03 23:54:09 +00001982
Roy Zangaa070782009-07-31 13:34:02 +08001983 /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1984 if (hw->mac_type != e1000_ich8lan) {
1985 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1986 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1987 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1988 }
1989
wdenk682011f2003-06-03 23:54:09 +00001990 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1991
1992 /* Set the flow control receive threshold registers. Normally,
1993 * these registers will be set to a default threshold that may be
1994 * adjusted later by the driver's runtime code. However, if the
1995 * ability to transmit pause frames in not enabled, then these
wdenk8bde7f72003-06-27 21:31:46 +00001996 * registers will be set to 0.
wdenk682011f2003-06-03 23:54:09 +00001997 */
1998 if (!(hw->fc & e1000_fc_tx_pause)) {
1999 E1000_WRITE_REG(hw, FCRTL, 0);
2000 E1000_WRITE_REG(hw, FCRTH, 0);
2001 } else {
2002 /* We need to set up the Receive Threshold high and low water marks
2003 * as well as (optionally) enabling the transmission of XON frames.
2004 */
2005 if (hw->fc_send_xon) {
2006 E1000_WRITE_REG(hw, FCRTL,
2007 (hw->fc_low_water | E1000_FCRTL_XONE));
2008 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
2009 } else {
2010 E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
2011 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
2012 }
2013 }
2014 return ret_val;
2015}
2016
2017/******************************************************************************
2018 * Sets up link for a fiber based adapter
2019 *
2020 * hw - Struct containing variables accessed by shared code
2021 *
2022 * Manipulates Physical Coding Sublayer functions in order to configure
2023 * link. Assumes the hardware has been previously reset and the transmitter
2024 * and receiver are not enabled.
2025 *****************************************************************************/
2026static int
2027e1000_setup_fiber_link(struct eth_device *nic)
2028{
2029 struct e1000_hw *hw = nic->priv;
2030 uint32_t ctrl;
2031 uint32_t status;
2032 uint32_t txcw = 0;
2033 uint32_t i;
2034 uint32_t signal;
2035 int32_t ret_val;
2036
2037 DEBUGFUNC();
wdenk8bde7f72003-06-27 21:31:46 +00002038 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
2039 * set when the optics detect a signal. On older adapters, it will be
wdenk682011f2003-06-03 23:54:09 +00002040 * cleared when there is a signal
2041 */
2042 ctrl = E1000_READ_REG(hw, CTRL);
2043 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
2044 signal = E1000_CTRL_SWDPIN1;
2045 else
2046 signal = 0;
2047
2048 printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
2049 ctrl);
2050 /* Take the link out of reset */
2051 ctrl &= ~(E1000_CTRL_LRST);
2052
2053 e1000_config_collision_dist(hw);
2054
2055 /* Check for a software override of the flow control settings, and setup
2056 * the device accordingly. If auto-negotiation is enabled, then software
2057 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
2058 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
wdenk8bde7f72003-06-27 21:31:46 +00002059 * auto-negotiation is disabled, then software will have to manually
wdenk682011f2003-06-03 23:54:09 +00002060 * configure the two flow control enable bits in the CTRL register.
2061 *
2062 * The possible values of the "fc" parameter are:
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07002063 * 0: Flow control is completely disabled
2064 * 1: Rx flow control is enabled (we can receive pause frames, but
2065 * not send pause frames).
2066 * 2: Tx flow control is enabled (we can send pause frames but we do
2067 * not support receiving pause frames).
2068 * 3: Both Rx and TX flow control (symmetric) are enabled.
wdenk682011f2003-06-03 23:54:09 +00002069 */
2070 switch (hw->fc) {
2071 case e1000_fc_none:
2072 /* Flow control is completely disabled by a software over-ride. */
2073 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
2074 break;
2075 case e1000_fc_rx_pause:
wdenk8bde7f72003-06-27 21:31:46 +00002076 /* RX Flow control is enabled and TX Flow control is disabled by a
2077 * software over-ride. Since there really isn't a way to advertise
wdenk682011f2003-06-03 23:54:09 +00002078 * that we are capable of RX Pause ONLY, we will advertise that we
2079 * support both symmetric and asymmetric RX PAUSE. Later, we will
2080 * disable the adapter's ability to send PAUSE frames.
2081 */
2082 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2083 break;
2084 case e1000_fc_tx_pause:
wdenk8bde7f72003-06-27 21:31:46 +00002085 /* TX Flow control is enabled, and RX Flow control is disabled, by a
wdenk682011f2003-06-03 23:54:09 +00002086 * software over-ride.
2087 */
2088 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
2089 break;
2090 case e1000_fc_full:
2091 /* Flow control (both RX and TX) is enabled by a software over-ride. */
2092 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2093 break;
2094 default:
2095 DEBUGOUT("Flow control param set incorrectly\n");
2096 return -E1000_ERR_CONFIG;
2097 break;
2098 }
2099
2100 /* Since auto-negotiation is enabled, take the link out of reset (the link
2101 * will be in reset, because we previously reset the chip). This will
2102 * restart auto-negotiation. If auto-neogtiation is successful then the
2103 * link-up status bit will be set and the flow control enable bits (RFCE
2104 * and TFCE) will be set according to their negotiated value.
2105 */
2106 DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2107
2108 E1000_WRITE_REG(hw, TXCW, txcw);
2109 E1000_WRITE_REG(hw, CTRL, ctrl);
2110 E1000_WRITE_FLUSH(hw);
2111
2112 hw->txcw = txcw;
2113 mdelay(1);
2114
2115 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
wdenk8bde7f72003-06-27 21:31:46 +00002116 * indication in the Device Status Register. Time-out if a link isn't
2117 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
wdenk682011f2003-06-03 23:54:09 +00002118 * less than 500 milliseconds even if the other end is doing it in SW).
2119 */
2120 if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2121 DEBUGOUT("Looking for Link\n");
2122 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2123 mdelay(10);
2124 status = E1000_READ_REG(hw, STATUS);
2125 if (status & E1000_STATUS_LU)
2126 break;
2127 }
2128 if (i == (LINK_UP_TIMEOUT / 10)) {
wdenk8bde7f72003-06-27 21:31:46 +00002129 /* AutoNeg failed to achieve a link, so we'll call
wdenk682011f2003-06-03 23:54:09 +00002130 * e1000_check_for_link. This routine will force the link up if we
2131 * detect a signal. This will allow us to communicate with
2132 * non-autonegotiating link partners.
2133 */
2134 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2135 hw->autoneg_failed = 1;
2136 ret_val = e1000_check_for_link(nic);
2137 if (ret_val < 0) {
2138 DEBUGOUT("Error while checking for link\n");
2139 return ret_val;
2140 }
2141 hw->autoneg_failed = 0;
2142 } else {
2143 hw->autoneg_failed = 0;
2144 DEBUGOUT("Valid Link Found\n");
2145 }
2146 } else {
2147 DEBUGOUT("No Signal Detected\n");
2148 return -E1000_ERR_NOLINK;
2149 }
2150 return 0;
2151}
2152
2153/******************************************************************************
Roy Zangaa070782009-07-31 13:34:02 +08002154* Make sure we have a valid PHY and change PHY mode before link setup.
wdenk682011f2003-06-03 23:54:09 +00002155*
2156* hw - Struct containing variables accessed by shared code
2157******************************************************************************/
Roy Zangaa070782009-07-31 13:34:02 +08002158static int32_t
2159e1000_copper_link_preconfig(struct e1000_hw *hw)
wdenk682011f2003-06-03 23:54:09 +00002160{
wdenk682011f2003-06-03 23:54:09 +00002161 uint32_t ctrl;
2162 int32_t ret_val;
wdenk682011f2003-06-03 23:54:09 +00002163 uint16_t phy_data;
2164
2165 DEBUGFUNC();
2166
2167 ctrl = E1000_READ_REG(hw, CTRL);
2168 /* With 82543, we need to force speed and duplex on the MAC equal to what
2169 * the PHY speed and duplex configuration is. In addition, we need to
2170 * perform a hardware reset on the PHY to take it out of reset.
2171 */
2172 if (hw->mac_type > e1000_82543) {
2173 ctrl |= E1000_CTRL_SLU;
2174 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2175 E1000_WRITE_REG(hw, CTRL, ctrl);
2176 } else {
Roy Zangaa070782009-07-31 13:34:02 +08002177 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2178 | E1000_CTRL_SLU);
wdenk682011f2003-06-03 23:54:09 +00002179 E1000_WRITE_REG(hw, CTRL, ctrl);
Roy Zangaa070782009-07-31 13:34:02 +08002180 ret_val = e1000_phy_hw_reset(hw);
2181 if (ret_val)
2182 return ret_val;
wdenk682011f2003-06-03 23:54:09 +00002183 }
2184
2185 /* Make sure we have a valid PHY */
2186 ret_val = e1000_detect_gig_phy(hw);
Roy Zangaa070782009-07-31 13:34:02 +08002187 if (ret_val) {
wdenk682011f2003-06-03 23:54:09 +00002188 DEBUGOUT("Error, did not detect valid phy.\n");
2189 return ret_val;
2190 }
Minghuan Lian5abf13e2015-03-19 09:43:51 -07002191 DEBUGOUT("Phy ID = %x\n", hw->phy_id);
wdenk682011f2003-06-03 23:54:09 +00002192
Roy Zangaa070782009-07-31 13:34:02 +08002193 /* Set PHY to class A mode (if necessary) */
2194 ret_val = e1000_set_phy_mode(hw);
2195 if (ret_val)
2196 return ret_val;
Roy Zangaa070782009-07-31 13:34:02 +08002197 if ((hw->mac_type == e1000_82545_rev_3) ||
2198 (hw->mac_type == e1000_82546_rev_3)) {
2199 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2200 &phy_data);
2201 phy_data |= 0x00000008;
2202 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2203 phy_data);
wdenk682011f2003-06-03 23:54:09 +00002204 }
Roy Zangaa070782009-07-31 13:34:02 +08002205
2206 if (hw->mac_type <= e1000_82543 ||
2207 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2208 hw->mac_type == e1000_82541_rev_2
2209 || hw->mac_type == e1000_82547_rev_2)
York Sun472d5462013-04-01 11:29:11 -07002210 hw->phy_reset_disable = false;
Roy Zangaa070782009-07-31 13:34:02 +08002211
2212 return E1000_SUCCESS;
2213}
2214
2215/*****************************************************************************
2216 *
2217 * This function sets the lplu state according to the active flag. When
2218 * activating lplu this function also disables smart speed and vise versa.
2219 * lplu will not be activated unless the device autonegotiation advertisment
2220 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2221 * hw: Struct containing variables accessed by shared code
2222 * active - true to enable lplu false to disable lplu.
2223 *
2224 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2225 * E1000_SUCCESS at any other case.
2226 *
2227 ****************************************************************************/
2228
2229static int32_t
York Sun472d5462013-04-01 11:29:11 -07002230e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
Roy Zangaa070782009-07-31 13:34:02 +08002231{
2232 uint32_t phy_ctrl = 0;
2233 int32_t ret_val;
2234 uint16_t phy_data;
2235 DEBUGFUNC();
2236
2237 if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2238 && hw->phy_type != e1000_phy_igp_3)
2239 return E1000_SUCCESS;
2240
2241 /* During driver activity LPLU should not be used or it will attain link
2242 * from the lowest speeds starting from 10Mbps. The capability is used
2243 * for Dx transitions and states */
2244 if (hw->mac_type == e1000_82541_rev_2
2245 || hw->mac_type == e1000_82547_rev_2) {
2246 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2247 &phy_data);
2248 if (ret_val)
2249 return ret_val;
2250 } else if (hw->mac_type == e1000_ich8lan) {
2251 /* MAC writes into PHY register based on the state transition
2252 * and start auto-negotiation. SW driver can overwrite the
2253 * settings in CSR PHY power control E1000_PHY_CTRL register. */
2254 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2255 } else {
2256 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2257 &phy_data);
2258 if (ret_val)
2259 return ret_val;
2260 }
2261
2262 if (!active) {
2263 if (hw->mac_type == e1000_82541_rev_2 ||
2264 hw->mac_type == e1000_82547_rev_2) {
2265 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2266 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2267 phy_data);
2268 if (ret_val)
2269 return ret_val;
2270 } else {
2271 if (hw->mac_type == e1000_ich8lan) {
2272 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2273 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2274 } else {
2275 phy_data &= ~IGP02E1000_PM_D3_LPLU;
2276 ret_val = e1000_write_phy_reg(hw,
2277 IGP02E1000_PHY_POWER_MGMT, phy_data);
2278 if (ret_val)
2279 return ret_val;
2280 }
2281 }
2282
2283 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
2284 * Dx states where the power conservation is most important. During
2285 * driver activity we should enable SmartSpeed, so performance is
2286 * maintained. */
2287 if (hw->smart_speed == e1000_smart_speed_on) {
2288 ret_val = e1000_read_phy_reg(hw,
2289 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2290 if (ret_val)
2291 return ret_val;
2292
2293 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2294 ret_val = e1000_write_phy_reg(hw,
2295 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2296 if (ret_val)
2297 return ret_val;
2298 } else if (hw->smart_speed == e1000_smart_speed_off) {
2299 ret_val = e1000_read_phy_reg(hw,
2300 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2301 if (ret_val)
2302 return ret_val;
2303
2304 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2305 ret_val = e1000_write_phy_reg(hw,
2306 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2307 if (ret_val)
2308 return ret_val;
2309 }
2310
2311 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2312 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2313 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2314
2315 if (hw->mac_type == e1000_82541_rev_2 ||
2316 hw->mac_type == e1000_82547_rev_2) {
2317 phy_data |= IGP01E1000_GMII_FLEX_SPD;
2318 ret_val = e1000_write_phy_reg(hw,
2319 IGP01E1000_GMII_FIFO, phy_data);
2320 if (ret_val)
2321 return ret_val;
2322 } else {
2323 if (hw->mac_type == e1000_ich8lan) {
2324 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2325 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2326 } else {
2327 phy_data |= IGP02E1000_PM_D3_LPLU;
2328 ret_val = e1000_write_phy_reg(hw,
2329 IGP02E1000_PHY_POWER_MGMT, phy_data);
2330 if (ret_val)
2331 return ret_val;
2332 }
2333 }
2334
2335 /* When LPLU is enabled we should disable SmartSpeed */
2336 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2337 &phy_data);
2338 if (ret_val)
2339 return ret_val;
2340
2341 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2342 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2343 phy_data);
2344 if (ret_val)
2345 return ret_val;
2346 }
2347 return E1000_SUCCESS;
2348}
2349
2350/*****************************************************************************
2351 *
2352 * This function sets the lplu d0 state according to the active flag. When
2353 * activating lplu this function also disables smart speed and vise versa.
2354 * lplu will not be activated unless the device autonegotiation advertisment
2355 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2356 * hw: Struct containing variables accessed by shared code
2357 * active - true to enable lplu false to disable lplu.
2358 *
2359 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2360 * E1000_SUCCESS at any other case.
2361 *
2362 ****************************************************************************/
2363
2364static int32_t
York Sun472d5462013-04-01 11:29:11 -07002365e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
Roy Zangaa070782009-07-31 13:34:02 +08002366{
2367 uint32_t phy_ctrl = 0;
2368 int32_t ret_val;
2369 uint16_t phy_data;
2370 DEBUGFUNC();
2371
2372 if (hw->mac_type <= e1000_82547_rev_2)
2373 return E1000_SUCCESS;
2374
2375 if (hw->mac_type == e1000_ich8lan) {
2376 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
Marek Vasut95186062014-08-08 07:41:39 -07002377 } else if (hw->mac_type == e1000_igb) {
2378 phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL);
Roy Zangaa070782009-07-31 13:34:02 +08002379 } else {
2380 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2381 &phy_data);
2382 if (ret_val)
2383 return ret_val;
2384 }
2385
2386 if (!active) {
2387 if (hw->mac_type == e1000_ich8lan) {
2388 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2389 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
Marek Vasut95186062014-08-08 07:41:39 -07002390 } else if (hw->mac_type == e1000_igb) {
2391 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2392 E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
Roy Zangaa070782009-07-31 13:34:02 +08002393 } else {
2394 phy_data &= ~IGP02E1000_PM_D0_LPLU;
2395 ret_val = e1000_write_phy_reg(hw,
2396 IGP02E1000_PHY_POWER_MGMT, phy_data);
2397 if (ret_val)
2398 return ret_val;
2399 }
2400
Marek Vasut95186062014-08-08 07:41:39 -07002401 if (hw->mac_type == e1000_igb)
2402 return E1000_SUCCESS;
2403
Roy Zangaa070782009-07-31 13:34:02 +08002404 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
2405 * Dx states where the power conservation is most important. During
2406 * driver activity we should enable SmartSpeed, so performance is
2407 * maintained. */
2408 if (hw->smart_speed == e1000_smart_speed_on) {
2409 ret_val = e1000_read_phy_reg(hw,
2410 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2411 if (ret_val)
2412 return ret_val;
2413
2414 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2415 ret_val = e1000_write_phy_reg(hw,
2416 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2417 if (ret_val)
2418 return ret_val;
2419 } else if (hw->smart_speed == e1000_smart_speed_off) {
2420 ret_val = e1000_read_phy_reg(hw,
2421 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2422 if (ret_val)
2423 return ret_val;
2424
2425 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2426 ret_val = e1000_write_phy_reg(hw,
2427 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2428 if (ret_val)
2429 return ret_val;
2430 }
2431
2432
2433 } else {
2434
2435 if (hw->mac_type == e1000_ich8lan) {
2436 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2437 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
Marek Vasut95186062014-08-08 07:41:39 -07002438 } else if (hw->mac_type == e1000_igb) {
2439 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2440 E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
Roy Zangaa070782009-07-31 13:34:02 +08002441 } else {
2442 phy_data |= IGP02E1000_PM_D0_LPLU;
2443 ret_val = e1000_write_phy_reg(hw,
2444 IGP02E1000_PHY_POWER_MGMT, phy_data);
2445 if (ret_val)
2446 return ret_val;
2447 }
2448
Marek Vasut95186062014-08-08 07:41:39 -07002449 if (hw->mac_type == e1000_igb)
2450 return E1000_SUCCESS;
2451
Roy Zangaa070782009-07-31 13:34:02 +08002452 /* When LPLU is enabled we should disable SmartSpeed */
2453 ret_val = e1000_read_phy_reg(hw,
2454 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2455 if (ret_val)
2456 return ret_val;
2457
2458 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2459 ret_val = e1000_write_phy_reg(hw,
2460 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2461 if (ret_val)
2462 return ret_val;
2463
2464 }
2465 return E1000_SUCCESS;
2466}
2467
2468/********************************************************************
2469* Copper link setup for e1000_phy_igp series.
2470*
2471* hw - Struct containing variables accessed by shared code
2472*********************************************************************/
2473static int32_t
2474e1000_copper_link_igp_setup(struct e1000_hw *hw)
2475{
2476 uint32_t led_ctrl;
2477 int32_t ret_val;
2478 uint16_t phy_data;
2479
Timur Tabif81ecb52009-08-17 15:55:38 -05002480 DEBUGFUNC();
Roy Zangaa070782009-07-31 13:34:02 +08002481
2482 if (hw->phy_reset_disable)
2483 return E1000_SUCCESS;
2484
2485 ret_val = e1000_phy_reset(hw);
2486 if (ret_val) {
2487 DEBUGOUT("Error Resetting the PHY\n");
2488 return ret_val;
2489 }
2490
2491 /* Wait 15ms for MAC to configure PHY from eeprom settings */
2492 mdelay(15);
2493 if (hw->mac_type != e1000_ich8lan) {
2494 /* Configure activity LED after PHY reset */
2495 led_ctrl = E1000_READ_REG(hw, LEDCTL);
2496 led_ctrl &= IGP_ACTIVITY_LED_MASK;
2497 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2498 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2499 }
2500
2501 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2502 if (hw->phy_type == e1000_phy_igp) {
2503 /* disable lplu d3 during driver init */
York Sun472d5462013-04-01 11:29:11 -07002504 ret_val = e1000_set_d3_lplu_state(hw, false);
Roy Zangaa070782009-07-31 13:34:02 +08002505 if (ret_val) {
2506 DEBUGOUT("Error Disabling LPLU D3\n");
2507 return ret_val;
2508 }
2509 }
2510
2511 /* disable lplu d0 during driver init */
York Sun472d5462013-04-01 11:29:11 -07002512 ret_val = e1000_set_d0_lplu_state(hw, false);
Roy Zangaa070782009-07-31 13:34:02 +08002513 if (ret_val) {
2514 DEBUGOUT("Error Disabling LPLU D0\n");
2515 return ret_val;
2516 }
2517 /* Configure mdi-mdix settings */
2518 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2519 if (ret_val)
2520 return ret_val;
2521
2522 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2523 hw->dsp_config_state = e1000_dsp_config_disabled;
2524 /* Force MDI for earlier revs of the IGP PHY */
2525 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2526 | IGP01E1000_PSCR_FORCE_MDI_MDIX);
2527 hw->mdix = 1;
2528
2529 } else {
2530 hw->dsp_config_state = e1000_dsp_config_enabled;
2531 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2532
2533 switch (hw->mdix) {
2534 case 1:
2535 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2536 break;
2537 case 2:
2538 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2539 break;
2540 case 0:
2541 default:
2542 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2543 break;
2544 }
2545 }
2546 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2547 if (ret_val)
2548 return ret_val;
2549
2550 /* set auto-master slave resolution settings */
2551 if (hw->autoneg) {
2552 e1000_ms_type phy_ms_setting = hw->master_slave;
2553
2554 if (hw->ffe_config_state == e1000_ffe_config_active)
2555 hw->ffe_config_state = e1000_ffe_config_enabled;
2556
2557 if (hw->dsp_config_state == e1000_dsp_config_activated)
2558 hw->dsp_config_state = e1000_dsp_config_enabled;
2559
2560 /* when autonegotiation advertisment is only 1000Mbps then we
2561 * should disable SmartSpeed and enable Auto MasterSlave
2562 * resolution as hardware default. */
2563 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2564 /* Disable SmartSpeed */
2565 ret_val = e1000_read_phy_reg(hw,
2566 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2567 if (ret_val)
2568 return ret_val;
2569 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2570 ret_val = e1000_write_phy_reg(hw,
2571 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2572 if (ret_val)
2573 return ret_val;
2574 /* Set auto Master/Slave resolution process */
2575 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2576 &phy_data);
2577 if (ret_val)
2578 return ret_val;
2579 phy_data &= ~CR_1000T_MS_ENABLE;
2580 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2581 phy_data);
2582 if (ret_val)
2583 return ret_val;
2584 }
2585
2586 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2587 if (ret_val)
2588 return ret_val;
2589
2590 /* load defaults for future use */
2591 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2592 ((phy_data & CR_1000T_MS_VALUE) ?
2593 e1000_ms_force_master :
2594 e1000_ms_force_slave) :
2595 e1000_ms_auto;
2596
2597 switch (phy_ms_setting) {
2598 case e1000_ms_force_master:
2599 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2600 break;
2601 case e1000_ms_force_slave:
2602 phy_data |= CR_1000T_MS_ENABLE;
2603 phy_data &= ~(CR_1000T_MS_VALUE);
2604 break;
2605 case e1000_ms_auto:
2606 phy_data &= ~CR_1000T_MS_ENABLE;
2607 default:
2608 break;
2609 }
2610 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2611 if (ret_val)
2612 return ret_val;
2613 }
2614
2615 return E1000_SUCCESS;
2616}
2617
2618/*****************************************************************************
2619 * This function checks the mode of the firmware.
2620 *
York Sun472d5462013-04-01 11:29:11 -07002621 * returns - true when the mode is IAMT or false.
Roy Zangaa070782009-07-31 13:34:02 +08002622 ****************************************************************************/
York Sun472d5462013-04-01 11:29:11 -07002623bool
Roy Zangaa070782009-07-31 13:34:02 +08002624e1000_check_mng_mode(struct e1000_hw *hw)
2625{
2626 uint32_t fwsm;
2627 DEBUGFUNC();
2628
2629 fwsm = E1000_READ_REG(hw, FWSM);
2630
2631 if (hw->mac_type == e1000_ich8lan) {
2632 if ((fwsm & E1000_FWSM_MODE_MASK) ==
2633 (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
York Sun472d5462013-04-01 11:29:11 -07002634 return true;
Roy Zangaa070782009-07-31 13:34:02 +08002635 } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2636 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
York Sun472d5462013-04-01 11:29:11 -07002637 return true;
Roy Zangaa070782009-07-31 13:34:02 +08002638
York Sun472d5462013-04-01 11:29:11 -07002639 return false;
Roy Zangaa070782009-07-31 13:34:02 +08002640}
2641
2642static int32_t
2643e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2644{
Kyle Moffett987b43a2010-09-13 05:52:22 +00002645 uint16_t swfw = E1000_SWFW_PHY0_SM;
Roy Zangaa070782009-07-31 13:34:02 +08002646 uint32_t reg_val;
Roy Zangaa070782009-07-31 13:34:02 +08002647 DEBUGFUNC();
2648
Kyle Moffett987b43a2010-09-13 05:52:22 +00002649 if (e1000_is_second_port(hw))
Roy Zangaa070782009-07-31 13:34:02 +08002650 swfw = E1000_SWFW_PHY1_SM;
Kyle Moffett987b43a2010-09-13 05:52:22 +00002651
Roy Zangaa070782009-07-31 13:34:02 +08002652 if (e1000_swfw_sync_acquire(hw, swfw))
2653 return -E1000_ERR_SWFW_SYNC;
2654
2655 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2656 & E1000_KUMCTRLSTA_OFFSET) | data;
2657 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2658 udelay(2);
2659
2660 return E1000_SUCCESS;
2661}
2662
2663static int32_t
2664e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2665{
Kyle Moffett987b43a2010-09-13 05:52:22 +00002666 uint16_t swfw = E1000_SWFW_PHY0_SM;
Roy Zangaa070782009-07-31 13:34:02 +08002667 uint32_t reg_val;
Roy Zangaa070782009-07-31 13:34:02 +08002668 DEBUGFUNC();
2669
Kyle Moffett987b43a2010-09-13 05:52:22 +00002670 if (e1000_is_second_port(hw))
Roy Zangaa070782009-07-31 13:34:02 +08002671 swfw = E1000_SWFW_PHY1_SM;
Kyle Moffett987b43a2010-09-13 05:52:22 +00002672
Marek Vasut95186062014-08-08 07:41:39 -07002673 if (e1000_swfw_sync_acquire(hw, swfw)) {
2674 debug("%s[%i]\n", __func__, __LINE__);
Roy Zangaa070782009-07-31 13:34:02 +08002675 return -E1000_ERR_SWFW_SYNC;
Marek Vasut95186062014-08-08 07:41:39 -07002676 }
Roy Zangaa070782009-07-31 13:34:02 +08002677
2678 /* Write register address */
2679 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2680 E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2681 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2682 udelay(2);
2683
2684 /* Read the data returned */
2685 reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2686 *data = (uint16_t)reg_val;
2687
2688 return E1000_SUCCESS;
2689}
2690
2691/********************************************************************
2692* Copper link setup for e1000_phy_gg82563 series.
2693*
2694* hw - Struct containing variables accessed by shared code
2695*********************************************************************/
2696static int32_t
2697e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2698{
2699 int32_t ret_val;
2700 uint16_t phy_data;
2701 uint32_t reg_data;
2702
2703 DEBUGFUNC();
2704
2705 if (!hw->phy_reset_disable) {
2706 /* Enable CRS on TX for half-duplex operation. */
2707 ret_val = e1000_read_phy_reg(hw,
2708 GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2709 if (ret_val)
2710 return ret_val;
2711
2712 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2713 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2714 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2715
2716 ret_val = e1000_write_phy_reg(hw,
2717 GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2718 if (ret_val)
2719 return ret_val;
2720
2721 /* Options:
2722 * MDI/MDI-X = 0 (default)
2723 * 0 - Auto for all speeds
2724 * 1 - MDI mode
2725 * 2 - MDI-X mode
2726 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2727 */
2728 ret_val = e1000_read_phy_reg(hw,
2729 GG82563_PHY_SPEC_CTRL, &phy_data);
2730 if (ret_val)
2731 return ret_val;
2732
2733 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2734
2735 switch (hw->mdix) {
2736 case 1:
2737 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2738 break;
2739 case 2:
2740 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2741 break;
2742 case 0:
2743 default:
2744 phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2745 break;
2746 }
2747
2748 /* Options:
2749 * disable_polarity_correction = 0 (default)
2750 * Automatic Correction for Reversed Cable Polarity
2751 * 0 - Disabled
2752 * 1 - Enabled
2753 */
2754 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2755 ret_val = e1000_write_phy_reg(hw,
2756 GG82563_PHY_SPEC_CTRL, phy_data);
2757
2758 if (ret_val)
2759 return ret_val;
2760
2761 /* SW Reset the PHY so all changes take effect */
2762 ret_val = e1000_phy_reset(hw);
2763 if (ret_val) {
2764 DEBUGOUT("Error Resetting the PHY\n");
2765 return ret_val;
2766 }
2767 } /* phy_reset_disable */
2768
2769 if (hw->mac_type == e1000_80003es2lan) {
2770 /* Bypass RX and TX FIFO's */
2771 ret_val = e1000_write_kmrn_reg(hw,
2772 E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2773 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2774 | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2775 if (ret_val)
2776 return ret_val;
2777
2778 ret_val = e1000_read_phy_reg(hw,
2779 GG82563_PHY_SPEC_CTRL_2, &phy_data);
2780 if (ret_val)
2781 return ret_val;
2782
2783 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2784 ret_val = e1000_write_phy_reg(hw,
2785 GG82563_PHY_SPEC_CTRL_2, phy_data);
2786
2787 if (ret_val)
2788 return ret_val;
2789
2790 reg_data = E1000_READ_REG(hw, CTRL_EXT);
2791 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2792 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2793
2794 ret_val = e1000_read_phy_reg(hw,
2795 GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2796 if (ret_val)
2797 return ret_val;
2798
2799 /* Do not init these registers when the HW is in IAMT mode, since the
2800 * firmware will have already initialized them. We only initialize
2801 * them if the HW is not in IAMT mode.
2802 */
York Sun472d5462013-04-01 11:29:11 -07002803 if (e1000_check_mng_mode(hw) == false) {
Roy Zangaa070782009-07-31 13:34:02 +08002804 /* Enable Electrical Idle on the PHY */
2805 phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2806 ret_val = e1000_write_phy_reg(hw,
2807 GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2808 if (ret_val)
2809 return ret_val;
2810
2811 ret_val = e1000_read_phy_reg(hw,
2812 GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2813 if (ret_val)
2814 return ret_val;
2815
2816 phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2817 ret_val = e1000_write_phy_reg(hw,
2818 GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2819
2820 if (ret_val)
2821 return ret_val;
2822 }
2823
2824 /* Workaround: Disable padding in Kumeran interface in the MAC
2825 * and in the PHY to avoid CRC errors.
2826 */
2827 ret_val = e1000_read_phy_reg(hw,
2828 GG82563_PHY_INBAND_CTRL, &phy_data);
2829 if (ret_val)
2830 return ret_val;
2831 phy_data |= GG82563_ICR_DIS_PADDING;
2832 ret_val = e1000_write_phy_reg(hw,
2833 GG82563_PHY_INBAND_CTRL, phy_data);
2834 if (ret_val)
2835 return ret_val;
2836 }
2837 return E1000_SUCCESS;
2838}
2839
2840/********************************************************************
2841* Copper link setup for e1000_phy_m88 series.
2842*
2843* hw - Struct containing variables accessed by shared code
2844*********************************************************************/
2845static int32_t
2846e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2847{
2848 int32_t ret_val;
2849 uint16_t phy_data;
2850
2851 DEBUGFUNC();
2852
2853 if (hw->phy_reset_disable)
2854 return E1000_SUCCESS;
2855
2856 /* Enable CRS on TX. This must be set for half-duplex operation. */
2857 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2858 if (ret_val)
2859 return ret_val;
2860
wdenk682011f2003-06-03 23:54:09 +00002861 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2862
wdenk682011f2003-06-03 23:54:09 +00002863 /* Options:
2864 * MDI/MDI-X = 0 (default)
2865 * 0 - Auto for all speeds
2866 * 1 - MDI mode
2867 * 2 - MDI-X mode
2868 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2869 */
2870 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
Roy Zangaa070782009-07-31 13:34:02 +08002871
wdenk682011f2003-06-03 23:54:09 +00002872 switch (hw->mdix) {
2873 case 1:
2874 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2875 break;
2876 case 2:
2877 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2878 break;
2879 case 3:
2880 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2881 break;
2882 case 0:
2883 default:
2884 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2885 break;
2886 }
wdenk682011f2003-06-03 23:54:09 +00002887
wdenk682011f2003-06-03 23:54:09 +00002888 /* Options:
2889 * disable_polarity_correction = 0 (default)
Roy Zangaa070782009-07-31 13:34:02 +08002890 * Automatic Correction for Reversed Cable Polarity
wdenk682011f2003-06-03 23:54:09 +00002891 * 0 - Disabled
2892 * 1 - Enabled
2893 */
2894 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
Roy Zangaa070782009-07-31 13:34:02 +08002895 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2896 if (ret_val)
2897 return ret_val;
wdenk682011f2003-06-03 23:54:09 +00002898
Roy Zangaa070782009-07-31 13:34:02 +08002899 if (hw->phy_revision < M88E1011_I_REV_4) {
2900 /* Force TX_CLK in the Extended PHY Specific Control Register
2901 * to 25MHz clock.
2902 */
2903 ret_val = e1000_read_phy_reg(hw,
2904 M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2905 if (ret_val)
2906 return ret_val;
2907
2908 phy_data |= M88E1000_EPSCR_TX_CLK_25;
2909
2910 if ((hw->phy_revision == E1000_REVISION_2) &&
2911 (hw->phy_id == M88E1111_I_PHY_ID)) {
2912 /* Vidalia Phy, set the downshift counter to 5x */
2913 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2914 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2915 ret_val = e1000_write_phy_reg(hw,
2916 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2917 if (ret_val)
2918 return ret_val;
2919 } else {
2920 /* Configure Master and Slave downshift values */
2921 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2922 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2923 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2924 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2925 ret_val = e1000_write_phy_reg(hw,
2926 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2927 if (ret_val)
2928 return ret_val;
2929 }
wdenk682011f2003-06-03 23:54:09 +00002930 }
2931
2932 /* SW Reset the PHY so all changes take effect */
2933 ret_val = e1000_phy_reset(hw);
Roy Zangaa070782009-07-31 13:34:02 +08002934 if (ret_val) {
wdenk682011f2003-06-03 23:54:09 +00002935 DEBUGOUT("Error Resetting the PHY\n");
2936 return ret_val;
2937 }
2938
Roy Zangaa070782009-07-31 13:34:02 +08002939 return E1000_SUCCESS;
2940}
wdenk682011f2003-06-03 23:54:09 +00002941
Roy Zangaa070782009-07-31 13:34:02 +08002942/********************************************************************
2943* Setup auto-negotiation and flow control advertisements,
2944* and then perform auto-negotiation.
2945*
2946* hw - Struct containing variables accessed by shared code
2947*********************************************************************/
2948static int32_t
2949e1000_copper_link_autoneg(struct e1000_hw *hw)
2950{
2951 int32_t ret_val;
2952 uint16_t phy_data;
2953
2954 DEBUGFUNC();
2955
wdenk682011f2003-06-03 23:54:09 +00002956 /* Perform some bounds checking on the hw->autoneg_advertised
2957 * parameter. If this variable is zero, then set it to the default.
2958 */
2959 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2960
2961 /* If autoneg_advertised is zero, we assume it was not defaulted
2962 * by the calling code so we set to advertise full capability.
2963 */
2964 if (hw->autoneg_advertised == 0)
2965 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2966
Roy Zangaa070782009-07-31 13:34:02 +08002967 /* IFE phy only supports 10/100 */
2968 if (hw->phy_type == e1000_phy_ife)
2969 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2970
wdenk682011f2003-06-03 23:54:09 +00002971 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2972 ret_val = e1000_phy_setup_autoneg(hw);
Roy Zangaa070782009-07-31 13:34:02 +08002973 if (ret_val) {
wdenk682011f2003-06-03 23:54:09 +00002974 DEBUGOUT("Error Setting up Auto-Negotiation\n");
2975 return ret_val;
2976 }
2977 DEBUGOUT("Restarting Auto-Neg\n");
2978
2979 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
2980 * the Auto Neg Restart bit in the PHY control register.
2981 */
Roy Zangaa070782009-07-31 13:34:02 +08002982 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2983 if (ret_val)
2984 return ret_val;
2985
wdenk682011f2003-06-03 23:54:09 +00002986 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
Roy Zangaa070782009-07-31 13:34:02 +08002987 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2988 if (ret_val)
2989 return ret_val;
2990
wdenk682011f2003-06-03 23:54:09 +00002991 /* Does the user want to wait for Auto-Neg to complete here, or
2992 * check at a later time (for example, callback routine).
2993 */
Roy Zangaa070782009-07-31 13:34:02 +08002994 /* If we do not wait for autonegtation to complete I
2995 * do not see a valid link status.
2996 * wait_autoneg_complete = 1 .
2997 */
wdenk682011f2003-06-03 23:54:09 +00002998 if (hw->wait_autoneg_complete) {
2999 ret_val = e1000_wait_autoneg(hw);
Roy Zangaa070782009-07-31 13:34:02 +08003000 if (ret_val) {
3001 DEBUGOUT("Error while waiting for autoneg"
3002 "to complete\n");
wdenk682011f2003-06-03 23:54:09 +00003003 return ret_val;
3004 }
3005 }
Roy Zangaa070782009-07-31 13:34:02 +08003006
York Sun472d5462013-04-01 11:29:11 -07003007 hw->get_link_status = true;
Roy Zangaa070782009-07-31 13:34:02 +08003008
3009 return E1000_SUCCESS;
3010}
3011
3012/******************************************************************************
3013* Config the MAC and the PHY after link is up.
3014* 1) Set up the MAC to the current PHY speed/duplex
3015* if we are on 82543. If we
3016* are on newer silicon, we only need to configure
3017* collision distance in the Transmit Control Register.
3018* 2) Set up flow control on the MAC to that established with
3019* the link partner.
3020* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
3021*
3022* hw - Struct containing variables accessed by shared code
3023******************************************************************************/
3024static int32_t
3025e1000_copper_link_postconfig(struct e1000_hw *hw)
3026{
3027 int32_t ret_val;
3028 DEBUGFUNC();
3029
3030 if (hw->mac_type >= e1000_82544) {
3031 e1000_config_collision_dist(hw);
3032 } else {
3033 ret_val = e1000_config_mac_to_phy(hw);
3034 if (ret_val) {
3035 DEBUGOUT("Error configuring MAC to PHY settings\n");
3036 return ret_val;
3037 }
3038 }
3039 ret_val = e1000_config_fc_after_link_up(hw);
3040 if (ret_val) {
3041 DEBUGOUT("Error Configuring Flow Control\n");
wdenk682011f2003-06-03 23:54:09 +00003042 return ret_val;
3043 }
Roy Zangaa070782009-07-31 13:34:02 +08003044 return E1000_SUCCESS;
3045}
3046
3047/******************************************************************************
3048* Detects which PHY is present and setup the speed and duplex
3049*
3050* hw - Struct containing variables accessed by shared code
3051******************************************************************************/
3052static int
3053e1000_setup_copper_link(struct eth_device *nic)
3054{
3055 struct e1000_hw *hw = nic->priv;
3056 int32_t ret_val;
3057 uint16_t i;
3058 uint16_t phy_data;
3059 uint16_t reg_data;
3060
3061 DEBUGFUNC();
3062
3063 switch (hw->mac_type) {
3064 case e1000_80003es2lan:
3065 case e1000_ich8lan:
3066 /* Set the mac to wait the maximum time between each
3067 * iteration and increase the max iterations when
3068 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
3069 ret_val = e1000_write_kmrn_reg(hw,
3070 GG82563_REG(0x34, 4), 0xFFFF);
3071 if (ret_val)
3072 return ret_val;
3073 ret_val = e1000_read_kmrn_reg(hw,
3074 GG82563_REG(0x34, 9), &reg_data);
3075 if (ret_val)
3076 return ret_val;
3077 reg_data |= 0x3F;
3078 ret_val = e1000_write_kmrn_reg(hw,
3079 GG82563_REG(0x34, 9), reg_data);
3080 if (ret_val)
3081 return ret_val;
3082 default:
3083 break;
3084 }
3085
3086 /* Check if it is a valid PHY and set PHY mode if necessary. */
3087 ret_val = e1000_copper_link_preconfig(hw);
3088 if (ret_val)
3089 return ret_val;
3090 switch (hw->mac_type) {
3091 case e1000_80003es2lan:
3092 /* Kumeran registers are written-only */
3093 reg_data =
3094 E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
3095 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
3096 ret_val = e1000_write_kmrn_reg(hw,
3097 E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
3098 if (ret_val)
3099 return ret_val;
3100 break;
3101 default:
3102 break;
3103 }
3104
3105 if (hw->phy_type == e1000_phy_igp ||
3106 hw->phy_type == e1000_phy_igp_3 ||
3107 hw->phy_type == e1000_phy_igp_2) {
3108 ret_val = e1000_copper_link_igp_setup(hw);
3109 if (ret_val)
3110 return ret_val;
Marek Vasut95186062014-08-08 07:41:39 -07003111 } else if (hw->phy_type == e1000_phy_m88 ||
3112 hw->phy_type == e1000_phy_igb) {
Roy Zangaa070782009-07-31 13:34:02 +08003113 ret_val = e1000_copper_link_mgp_setup(hw);
3114 if (ret_val)
3115 return ret_val;
3116 } else if (hw->phy_type == e1000_phy_gg82563) {
3117 ret_val = e1000_copper_link_ggp_setup(hw);
3118 if (ret_val)
3119 return ret_val;
3120 }
3121
3122 /* always auto */
3123 /* Setup autoneg and flow control advertisement
3124 * and perform autonegotiation */
3125 ret_val = e1000_copper_link_autoneg(hw);
3126 if (ret_val)
3127 return ret_val;
wdenk682011f2003-06-03 23:54:09 +00003128
3129 /* Check link status. Wait up to 100 microseconds for link to become
3130 * valid.
3131 */
3132 for (i = 0; i < 10; i++) {
Roy Zangaa070782009-07-31 13:34:02 +08003133 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3134 if (ret_val)
3135 return ret_val;
3136 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3137 if (ret_val)
3138 return ret_val;
3139
wdenk682011f2003-06-03 23:54:09 +00003140 if (phy_data & MII_SR_LINK_STATUS) {
Roy Zangaa070782009-07-31 13:34:02 +08003141 /* Config the MAC and PHY after link is up */
3142 ret_val = e1000_copper_link_postconfig(hw);
3143 if (ret_val)
wdenk682011f2003-06-03 23:54:09 +00003144 return ret_val;
Roy Zangaa070782009-07-31 13:34:02 +08003145
wdenk682011f2003-06-03 23:54:09 +00003146 DEBUGOUT("Valid link established!!!\n");
Roy Zangaa070782009-07-31 13:34:02 +08003147 return E1000_SUCCESS;
wdenk682011f2003-06-03 23:54:09 +00003148 }
3149 udelay(10);
3150 }
3151
3152 DEBUGOUT("Unable to establish link!!!\n");
Roy Zangaa070782009-07-31 13:34:02 +08003153 return E1000_SUCCESS;
wdenk682011f2003-06-03 23:54:09 +00003154}
3155
3156/******************************************************************************
3157* Configures PHY autoneg and flow control advertisement settings
3158*
3159* hw - Struct containing variables accessed by shared code
3160******************************************************************************/
Roy Zangaa070782009-07-31 13:34:02 +08003161int32_t
wdenk682011f2003-06-03 23:54:09 +00003162e1000_phy_setup_autoneg(struct e1000_hw *hw)
3163{
Roy Zangaa070782009-07-31 13:34:02 +08003164 int32_t ret_val;
wdenk682011f2003-06-03 23:54:09 +00003165 uint16_t mii_autoneg_adv_reg;
3166 uint16_t mii_1000t_ctrl_reg;
3167
3168 DEBUGFUNC();
3169
3170 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
Roy Zangaa070782009-07-31 13:34:02 +08003171 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3172 if (ret_val)
3173 return ret_val;
wdenk682011f2003-06-03 23:54:09 +00003174
Roy Zangaa070782009-07-31 13:34:02 +08003175 if (hw->phy_type != e1000_phy_ife) {
3176 /* Read the MII 1000Base-T Control Register (Address 9). */
3177 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3178 &mii_1000t_ctrl_reg);
3179 if (ret_val)
3180 return ret_val;
3181 } else
3182 mii_1000t_ctrl_reg = 0;
wdenk682011f2003-06-03 23:54:09 +00003183
3184 /* Need to parse both autoneg_advertised and fc and set up
3185 * the appropriate PHY registers. First we will parse for
3186 * autoneg_advertised software override. Since we can advertise
3187 * a plethora of combinations, we need to check each bit
3188 * individually.
3189 */
3190
3191 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
3192 * Advertisement Register (Address 4) and the 1000 mb speed bits in
Roy Zangaa070782009-07-31 13:34:02 +08003193 * the 1000Base-T Control Register (Address 9).
wdenk682011f2003-06-03 23:54:09 +00003194 */
3195 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3196 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3197
3198 DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3199
3200 /* Do we want to advertise 10 Mb Half Duplex? */
3201 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3202 DEBUGOUT("Advertise 10mb Half duplex\n");
3203 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3204 }
3205
3206 /* Do we want to advertise 10 Mb Full Duplex? */
3207 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3208 DEBUGOUT("Advertise 10mb Full duplex\n");
3209 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3210 }
3211
3212 /* Do we want to advertise 100 Mb Half Duplex? */
3213 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3214 DEBUGOUT("Advertise 100mb Half duplex\n");
3215 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3216 }
3217
3218 /* Do we want to advertise 100 Mb Full Duplex? */
3219 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3220 DEBUGOUT("Advertise 100mb Full duplex\n");
3221 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3222 }
3223
3224 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3225 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3226 DEBUGOUT
3227 ("Advertise 1000mb Half duplex requested, request denied!\n");
3228 }
3229
3230 /* Do we want to advertise 1000 Mb Full Duplex? */
3231 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3232 DEBUGOUT("Advertise 1000mb Full duplex\n");
3233 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3234 }
3235
3236 /* Check for a software override of the flow control settings, and
3237 * setup the PHY advertisement registers accordingly. If
3238 * auto-negotiation is enabled, then software will have to set the
3239 * "PAUSE" bits to the correct value in the Auto-Negotiation
3240 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3241 *
3242 * The possible values of the "fc" parameter are:
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07003243 * 0: Flow control is completely disabled
3244 * 1: Rx flow control is enabled (we can receive pause frames
3245 * but not send pause frames).
3246 * 2: Tx flow control is enabled (we can send pause frames
3247 * but we do not support receiving pause frames).
3248 * 3: Both Rx and TX flow control (symmetric) are enabled.
wdenk682011f2003-06-03 23:54:09 +00003249 * other: No software override. The flow control configuration
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07003250 * in the EEPROM is used.
wdenk682011f2003-06-03 23:54:09 +00003251 */
3252 switch (hw->fc) {
3253 case e1000_fc_none: /* 0 */
3254 /* Flow control (RX & TX) is completely disabled by a
3255 * software over-ride.
3256 */
3257 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3258 break;
3259 case e1000_fc_rx_pause: /* 1 */
3260 /* RX Flow control is enabled, and TX Flow control is
3261 * disabled, by a software over-ride.
3262 */
3263 /* Since there really isn't a way to advertise that we are
3264 * capable of RX Pause ONLY, we will advertise that we
3265 * support both symmetric and asymmetric RX PAUSE. Later
3266 * (in e1000_config_fc_after_link_up) we will disable the
3267 *hw's ability to send PAUSE frames.
3268 */
3269 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3270 break;
3271 case e1000_fc_tx_pause: /* 2 */
3272 /* TX Flow control is enabled, and RX Flow control is
3273 * disabled, by a software over-ride.
3274 */
3275 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3276 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3277 break;
3278 case e1000_fc_full: /* 3 */
3279 /* Flow control (both RX and TX) is enabled by a software
3280 * over-ride.
3281 */
3282 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3283 break;
3284 default:
3285 DEBUGOUT("Flow control param set incorrectly\n");
3286 return -E1000_ERR_CONFIG;
3287 }
3288
Roy Zangaa070782009-07-31 13:34:02 +08003289 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3290 if (ret_val)
3291 return ret_val;
wdenk682011f2003-06-03 23:54:09 +00003292
3293 DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3294
Roy Zangaa070782009-07-31 13:34:02 +08003295 if (hw->phy_type != e1000_phy_ife) {
3296 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3297 mii_1000t_ctrl_reg);
3298 if (ret_val)
3299 return ret_val;
wdenk682011f2003-06-03 23:54:09 +00003300 }
Roy Zangaa070782009-07-31 13:34:02 +08003301
3302 return E1000_SUCCESS;
wdenk682011f2003-06-03 23:54:09 +00003303}
3304
3305/******************************************************************************
3306* Sets the collision distance in the Transmit Control register
3307*
3308* hw - Struct containing variables accessed by shared code
3309*
3310* Link should have been established previously. Reads the speed and duplex
3311* information from the Device Status register.
3312******************************************************************************/
3313static void
3314e1000_config_collision_dist(struct e1000_hw *hw)
3315{
Roy Zangaa070782009-07-31 13:34:02 +08003316 uint32_t tctl, coll_dist;
3317
3318 DEBUGFUNC();
3319
3320 if (hw->mac_type < e1000_82543)
3321 coll_dist = E1000_COLLISION_DISTANCE_82542;
3322 else
3323 coll_dist = E1000_COLLISION_DISTANCE;
wdenk682011f2003-06-03 23:54:09 +00003324
3325 tctl = E1000_READ_REG(hw, TCTL);
3326
3327 tctl &= ~E1000_TCTL_COLD;
Roy Zangaa070782009-07-31 13:34:02 +08003328 tctl |= coll_dist << E1000_COLD_SHIFT;
wdenk682011f2003-06-03 23:54:09 +00003329
3330 E1000_WRITE_REG(hw, TCTL, tctl);
3331 E1000_WRITE_FLUSH(hw);
3332}
3333
3334/******************************************************************************
3335* Sets MAC speed and duplex settings to reflect the those in the PHY
3336*
3337* hw - Struct containing variables accessed by shared code
3338* mii_reg - data to write to the MII control register
3339*
3340* The contents of the PHY register containing the needed information need to
3341* be passed in.
3342******************************************************************************/
3343static int
3344e1000_config_mac_to_phy(struct e1000_hw *hw)
3345{
3346 uint32_t ctrl;
3347 uint16_t phy_data;
3348
3349 DEBUGFUNC();
3350
3351 /* Read the Device Control Register and set the bits to Force Speed
3352 * and Duplex.
3353 */
3354 ctrl = E1000_READ_REG(hw, CTRL);
3355 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
Marek Vasut95186062014-08-08 07:41:39 -07003356 ctrl &= ~(E1000_CTRL_ILOS);
3357 ctrl |= (E1000_CTRL_SPD_SEL);
wdenk682011f2003-06-03 23:54:09 +00003358
3359 /* Set up duplex in the Device Control and Transmit Control
3360 * registers depending on negotiated values.
3361 */
3362 if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3363 DEBUGOUT("PHY Read Error\n");
3364 return -E1000_ERR_PHY;
3365 }
3366 if (phy_data & M88E1000_PSSR_DPLX)
3367 ctrl |= E1000_CTRL_FD;
3368 else
3369 ctrl &= ~E1000_CTRL_FD;
3370
3371 e1000_config_collision_dist(hw);
3372
3373 /* Set up speed in the Device Control register depending on
3374 * negotiated values.
3375 */
3376 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3377 ctrl |= E1000_CTRL_SPD_1000;
3378 else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3379 ctrl |= E1000_CTRL_SPD_100;
3380 /* Write the configured values back to the Device Control Reg. */
3381 E1000_WRITE_REG(hw, CTRL, ctrl);
3382 return 0;
3383}
3384
3385/******************************************************************************
3386 * Forces the MAC's flow control settings.
wdenk8bde7f72003-06-27 21:31:46 +00003387 *
wdenk682011f2003-06-03 23:54:09 +00003388 * hw - Struct containing variables accessed by shared code
3389 *
3390 * Sets the TFCE and RFCE bits in the device control register to reflect
3391 * the adapter settings. TFCE and RFCE need to be explicitly set by
3392 * software when a Copper PHY is used because autonegotiation is managed
3393 * by the PHY rather than the MAC. Software must also configure these
3394 * bits when link is forced on a fiber connection.
3395 *****************************************************************************/
3396static int
3397e1000_force_mac_fc(struct e1000_hw *hw)
3398{
3399 uint32_t ctrl;
3400
3401 DEBUGFUNC();
3402
3403 /* Get the current configuration of the Device Control Register */
3404 ctrl = E1000_READ_REG(hw, CTRL);
3405
3406 /* Because we didn't get link via the internal auto-negotiation
3407 * mechanism (we either forced link or we got link via PHY
3408 * auto-neg), we have to manually enable/disable transmit an
3409 * receive flow control.
3410 *
3411 * The "Case" statement below enables/disable flow control
3412 * according to the "hw->fc" parameter.
3413 *
3414 * The possible values of the "fc" parameter are:
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07003415 * 0: Flow control is completely disabled
3416 * 1: Rx flow control is enabled (we can receive pause
3417 * frames but not send pause frames).
3418 * 2: Tx flow control is enabled (we can send pause frames
3419 * frames but we do not receive pause frames).
3420 * 3: Both Rx and TX flow control (symmetric) is enabled.
wdenk682011f2003-06-03 23:54:09 +00003421 * other: No other values should be possible at this point.
3422 */
3423
3424 switch (hw->fc) {
3425 case e1000_fc_none:
3426 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3427 break;
3428 case e1000_fc_rx_pause:
3429 ctrl &= (~E1000_CTRL_TFCE);
3430 ctrl |= E1000_CTRL_RFCE;
3431 break;
3432 case e1000_fc_tx_pause:
3433 ctrl &= (~E1000_CTRL_RFCE);
3434 ctrl |= E1000_CTRL_TFCE;
3435 break;
3436 case e1000_fc_full:
3437 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3438 break;
3439 default:
3440 DEBUGOUT("Flow control param set incorrectly\n");
3441 return -E1000_ERR_CONFIG;
3442 }
3443
3444 /* Disable TX Flow Control for 82542 (rev 2.0) */
3445 if (hw->mac_type == e1000_82542_rev2_0)
3446 ctrl &= (~E1000_CTRL_TFCE);
3447
3448 E1000_WRITE_REG(hw, CTRL, ctrl);
3449 return 0;
3450}
3451
3452/******************************************************************************
3453 * Configures flow control settings after link is established
wdenk8bde7f72003-06-27 21:31:46 +00003454 *
wdenk682011f2003-06-03 23:54:09 +00003455 * hw - Struct containing variables accessed by shared code
3456 *
3457 * Should be called immediately after a valid link has been established.
3458 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3459 * and autonegotiation is enabled, the MAC flow control settings will be set
3460 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3461 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3462 *****************************************************************************/
Roy Zangaa070782009-07-31 13:34:02 +08003463static int32_t
wdenk682011f2003-06-03 23:54:09 +00003464e1000_config_fc_after_link_up(struct e1000_hw *hw)
3465{
3466 int32_t ret_val;
3467 uint16_t mii_status_reg;
3468 uint16_t mii_nway_adv_reg;
3469 uint16_t mii_nway_lp_ability_reg;
3470 uint16_t speed;
3471 uint16_t duplex;
3472
3473 DEBUGFUNC();
3474
3475 /* Check for the case where we have fiber media and auto-neg failed
3476 * so we had to force link. In this case, we need to force the
3477 * configuration of the MAC to match the "fc" parameter.
3478 */
Roy Zangaa070782009-07-31 13:34:02 +08003479 if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3480 || ((hw->media_type == e1000_media_type_internal_serdes)
3481 && (hw->autoneg_failed))
3482 || ((hw->media_type == e1000_media_type_copper)
3483 && (!hw->autoneg))) {
wdenk682011f2003-06-03 23:54:09 +00003484 ret_val = e1000_force_mac_fc(hw);
3485 if (ret_val < 0) {
3486 DEBUGOUT("Error forcing flow control settings\n");
3487 return ret_val;
3488 }
3489 }
3490
3491 /* Check for the case where we have copper media and auto-neg is
3492 * enabled. In this case, we need to check and see if Auto-Neg
3493 * has completed, and if so, how the PHY and link partner has
3494 * flow control configured.
3495 */
3496 if (hw->media_type == e1000_media_type_copper) {
3497 /* Read the MII Status Register and check to see if AutoNeg
3498 * has completed. We read this twice because this reg has
3499 * some "sticky" (latched) bits.
3500 */
3501 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
Minghuan Lian5abf13e2015-03-19 09:43:51 -07003502 DEBUGOUT("PHY Read Error\n");
wdenk682011f2003-06-03 23:54:09 +00003503 return -E1000_ERR_PHY;
3504 }
3505 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
Minghuan Lian5abf13e2015-03-19 09:43:51 -07003506 DEBUGOUT("PHY Read Error\n");
wdenk682011f2003-06-03 23:54:09 +00003507 return -E1000_ERR_PHY;
3508 }
3509
3510 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3511 /* The AutoNeg process has completed, so we now need to
3512 * read both the Auto Negotiation Advertisement Register
3513 * (Address 4) and the Auto_Negotiation Base Page Ability
3514 * Register (Address 5) to determine how flow control was
3515 * negotiated.
3516 */
3517 if (e1000_read_phy_reg
3518 (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3519 DEBUGOUT("PHY Read Error\n");
3520 return -E1000_ERR_PHY;
3521 }
3522 if (e1000_read_phy_reg
3523 (hw, PHY_LP_ABILITY,
3524 &mii_nway_lp_ability_reg) < 0) {
3525 DEBUGOUT("PHY Read Error\n");
3526 return -E1000_ERR_PHY;
3527 }
3528
3529 /* Two bits in the Auto Negotiation Advertisement Register
3530 * (Address 4) and two bits in the Auto Negotiation Base
3531 * Page Ability Register (Address 5) determine flow control
3532 * for both the PHY and the link partner. The following
3533 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3534 * 1999, describes these PAUSE resolution bits and how flow
3535 * control is determined based upon these settings.
3536 * NOTE: DC = Don't Care
3537 *
3538 * LOCAL DEVICE | LINK PARTNER
3539 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3540 *-------|---------|-------|---------|--------------------
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07003541 * 0 | 0 | DC | DC | e1000_fc_none
3542 * 0 | 1 | 0 | DC | e1000_fc_none
3543 * 0 | 1 | 1 | 0 | e1000_fc_none
3544 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
3545 * 1 | 0 | 0 | DC | e1000_fc_none
3546 * 1 | DC | 1 | DC | e1000_fc_full
3547 * 1 | 1 | 0 | 0 | e1000_fc_none
3548 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
wdenk682011f2003-06-03 23:54:09 +00003549 *
3550 */
3551 /* Are both PAUSE bits set to 1? If so, this implies
3552 * Symmetric Flow Control is enabled at both ends. The
3553 * ASM_DIR bits are irrelevant per the spec.
3554 *
3555 * For Symmetric Flow Control:
3556 *
3557 * LOCAL DEVICE | LINK PARTNER
3558 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3559 *-------|---------|-------|---------|--------------------
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07003560 * 1 | DC | 1 | DC | e1000_fc_full
wdenk682011f2003-06-03 23:54:09 +00003561 *
3562 */
3563 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3564 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3565 /* Now we need to check if the user selected RX ONLY
3566 * of pause frames. In this case, we had to advertise
3567 * FULL flow control because we could not advertise RX
3568 * ONLY. Hence, we must now check to see if we need to
3569 * turn OFF the TRANSMISSION of PAUSE frames.
3570 */
3571 if (hw->original_fc == e1000_fc_full) {
3572 hw->fc = e1000_fc_full;
3573 DEBUGOUT("Flow Control = FULL.\r\n");
3574 } else {
3575 hw->fc = e1000_fc_rx_pause;
3576 DEBUGOUT
3577 ("Flow Control = RX PAUSE frames only.\r\n");
3578 }
3579 }
3580 /* For receiving PAUSE frames ONLY.
3581 *
3582 * LOCAL DEVICE | LINK PARTNER
3583 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3584 *-------|---------|-------|---------|--------------------
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07003585 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
wdenk682011f2003-06-03 23:54:09 +00003586 *
3587 */
3588 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3589 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3590 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3591 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3592 {
3593 hw->fc = e1000_fc_tx_pause;
3594 DEBUGOUT
3595 ("Flow Control = TX PAUSE frames only.\r\n");
3596 }
3597 /* For transmitting PAUSE frames ONLY.
3598 *
3599 * LOCAL DEVICE | LINK PARTNER
3600 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3601 *-------|---------|-------|---------|--------------------
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07003602 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
wdenk682011f2003-06-03 23:54:09 +00003603 *
3604 */
3605 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3606 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3607 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3608 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3609 {
3610 hw->fc = e1000_fc_rx_pause;
3611 DEBUGOUT
3612 ("Flow Control = RX PAUSE frames only.\r\n");
3613 }
3614 /* Per the IEEE spec, at this point flow control should be
3615 * disabled. However, we want to consider that we could
3616 * be connected to a legacy switch that doesn't advertise
3617 * desired flow control, but can be forced on the link
3618 * partner. So if we advertised no flow control, that is
3619 * what we will resolve to. If we advertised some kind of
3620 * receive capability (Rx Pause Only or Full Flow Control)
3621 * and the link partner advertised none, we will configure
3622 * ourselves to enable Rx Flow Control only. We can do
3623 * this safely for two reasons: If the link partner really
3624 * didn't want flow control enabled, and we enable Rx, no
3625 * harm done since we won't be receiving any PAUSE frames
3626 * anyway. If the intent on the link partner was to have
3627 * flow control enabled, then by us enabling RX only, we
3628 * can at least receive pause frames and process them.
3629 * This is a good idea because in most cases, since we are
3630 * predominantly a server NIC, more times than not we will
3631 * be asked to delay transmission of packets than asking
3632 * our link partner to pause transmission of frames.
3633 */
3634 else if (hw->original_fc == e1000_fc_none ||
3635 hw->original_fc == e1000_fc_tx_pause) {
3636 hw->fc = e1000_fc_none;
3637 DEBUGOUT("Flow Control = NONE.\r\n");
3638 } else {
3639 hw->fc = e1000_fc_rx_pause;
3640 DEBUGOUT
3641 ("Flow Control = RX PAUSE frames only.\r\n");
3642 }
3643
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07003644 /* Now we need to do one last check... If we auto-
wdenk682011f2003-06-03 23:54:09 +00003645 * negotiated to HALF DUPLEX, flow control should not be
3646 * enabled per IEEE 802.3 spec.
3647 */
3648 e1000_get_speed_and_duplex(hw, &speed, &duplex);
3649
3650 if (duplex == HALF_DUPLEX)
3651 hw->fc = e1000_fc_none;
3652
3653 /* Now we call a subroutine to actually force the MAC
3654 * controller to use the correct flow control settings.
3655 */
3656 ret_val = e1000_force_mac_fc(hw);
3657 if (ret_val < 0) {
3658 DEBUGOUT
3659 ("Error forcing flow control settings\n");
3660 return ret_val;
3661 }
3662 } else {
3663 DEBUGOUT
3664 ("Copper PHY and Auto Neg has not completed.\r\n");
3665 }
3666 }
Roy Zangaa070782009-07-31 13:34:02 +08003667 return E1000_SUCCESS;
wdenk682011f2003-06-03 23:54:09 +00003668}
3669
3670/******************************************************************************
3671 * Checks to see if the link status of the hardware has changed.
3672 *
3673 * hw - Struct containing variables accessed by shared code
3674 *
3675 * Called by any function that needs to check the link status of the adapter.
3676 *****************************************************************************/
3677static int
3678e1000_check_for_link(struct eth_device *nic)
3679{
3680 struct e1000_hw *hw = nic->priv;
3681 uint32_t rxcw;
3682 uint32_t ctrl;
3683 uint32_t status;
3684 uint32_t rctl;
3685 uint32_t signal;
3686 int32_t ret_val;
3687 uint16_t phy_data;
3688 uint16_t lp_capability;
3689
3690 DEBUGFUNC();
3691
wdenk8bde7f72003-06-27 21:31:46 +00003692 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3693 * set when the optics detect a signal. On older adapters, it will be
wdenk682011f2003-06-03 23:54:09 +00003694 * cleared when there is a signal
3695 */
3696 ctrl = E1000_READ_REG(hw, CTRL);
3697 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3698 signal = E1000_CTRL_SWDPIN1;
3699 else
3700 signal = 0;
3701
3702 status = E1000_READ_REG(hw, STATUS);
3703 rxcw = E1000_READ_REG(hw, RXCW);
3704 DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3705
3706 /* If we have a copper PHY then we only want to go out to the PHY
3707 * registers to see if Auto-Neg has completed and/or if our link
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07003708 * status has changed. The get_link_status flag will be set if we
wdenk682011f2003-06-03 23:54:09 +00003709 * receive a Link Status Change interrupt or we have Rx Sequence
3710 * Errors.
3711 */
3712 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3713 /* First we want to see if the MII Status Register reports
3714 * link. If so, then we want to get the current speed/duplex
3715 * of the PHY.
3716 * Read the register twice since the link bit is sticky.
3717 */
3718 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3719 DEBUGOUT("PHY Read Error\n");
3720 return -E1000_ERR_PHY;
3721 }
3722 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3723 DEBUGOUT("PHY Read Error\n");
3724 return -E1000_ERR_PHY;
3725 }
3726
3727 if (phy_data & MII_SR_LINK_STATUS) {
York Sun472d5462013-04-01 11:29:11 -07003728 hw->get_link_status = false;
wdenk682011f2003-06-03 23:54:09 +00003729 } else {
3730 /* No link detected */
3731 return -E1000_ERR_NOLINK;
3732 }
3733
3734 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
3735 * have Si on board that is 82544 or newer, Auto
3736 * Speed Detection takes care of MAC speed/duplex
3737 * configuration. So we only need to configure Collision
3738 * Distance in the MAC. Otherwise, we need to force
3739 * speed/duplex on the MAC to the current PHY speed/duplex
3740 * settings.
3741 */
3742 if (hw->mac_type >= e1000_82544)
3743 e1000_config_collision_dist(hw);
3744 else {
3745 ret_val = e1000_config_mac_to_phy(hw);
3746 if (ret_val < 0) {
3747 DEBUGOUT
3748 ("Error configuring MAC to PHY settings\n");
3749 return ret_val;
3750 }
3751 }
3752
wdenk8bde7f72003-06-27 21:31:46 +00003753 /* Configure Flow Control now that Auto-Neg has completed. First, we
wdenk682011f2003-06-03 23:54:09 +00003754 * need to restore the desired flow control settings because we may
3755 * have had to re-autoneg with a different link partner.
3756 */
3757 ret_val = e1000_config_fc_after_link_up(hw);
3758 if (ret_val < 0) {
3759 DEBUGOUT("Error configuring flow control\n");
3760 return ret_val;
3761 }
3762
3763 /* At this point we know that we are on copper and we have
3764 * auto-negotiated link. These are conditions for checking the link
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07003765 * parter capability register. We use the link partner capability to
wdenk682011f2003-06-03 23:54:09 +00003766 * determine if TBI Compatibility needs to be turned on or off. If
3767 * the link partner advertises any speed in addition to Gigabit, then
3768 * we assume that they are GMII-based, and TBI compatibility is not
3769 * needed. If no other speeds are advertised, we assume the link
3770 * partner is TBI-based, and we turn on TBI Compatibility.
3771 */
3772 if (hw->tbi_compatibility_en) {
3773 if (e1000_read_phy_reg
3774 (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3775 DEBUGOUT("PHY Read Error\n");
3776 return -E1000_ERR_PHY;
3777 }
3778 if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3779 NWAY_LPAR_10T_FD_CAPS |
3780 NWAY_LPAR_100TX_HD_CAPS |
3781 NWAY_LPAR_100TX_FD_CAPS |
3782 NWAY_LPAR_100T4_CAPS)) {
wdenk8bde7f72003-06-27 21:31:46 +00003783 /* If our link partner advertises anything in addition to
wdenk682011f2003-06-03 23:54:09 +00003784 * gigabit, we do not need to enable TBI compatibility.
3785 */
3786 if (hw->tbi_compatibility_on) {
3787 /* If we previously were in the mode, turn it off. */
3788 rctl = E1000_READ_REG(hw, RCTL);
3789 rctl &= ~E1000_RCTL_SBP;
3790 E1000_WRITE_REG(hw, RCTL, rctl);
York Sun472d5462013-04-01 11:29:11 -07003791 hw->tbi_compatibility_on = false;
wdenk682011f2003-06-03 23:54:09 +00003792 }
3793 } else {
3794 /* If TBI compatibility is was previously off, turn it on. For
3795 * compatibility with a TBI link partner, we will store bad
3796 * packets. Some frames have an additional byte on the end and
3797 * will look like CRC errors to to the hardware.
3798 */
3799 if (!hw->tbi_compatibility_on) {
York Sun472d5462013-04-01 11:29:11 -07003800 hw->tbi_compatibility_on = true;
wdenk682011f2003-06-03 23:54:09 +00003801 rctl = E1000_READ_REG(hw, RCTL);
3802 rctl |= E1000_RCTL_SBP;
3803 E1000_WRITE_REG(hw, RCTL, rctl);
3804 }
3805 }
3806 }
3807 }
3808 /* If we don't have link (auto-negotiation failed or link partner cannot
3809 * auto-negotiate), the cable is plugged in (we have signal), and our
3810 * link partner is not trying to auto-negotiate with us (we are receiving
3811 * idles or data), we need to force link up. We also need to give
3812 * auto-negotiation time to complete, in case the cable was just plugged
3813 * in. The autoneg_failed flag does this.
3814 */
3815 else if ((hw->media_type == e1000_media_type_fiber) &&
3816 (!(status & E1000_STATUS_LU)) &&
3817 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3818 (!(rxcw & E1000_RXCW_C))) {
3819 if (hw->autoneg_failed == 0) {
3820 hw->autoneg_failed = 1;
3821 return 0;
3822 }
3823 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3824
3825 /* Disable auto-negotiation in the TXCW register */
3826 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3827
3828 /* Force link-up and also force full-duplex. */
3829 ctrl = E1000_READ_REG(hw, CTRL);
3830 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3831 E1000_WRITE_REG(hw, CTRL, ctrl);
3832
3833 /* Configure Flow Control after forcing link up. */
3834 ret_val = e1000_config_fc_after_link_up(hw);
3835 if (ret_val < 0) {
3836 DEBUGOUT("Error configuring flow control\n");
3837 return ret_val;
3838 }
3839 }
3840 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3841 * auto-negotiation in the TXCW register and disable forced link in the
3842 * Device Control register in an attempt to auto-negotiate with our link
3843 * partner.
3844 */
3845 else if ((hw->media_type == e1000_media_type_fiber) &&
3846 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3847 DEBUGOUT
3848 ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3849 E1000_WRITE_REG(hw, TXCW, hw->txcw);
3850 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3851 }
3852 return 0;
3853}
3854
3855/******************************************************************************
Roy Zangaa070782009-07-31 13:34:02 +08003856* Configure the MAC-to-PHY interface for 10/100Mbps
3857*
3858* hw - Struct containing variables accessed by shared code
3859******************************************************************************/
3860static int32_t
3861e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3862{
3863 int32_t ret_val = E1000_SUCCESS;
3864 uint32_t tipg;
3865 uint16_t reg_data;
3866
3867 DEBUGFUNC();
3868
3869 reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3870 ret_val = e1000_write_kmrn_reg(hw,
3871 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3872 if (ret_val)
3873 return ret_val;
3874
3875 /* Configure Transmit Inter-Packet Gap */
3876 tipg = E1000_READ_REG(hw, TIPG);
3877 tipg &= ~E1000_TIPG_IPGT_MASK;
3878 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3879 E1000_WRITE_REG(hw, TIPG, tipg);
3880
3881 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3882
3883 if (ret_val)
3884 return ret_val;
3885
3886 if (duplex == HALF_DUPLEX)
3887 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3888 else
3889 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3890
3891 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3892
3893 return ret_val;
3894}
3895
3896static int32_t
3897e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3898{
3899 int32_t ret_val = E1000_SUCCESS;
3900 uint16_t reg_data;
3901 uint32_t tipg;
3902
3903 DEBUGFUNC();
3904
3905 reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3906 ret_val = e1000_write_kmrn_reg(hw,
3907 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3908 if (ret_val)
3909 return ret_val;
3910
3911 /* Configure Transmit Inter-Packet Gap */
3912 tipg = E1000_READ_REG(hw, TIPG);
3913 tipg &= ~E1000_TIPG_IPGT_MASK;
3914 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3915 E1000_WRITE_REG(hw, TIPG, tipg);
3916
3917 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3918
3919 if (ret_val)
3920 return ret_val;
3921
3922 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3923 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3924
3925 return ret_val;
3926}
3927
3928/******************************************************************************
wdenk682011f2003-06-03 23:54:09 +00003929 * Detects the current speed and duplex settings of the hardware.
3930 *
3931 * hw - Struct containing variables accessed by shared code
3932 * speed - Speed of the connection
3933 * duplex - Duplex setting of the connection
3934 *****************************************************************************/
Roy Zangaa070782009-07-31 13:34:02 +08003935static int
3936e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3937 uint16_t *duplex)
wdenk682011f2003-06-03 23:54:09 +00003938{
3939 uint32_t status;
Roy Zangaa070782009-07-31 13:34:02 +08003940 int32_t ret_val;
3941 uint16_t phy_data;
wdenk682011f2003-06-03 23:54:09 +00003942
3943 DEBUGFUNC();
3944
3945 if (hw->mac_type >= e1000_82543) {
3946 status = E1000_READ_REG(hw, STATUS);
3947 if (status & E1000_STATUS_SPEED_1000) {
3948 *speed = SPEED_1000;
3949 DEBUGOUT("1000 Mbs, ");
3950 } else if (status & E1000_STATUS_SPEED_100) {
3951 *speed = SPEED_100;
3952 DEBUGOUT("100 Mbs, ");
3953 } else {
3954 *speed = SPEED_10;
3955 DEBUGOUT("10 Mbs, ");
3956 }
3957
3958 if (status & E1000_STATUS_FD) {
3959 *duplex = FULL_DUPLEX;
3960 DEBUGOUT("Full Duplex\r\n");
3961 } else {
3962 *duplex = HALF_DUPLEX;
3963 DEBUGOUT(" Half Duplex\r\n");
3964 }
3965 } else {
3966 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3967 *speed = SPEED_1000;
3968 *duplex = FULL_DUPLEX;
3969 }
Roy Zangaa070782009-07-31 13:34:02 +08003970
3971 /* IGP01 PHY may advertise full duplex operation after speed downgrade
3972 * even if it is operating at half duplex. Here we set the duplex
3973 * settings to match the duplex in the link partner's capabilities.
3974 */
3975 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3976 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3977 if (ret_val)
3978 return ret_val;
3979
3980 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3981 *duplex = HALF_DUPLEX;
3982 else {
3983 ret_val = e1000_read_phy_reg(hw,
3984 PHY_LP_ABILITY, &phy_data);
3985 if (ret_val)
3986 return ret_val;
3987 if ((*speed == SPEED_100 &&
3988 !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3989 || (*speed == SPEED_10
3990 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3991 *duplex = HALF_DUPLEX;
3992 }
3993 }
3994
3995 if ((hw->mac_type == e1000_80003es2lan) &&
3996 (hw->media_type == e1000_media_type_copper)) {
3997 if (*speed == SPEED_1000)
3998 ret_val = e1000_configure_kmrn_for_1000(hw);
3999 else
4000 ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
4001 if (ret_val)
4002 return ret_val;
4003 }
4004 return E1000_SUCCESS;
wdenk682011f2003-06-03 23:54:09 +00004005}
4006
4007/******************************************************************************
4008* Blocks until autoneg completes or times out (~4.5 seconds)
4009*
4010* hw - Struct containing variables accessed by shared code
4011******************************************************************************/
4012static int
4013e1000_wait_autoneg(struct e1000_hw *hw)
4014{
4015 uint16_t i;
4016 uint16_t phy_data;
4017
4018 DEBUGFUNC();
4019 DEBUGOUT("Waiting for Auto-Neg to complete.\n");
4020
Stefan Roesefaa765d2015-08-11 17:12:44 +02004021 /* We will wait for autoneg to complete or timeout to expire. */
wdenk682011f2003-06-03 23:54:09 +00004022 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
4023 /* Read the MII Status Register and wait for Auto-Neg
4024 * Complete bit to be set.
4025 */
4026 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4027 DEBUGOUT("PHY Read Error\n");
4028 return -E1000_ERR_PHY;
4029 }
4030 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4031 DEBUGOUT("PHY Read Error\n");
4032 return -E1000_ERR_PHY;
4033 }
4034 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
4035 DEBUGOUT("Auto-Neg complete.\n");
4036 return 0;
4037 }
4038 mdelay(100);
4039 }
4040 DEBUGOUT("Auto-Neg timedout.\n");
4041 return -E1000_ERR_TIMEOUT;
4042}
4043
4044/******************************************************************************
4045* Raises the Management Data Clock
4046*
4047* hw - Struct containing variables accessed by shared code
4048* ctrl - Device control register's current value
4049******************************************************************************/
4050static void
4051e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4052{
4053 /* Raise the clock input to the Management Data Clock (by setting the MDC
4054 * bit), and then delay 2 microseconds.
4055 */
4056 E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
4057 E1000_WRITE_FLUSH(hw);
4058 udelay(2);
4059}
4060
4061/******************************************************************************
4062* Lowers the Management Data Clock
4063*
4064* hw - Struct containing variables accessed by shared code
4065* ctrl - Device control register's current value
4066******************************************************************************/
4067static void
4068e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4069{
4070 /* Lower the clock input to the Management Data Clock (by clearing the MDC
4071 * bit), and then delay 2 microseconds.
4072 */
4073 E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
4074 E1000_WRITE_FLUSH(hw);
4075 udelay(2);
4076}
4077
4078/******************************************************************************
4079* Shifts data bits out to the PHY
4080*
4081* hw - Struct containing variables accessed by shared code
4082* data - Data to send out to the PHY
4083* count - Number of bits to shift out
4084*
4085* Bits are shifted out in MSB to LSB order.
4086******************************************************************************/
4087static void
4088e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
4089{
4090 uint32_t ctrl;
4091 uint32_t mask;
4092
4093 /* We need to shift "count" number of bits out to the PHY. So, the value
wdenk8bde7f72003-06-27 21:31:46 +00004094 * in the "data" parameter will be shifted out to the PHY one bit at a
wdenk682011f2003-06-03 23:54:09 +00004095 * time. In order to do this, "data" must be broken down into bits.
4096 */
4097 mask = 0x01;
4098 mask <<= (count - 1);
4099
4100 ctrl = E1000_READ_REG(hw, CTRL);
4101
4102 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
4103 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
4104
4105 while (mask) {
4106 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
4107 * then raising and lowering the Management Data Clock. A "0" is
4108 * shifted out to the PHY by setting the MDIO bit to "0" and then
4109 * raising and lowering the clock.
4110 */
4111 if (data & mask)
4112 ctrl |= E1000_CTRL_MDIO;
4113 else
4114 ctrl &= ~E1000_CTRL_MDIO;
4115
4116 E1000_WRITE_REG(hw, CTRL, ctrl);
4117 E1000_WRITE_FLUSH(hw);
4118
4119 udelay(2);
4120
4121 e1000_raise_mdi_clk(hw, &ctrl);
4122 e1000_lower_mdi_clk(hw, &ctrl);
4123
4124 mask = mask >> 1;
4125 }
4126}
4127
4128/******************************************************************************
4129* Shifts data bits in from the PHY
4130*
4131* hw - Struct containing variables accessed by shared code
4132*
wdenk8bde7f72003-06-27 21:31:46 +00004133* Bits are shifted in in MSB to LSB order.
wdenk682011f2003-06-03 23:54:09 +00004134******************************************************************************/
4135static uint16_t
4136e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4137{
4138 uint32_t ctrl;
4139 uint16_t data = 0;
4140 uint8_t i;
4141
4142 /* In order to read a register from the PHY, we need to shift in a total
4143 * of 18 bits from the PHY. The first two bit (turnaround) times are used
4144 * to avoid contention on the MDIO pin when a read operation is performed.
4145 * These two bits are ignored by us and thrown away. Bits are "shifted in"
4146 * by raising the input to the Management Data Clock (setting the MDC bit),
4147 * and then reading the value of the MDIO bit.
4148 */
4149 ctrl = E1000_READ_REG(hw, CTRL);
4150
4151 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4152 ctrl &= ~E1000_CTRL_MDIO_DIR;
4153 ctrl &= ~E1000_CTRL_MDIO;
4154
4155 E1000_WRITE_REG(hw, CTRL, ctrl);
4156 E1000_WRITE_FLUSH(hw);
4157
4158 /* Raise and Lower the clock before reading in the data. This accounts for
4159 * the turnaround bits. The first clock occurred when we clocked out the
4160 * last bit of the Register Address.
4161 */
4162 e1000_raise_mdi_clk(hw, &ctrl);
4163 e1000_lower_mdi_clk(hw, &ctrl);
4164
4165 for (data = 0, i = 0; i < 16; i++) {
4166 data = data << 1;
4167 e1000_raise_mdi_clk(hw, &ctrl);
4168 ctrl = E1000_READ_REG(hw, CTRL);
4169 /* Check to see if we shifted in a "1". */
4170 if (ctrl & E1000_CTRL_MDIO)
4171 data |= 1;
4172 e1000_lower_mdi_clk(hw, &ctrl);
4173 }
4174
4175 e1000_raise_mdi_clk(hw, &ctrl);
4176 e1000_lower_mdi_clk(hw, &ctrl);
4177
4178 return data;
4179}
4180
4181/*****************************************************************************
4182* Reads the value from a PHY register
4183*
4184* hw - Struct containing variables accessed by shared code
4185* reg_addr - address of the PHY register to read
4186******************************************************************************/
4187static int
4188e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4189{
4190 uint32_t i;
4191 uint32_t mdic = 0;
4192 const uint32_t phy_addr = 1;
4193
4194 if (reg_addr > MAX_PHY_REG_ADDRESS) {
4195 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4196 return -E1000_ERR_PARAM;
4197 }
4198
4199 if (hw->mac_type > e1000_82543) {
4200 /* Set up Op-code, Phy Address, and register address in the MDI
4201 * Control register. The MAC will take care of interfacing with the
4202 * PHY to retrieve the desired data.
4203 */
4204 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4205 (phy_addr << E1000_MDIC_PHY_SHIFT) |
4206 (E1000_MDIC_OP_READ));
4207
4208 E1000_WRITE_REG(hw, MDIC, mdic);
4209
4210 /* Poll the ready bit to see if the MDI read completed */
4211 for (i = 0; i < 64; i++) {
4212 udelay(10);
4213 mdic = E1000_READ_REG(hw, MDIC);
4214 if (mdic & E1000_MDIC_READY)
4215 break;
4216 }
4217 if (!(mdic & E1000_MDIC_READY)) {
4218 DEBUGOUT("MDI Read did not complete\n");
4219 return -E1000_ERR_PHY;
4220 }
4221 if (mdic & E1000_MDIC_ERROR) {
4222 DEBUGOUT("MDI Error\n");
4223 return -E1000_ERR_PHY;
4224 }
4225 *phy_data = (uint16_t) mdic;
4226 } else {
4227 /* We must first send a preamble through the MDIO pin to signal the
4228 * beginning of an MII instruction. This is done by sending 32
4229 * consecutive "1" bits.
4230 */
4231 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4232
4233 /* Now combine the next few fields that are required for a read
4234 * operation. We use this method instead of calling the
4235 * e1000_shift_out_mdi_bits routine five different times. The format of
4236 * a MII read instruction consists of a shift out of 14 bits and is
4237 * defined as follows:
4238 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4239 * followed by a shift in of 18 bits. This first two bits shifted in
4240 * are TurnAround bits used to avoid contention on the MDIO pin when a
4241 * READ operation is performed. These two bits are thrown away
4242 * followed by a shift in of 16 bits which contains the desired data.
4243 */
4244 mdic = ((reg_addr) | (phy_addr << 5) |
4245 (PHY_OP_READ << 10) | (PHY_SOF << 12));
4246
4247 e1000_shift_out_mdi_bits(hw, mdic, 14);
4248
4249 /* Now that we've shifted out the read command to the MII, we need to
4250 * "shift in" the 16-bit value (18 total bits) of the requested PHY
4251 * register address.
4252 */
4253 *phy_data = e1000_shift_in_mdi_bits(hw);
4254 }
4255 return 0;
4256}
4257
4258/******************************************************************************
4259* Writes a value to a PHY register
4260*
4261* hw - Struct containing variables accessed by shared code
4262* reg_addr - address of the PHY register to write
4263* data - data to write to the PHY
4264******************************************************************************/
4265static int
4266e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4267{
4268 uint32_t i;
4269 uint32_t mdic = 0;
4270 const uint32_t phy_addr = 1;
4271
4272 if (reg_addr > MAX_PHY_REG_ADDRESS) {
4273 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4274 return -E1000_ERR_PARAM;
4275 }
4276
4277 if (hw->mac_type > e1000_82543) {
4278 /* Set up Op-code, Phy Address, register address, and data intended
4279 * for the PHY register in the MDI Control register. The MAC will take
4280 * care of interfacing with the PHY to send the desired data.
4281 */
4282 mdic = (((uint32_t) phy_data) |
4283 (reg_addr << E1000_MDIC_REG_SHIFT) |
4284 (phy_addr << E1000_MDIC_PHY_SHIFT) |
4285 (E1000_MDIC_OP_WRITE));
4286
4287 E1000_WRITE_REG(hw, MDIC, mdic);
4288
4289 /* Poll the ready bit to see if the MDI read completed */
4290 for (i = 0; i < 64; i++) {
4291 udelay(10);
4292 mdic = E1000_READ_REG(hw, MDIC);
4293 if (mdic & E1000_MDIC_READY)
4294 break;
4295 }
4296 if (!(mdic & E1000_MDIC_READY)) {
4297 DEBUGOUT("MDI Write did not complete\n");
4298 return -E1000_ERR_PHY;
4299 }
4300 } else {
4301 /* We'll need to use the SW defined pins to shift the write command
4302 * out to the PHY. We first send a preamble to the PHY to signal the
wdenk8bde7f72003-06-27 21:31:46 +00004303 * beginning of the MII instruction. This is done by sending 32
wdenk682011f2003-06-03 23:54:09 +00004304 * consecutive "1" bits.
4305 */
4306 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4307
wdenk8bde7f72003-06-27 21:31:46 +00004308 /* Now combine the remaining required fields that will indicate a
wdenk682011f2003-06-03 23:54:09 +00004309 * write operation. We use this method instead of calling the
4310 * e1000_shift_out_mdi_bits routine for each field in the command. The
4311 * format of a MII write instruction is as follows:
4312 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4313 */
4314 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4315 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4316 mdic <<= 16;
4317 mdic |= (uint32_t) phy_data;
4318
4319 e1000_shift_out_mdi_bits(hw, mdic, 32);
4320 }
4321 return 0;
4322}
4323
4324/******************************************************************************
Roy Zangaa070782009-07-31 13:34:02 +08004325 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4326 * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
4327 * the caller to figure out how to deal with it.
4328 *
4329 * hw - Struct containing variables accessed by shared code
4330 *
4331 * returns: - E1000_BLK_PHY_RESET
4332 * E1000_SUCCESS
4333 *
4334 *****************************************************************************/
4335int32_t
4336e1000_check_phy_reset_block(struct e1000_hw *hw)
4337{
4338 uint32_t manc = 0;
4339 uint32_t fwsm = 0;
4340
4341 if (hw->mac_type == e1000_ich8lan) {
4342 fwsm = E1000_READ_REG(hw, FWSM);
4343 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4344 : E1000_BLK_PHY_RESET;
4345 }
4346
4347 if (hw->mac_type > e1000_82547_rev_2)
4348 manc = E1000_READ_REG(hw, MANC);
4349 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4350 E1000_BLK_PHY_RESET : E1000_SUCCESS;
4351}
4352
4353/***************************************************************************
4354 * Checks if the PHY configuration is done
4355 *
4356 * hw: Struct containing variables accessed by shared code
4357 *
4358 * returns: - E1000_ERR_RESET if fail to reset MAC
4359 * E1000_SUCCESS at any other case.
4360 *
4361 ***************************************************************************/
4362static int32_t
4363e1000_get_phy_cfg_done(struct e1000_hw *hw)
4364{
4365 int32_t timeout = PHY_CFG_TIMEOUT;
4366 uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4367
4368 DEBUGFUNC();
4369
4370 switch (hw->mac_type) {
4371 default:
4372 mdelay(10);
4373 break;
Kyle Moffett987b43a2010-09-13 05:52:22 +00004374
Roy Zangaa070782009-07-31 13:34:02 +08004375 case e1000_80003es2lan:
4376 /* Separate *_CFG_DONE_* bit for each port */
Kyle Moffett987b43a2010-09-13 05:52:22 +00004377 if (e1000_is_second_port(hw))
Roy Zangaa070782009-07-31 13:34:02 +08004378 cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
Kyle Moffett987b43a2010-09-13 05:52:22 +00004379 /* Fall Through */
4380
Roy Zangaa070782009-07-31 13:34:02 +08004381 case e1000_82571:
4382 case e1000_82572:
Marek Vasut95186062014-08-08 07:41:39 -07004383 case e1000_igb:
Roy Zangaa070782009-07-31 13:34:02 +08004384 while (timeout) {
Marek Vasut95186062014-08-08 07:41:39 -07004385 if (hw->mac_type == e1000_igb) {
4386 if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask)
4387 break;
4388 } else {
4389 if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4390 break;
4391 }
4392 mdelay(1);
Roy Zangaa070782009-07-31 13:34:02 +08004393 timeout--;
4394 }
4395 if (!timeout) {
4396 DEBUGOUT("MNG configuration cycle has not "
4397 "completed.\n");
4398 return -E1000_ERR_RESET;
4399 }
4400 break;
4401 }
4402
4403 return E1000_SUCCESS;
4404}
4405
4406/******************************************************************************
wdenk682011f2003-06-03 23:54:09 +00004407* Returns the PHY to the power-on reset state
4408*
4409* hw - Struct containing variables accessed by shared code
4410******************************************************************************/
Roy Zangaa070782009-07-31 13:34:02 +08004411int32_t
wdenk682011f2003-06-03 23:54:09 +00004412e1000_phy_hw_reset(struct e1000_hw *hw)
4413{
Kyle Moffett987b43a2010-09-13 05:52:22 +00004414 uint16_t swfw = E1000_SWFW_PHY0_SM;
Roy Zangaa070782009-07-31 13:34:02 +08004415 uint32_t ctrl, ctrl_ext;
4416 uint32_t led_ctrl;
4417 int32_t ret_val;
wdenk682011f2003-06-03 23:54:09 +00004418
4419 DEBUGFUNC();
4420
Roy Zangaa070782009-07-31 13:34:02 +08004421 /* In the case of the phy reset being blocked, it's not an error, we
4422 * simply return success without performing the reset. */
4423 ret_val = e1000_check_phy_reset_block(hw);
4424 if (ret_val)
4425 return E1000_SUCCESS;
4426
wdenk682011f2003-06-03 23:54:09 +00004427 DEBUGOUT("Resetting Phy...\n");
4428
4429 if (hw->mac_type > e1000_82543) {
Kyle Moffett987b43a2010-09-13 05:52:22 +00004430 if (e1000_is_second_port(hw))
Roy Zangaa070782009-07-31 13:34:02 +08004431 swfw = E1000_SWFW_PHY1_SM;
Kyle Moffett987b43a2010-09-13 05:52:22 +00004432
Roy Zangaa070782009-07-31 13:34:02 +08004433 if (e1000_swfw_sync_acquire(hw, swfw)) {
4434 DEBUGOUT("Unable to acquire swfw sync\n");
4435 return -E1000_ERR_SWFW_SYNC;
4436 }
Kyle Moffett987b43a2010-09-13 05:52:22 +00004437
wdenk682011f2003-06-03 23:54:09 +00004438 /* Read the device control register and assert the E1000_CTRL_PHY_RST
4439 * bit. Then, take it out of reset.
4440 */
4441 ctrl = E1000_READ_REG(hw, CTRL);
4442 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4443 E1000_WRITE_FLUSH(hw);
Roy Zangaa070782009-07-31 13:34:02 +08004444
4445 if (hw->mac_type < e1000_82571)
4446 udelay(10);
4447 else
4448 udelay(100);
4449
wdenk682011f2003-06-03 23:54:09 +00004450 E1000_WRITE_REG(hw, CTRL, ctrl);
4451 E1000_WRITE_FLUSH(hw);
Roy Zangaa070782009-07-31 13:34:02 +08004452
4453 if (hw->mac_type >= e1000_82571)
4454 mdelay(10);
Tim Harvey3c63dd52015-05-19 10:01:19 -07004455
wdenk682011f2003-06-03 23:54:09 +00004456 } else {
4457 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4458 * bit to put the PHY into reset. Then, take it out of reset.
4459 */
4460 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4461 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4462 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4463 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4464 E1000_WRITE_FLUSH(hw);
4465 mdelay(10);
4466 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4467 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4468 E1000_WRITE_FLUSH(hw);
4469 }
4470 udelay(150);
Roy Zangaa070782009-07-31 13:34:02 +08004471
4472 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4473 /* Configure activity LED after PHY reset */
4474 led_ctrl = E1000_READ_REG(hw, LEDCTL);
4475 led_ctrl &= IGP_ACTIVITY_LED_MASK;
4476 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4477 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4478 }
4479
Tim Harvey7e2d9912015-05-19 10:01:18 -07004480 e1000_swfw_sync_release(hw, swfw);
4481
Roy Zangaa070782009-07-31 13:34:02 +08004482 /* Wait for FW to finish PHY configuration. */
4483 ret_val = e1000_get_phy_cfg_done(hw);
4484 if (ret_val != E1000_SUCCESS)
4485 return ret_val;
4486
4487 return ret_val;
4488}
4489
4490/******************************************************************************
4491 * IGP phy init script - initializes the GbE PHY
4492 *
4493 * hw - Struct containing variables accessed by shared code
4494 *****************************************************************************/
4495static void
4496e1000_phy_init_script(struct e1000_hw *hw)
4497{
4498 uint32_t ret_val;
4499 uint16_t phy_saved_data;
4500 DEBUGFUNC();
4501
4502 if (hw->phy_init_script) {
4503 mdelay(20);
4504
4505 /* Save off the current value of register 0x2F5B to be
4506 * restored at the end of this routine. */
4507 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4508
4509 /* Disabled the PHY transmitter */
4510 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4511
4512 mdelay(20);
4513
4514 e1000_write_phy_reg(hw, 0x0000, 0x0140);
4515
4516 mdelay(5);
4517
4518 switch (hw->mac_type) {
4519 case e1000_82541:
4520 case e1000_82547:
4521 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4522
4523 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4524
4525 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4526
4527 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4528
4529 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4530
4531 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4532
4533 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4534
4535 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4536
4537 e1000_write_phy_reg(hw, 0x2010, 0x0008);
4538 break;
4539
4540 case e1000_82541_rev_2:
4541 case e1000_82547_rev_2:
4542 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4543 break;
4544 default:
4545 break;
4546 }
4547
4548 e1000_write_phy_reg(hw, 0x0000, 0x3300);
4549
4550 mdelay(20);
4551
4552 /* Now enable the transmitter */
Zang Roy-R6191156b13b12011-11-06 22:22:36 +00004553 if (!ret_val)
4554 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
Roy Zangaa070782009-07-31 13:34:02 +08004555
4556 if (hw->mac_type == e1000_82547) {
4557 uint16_t fused, fine, coarse;
4558
4559 /* Move to analog registers page */
4560 e1000_read_phy_reg(hw,
4561 IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4562
4563 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4564 e1000_read_phy_reg(hw,
4565 IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4566
4567 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4568 coarse = fused
4569 & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4570
4571 if (coarse >
4572 IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4573 coarse -=
4574 IGP01E1000_ANALOG_FUSE_COARSE_10;
4575 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4576 } else if (coarse
4577 == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4578 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4579
4580 fused = (fused
4581 & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4582 (fine
4583 & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4584 (coarse
4585 & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4586
4587 e1000_write_phy_reg(hw,
4588 IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4589 e1000_write_phy_reg(hw,
4590 IGP01E1000_ANALOG_FUSE_BYPASS,
4591 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4592 }
4593 }
4594 }
wdenk682011f2003-06-03 23:54:09 +00004595}
4596
4597/******************************************************************************
4598* Resets the PHY
4599*
4600* hw - Struct containing variables accessed by shared code
4601*
Roy Zangaa070782009-07-31 13:34:02 +08004602* Sets bit 15 of the MII Control register
wdenk682011f2003-06-03 23:54:09 +00004603******************************************************************************/
Roy Zangaa070782009-07-31 13:34:02 +08004604int32_t
wdenk682011f2003-06-03 23:54:09 +00004605e1000_phy_reset(struct e1000_hw *hw)
4606{
Roy Zangaa070782009-07-31 13:34:02 +08004607 int32_t ret_val;
wdenk682011f2003-06-03 23:54:09 +00004608 uint16_t phy_data;
4609
4610 DEBUGFUNC();
4611
Roy Zangaa070782009-07-31 13:34:02 +08004612 /* In the case of the phy reset being blocked, it's not an error, we
4613 * simply return success without performing the reset. */
4614 ret_val = e1000_check_phy_reset_block(hw);
4615 if (ret_val)
4616 return E1000_SUCCESS;
4617
4618 switch (hw->phy_type) {
4619 case e1000_phy_igp:
4620 case e1000_phy_igp_2:
4621 case e1000_phy_igp_3:
4622 case e1000_phy_ife:
Marek Vasut95186062014-08-08 07:41:39 -07004623 case e1000_phy_igb:
Roy Zangaa070782009-07-31 13:34:02 +08004624 ret_val = e1000_phy_hw_reset(hw);
4625 if (ret_val)
4626 return ret_val;
4627 break;
4628 default:
4629 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4630 if (ret_val)
4631 return ret_val;
4632
4633 phy_data |= MII_CR_RESET;
4634 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4635 if (ret_val)
4636 return ret_val;
4637
4638 udelay(1);
4639 break;
wdenk682011f2003-06-03 23:54:09 +00004640 }
Roy Zangaa070782009-07-31 13:34:02 +08004641
4642 if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4643 e1000_phy_init_script(hw);
4644
4645 return E1000_SUCCESS;
wdenk682011f2003-06-03 23:54:09 +00004646}
4647
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07004648static int e1000_set_phy_type (struct e1000_hw *hw)
Andre Schwarzac3315c2008-03-06 16:45:44 +01004649{
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07004650 DEBUGFUNC ();
Andre Schwarzac3315c2008-03-06 16:45:44 +01004651
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07004652 if (hw->mac_type == e1000_undefined)
4653 return -E1000_ERR_PHY_TYPE;
Andre Schwarzac3315c2008-03-06 16:45:44 +01004654
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07004655 switch (hw->phy_id) {
4656 case M88E1000_E_PHY_ID:
4657 case M88E1000_I_PHY_ID:
4658 case M88E1011_I_PHY_ID:
Roy Zangaa070782009-07-31 13:34:02 +08004659 case M88E1111_I_PHY_ID:
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07004660 hw->phy_type = e1000_phy_m88;
4661 break;
4662 case IGP01E1000_I_PHY_ID:
4663 if (hw->mac_type == e1000_82541 ||
Roy Zangaa070782009-07-31 13:34:02 +08004664 hw->mac_type == e1000_82541_rev_2 ||
4665 hw->mac_type == e1000_82547 ||
4666 hw->mac_type == e1000_82547_rev_2) {
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07004667 hw->phy_type = e1000_phy_igp;
Roy Zangaa070782009-07-31 13:34:02 +08004668 break;
4669 }
4670 case IGP03E1000_E_PHY_ID:
4671 hw->phy_type = e1000_phy_igp_3;
4672 break;
4673 case IFE_E_PHY_ID:
4674 case IFE_PLUS_E_PHY_ID:
4675 case IFE_C_E_PHY_ID:
4676 hw->phy_type = e1000_phy_ife;
4677 break;
4678 case GG82563_E_PHY_ID:
4679 if (hw->mac_type == e1000_80003es2lan) {
4680 hw->phy_type = e1000_phy_gg82563;
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07004681 break;
4682 }
Roy Zang2c2668f2011-01-21 11:29:38 +08004683 case BME1000_E_PHY_ID:
4684 hw->phy_type = e1000_phy_bm;
4685 break;
Marek Vasut95186062014-08-08 07:41:39 -07004686 case I210_I_PHY_ID:
4687 hw->phy_type = e1000_phy_igb;
4688 break;
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07004689 /* Fall Through */
4690 default:
4691 /* Should never have loaded on this device */
4692 hw->phy_type = e1000_phy_undefined;
4693 return -E1000_ERR_PHY_TYPE;
4694 }
Andre Schwarzac3315c2008-03-06 16:45:44 +01004695
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07004696 return E1000_SUCCESS;
Andre Schwarzac3315c2008-03-06 16:45:44 +01004697}
4698
wdenk682011f2003-06-03 23:54:09 +00004699/******************************************************************************
4700* Probes the expected PHY address for known PHY IDs
4701*
4702* hw - Struct containing variables accessed by shared code
4703******************************************************************************/
Roy Zangaa070782009-07-31 13:34:02 +08004704static int32_t
wdenk682011f2003-06-03 23:54:09 +00004705e1000_detect_gig_phy(struct e1000_hw *hw)
4706{
Roy Zangaa070782009-07-31 13:34:02 +08004707 int32_t phy_init_status, ret_val;
wdenk682011f2003-06-03 23:54:09 +00004708 uint16_t phy_id_high, phy_id_low;
York Sun472d5462013-04-01 11:29:11 -07004709 bool match = false;
wdenk682011f2003-06-03 23:54:09 +00004710
4711 DEBUGFUNC();
4712
Roy Zangaa070782009-07-31 13:34:02 +08004713 /* The 82571 firmware may still be configuring the PHY. In this
4714 * case, we cannot access the PHY until the configuration is done. So
4715 * we explicitly set the PHY values. */
4716 if (hw->mac_type == e1000_82571 ||
4717 hw->mac_type == e1000_82572) {
4718 hw->phy_id = IGP01E1000_I_PHY_ID;
4719 hw->phy_type = e1000_phy_igp_2;
4720 return E1000_SUCCESS;
4721 }
4722
4723 /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4724 * work- around that forces PHY page 0 to be set or the reads fail.
4725 * The rest of the code in this routine uses e1000_read_phy_reg to
4726 * read the PHY ID. So for ESB-2 we need to have this set so our
4727 * reads won't fail. If the attached PHY is not a e1000_phy_gg82563,
4728 * the routines below will figure this out as well. */
4729 if (hw->mac_type == e1000_80003es2lan)
4730 hw->phy_type = e1000_phy_gg82563;
4731
wdenk682011f2003-06-03 23:54:09 +00004732 /* Read the PHY ID Registers to identify which PHY is onboard. */
Roy Zangaa070782009-07-31 13:34:02 +08004733 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4734 if (ret_val)
4735 return ret_val;
4736
wdenk682011f2003-06-03 23:54:09 +00004737 hw->phy_id = (uint32_t) (phy_id_high << 16);
Roy Zangaa070782009-07-31 13:34:02 +08004738 udelay(20);
4739 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4740 if (ret_val)
4741 return ret_val;
4742
wdenk682011f2003-06-03 23:54:09 +00004743 hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
Roy Zangaa070782009-07-31 13:34:02 +08004744 hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
wdenk682011f2003-06-03 23:54:09 +00004745
4746 switch (hw->mac_type) {
4747 case e1000_82543:
4748 if (hw->phy_id == M88E1000_E_PHY_ID)
York Sun472d5462013-04-01 11:29:11 -07004749 match = true;
wdenk682011f2003-06-03 23:54:09 +00004750 break;
4751 case e1000_82544:
4752 if (hw->phy_id == M88E1000_I_PHY_ID)
York Sun472d5462013-04-01 11:29:11 -07004753 match = true;
wdenk682011f2003-06-03 23:54:09 +00004754 break;
4755 case e1000_82540:
4756 case e1000_82545:
Roy Zangaa070782009-07-31 13:34:02 +08004757 case e1000_82545_rev_3:
wdenk682011f2003-06-03 23:54:09 +00004758 case e1000_82546:
Roy Zangaa070782009-07-31 13:34:02 +08004759 case e1000_82546_rev_3:
wdenk682011f2003-06-03 23:54:09 +00004760 if (hw->phy_id == M88E1011_I_PHY_ID)
York Sun472d5462013-04-01 11:29:11 -07004761 match = true;
wdenk682011f2003-06-03 23:54:09 +00004762 break;
Roy Zangaa070782009-07-31 13:34:02 +08004763 case e1000_82541:
Andre Schwarzac3315c2008-03-06 16:45:44 +01004764 case e1000_82541_rev_2:
Roy Zangaa070782009-07-31 13:34:02 +08004765 case e1000_82547:
4766 case e1000_82547_rev_2:
Andre Schwarzac3315c2008-03-06 16:45:44 +01004767 if(hw->phy_id == IGP01E1000_I_PHY_ID)
York Sun472d5462013-04-01 11:29:11 -07004768 match = true;
Andre Schwarzac3315c2008-03-06 16:45:44 +01004769
4770 break;
Roy Zangaa070782009-07-31 13:34:02 +08004771 case e1000_82573:
4772 if (hw->phy_id == M88E1111_I_PHY_ID)
York Sun472d5462013-04-01 11:29:11 -07004773 match = true;
Roy Zangaa070782009-07-31 13:34:02 +08004774 break;
Roy Zang2c2668f2011-01-21 11:29:38 +08004775 case e1000_82574:
4776 if (hw->phy_id == BME1000_E_PHY_ID)
York Sun472d5462013-04-01 11:29:11 -07004777 match = true;
Roy Zang2c2668f2011-01-21 11:29:38 +08004778 break;
Roy Zangaa070782009-07-31 13:34:02 +08004779 case e1000_80003es2lan:
4780 if (hw->phy_id == GG82563_E_PHY_ID)
York Sun472d5462013-04-01 11:29:11 -07004781 match = true;
Roy Zangaa070782009-07-31 13:34:02 +08004782 break;
4783 case e1000_ich8lan:
4784 if (hw->phy_id == IGP03E1000_E_PHY_ID)
York Sun472d5462013-04-01 11:29:11 -07004785 match = true;
Roy Zangaa070782009-07-31 13:34:02 +08004786 if (hw->phy_id == IFE_E_PHY_ID)
York Sun472d5462013-04-01 11:29:11 -07004787 match = true;
Roy Zangaa070782009-07-31 13:34:02 +08004788 if (hw->phy_id == IFE_PLUS_E_PHY_ID)
York Sun472d5462013-04-01 11:29:11 -07004789 match = true;
Roy Zangaa070782009-07-31 13:34:02 +08004790 if (hw->phy_id == IFE_C_E_PHY_ID)
York Sun472d5462013-04-01 11:29:11 -07004791 match = true;
Roy Zangaa070782009-07-31 13:34:02 +08004792 break;
Marek Vasut95186062014-08-08 07:41:39 -07004793 case e1000_igb:
4794 if (hw->phy_id == I210_I_PHY_ID)
4795 match = true;
4796 break;
wdenk682011f2003-06-03 23:54:09 +00004797 default:
4798 DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4799 return -E1000_ERR_CONFIG;
4800 }
Andre Schwarzac3315c2008-03-06 16:45:44 +01004801
4802 phy_init_status = e1000_set_phy_type(hw);
4803
4804 if ((match) && (phy_init_status == E1000_SUCCESS)) {
wdenk682011f2003-06-03 23:54:09 +00004805 DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4806 return 0;
4807 }
4808 DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4809 return -E1000_ERR_PHY;
4810}
4811
Roy Zangaa070782009-07-31 13:34:02 +08004812/*****************************************************************************
4813 * Set media type and TBI compatibility.
4814 *
4815 * hw - Struct containing variables accessed by shared code
4816 * **************************************************************************/
4817void
4818e1000_set_media_type(struct e1000_hw *hw)
4819{
4820 uint32_t status;
4821
4822 DEBUGFUNC();
4823
4824 if (hw->mac_type != e1000_82543) {
4825 /* tbi_compatibility is only valid on 82543 */
York Sun472d5462013-04-01 11:29:11 -07004826 hw->tbi_compatibility_en = false;
Roy Zangaa070782009-07-31 13:34:02 +08004827 }
4828
4829 switch (hw->device_id) {
4830 case E1000_DEV_ID_82545GM_SERDES:
4831 case E1000_DEV_ID_82546GB_SERDES:
4832 case E1000_DEV_ID_82571EB_SERDES:
4833 case E1000_DEV_ID_82571EB_SERDES_DUAL:
4834 case E1000_DEV_ID_82571EB_SERDES_QUAD:
4835 case E1000_DEV_ID_82572EI_SERDES:
4836 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4837 hw->media_type = e1000_media_type_internal_serdes;
4838 break;
4839 default:
4840 switch (hw->mac_type) {
4841 case e1000_82542_rev2_0:
4842 case e1000_82542_rev2_1:
4843 hw->media_type = e1000_media_type_fiber;
4844 break;
4845 case e1000_ich8lan:
4846 case e1000_82573:
Roy Zang2c2668f2011-01-21 11:29:38 +08004847 case e1000_82574:
Marek Vasut95186062014-08-08 07:41:39 -07004848 case e1000_igb:
Roy Zangaa070782009-07-31 13:34:02 +08004849 /* The STATUS_TBIMODE bit is reserved or reused
4850 * for the this device.
4851 */
4852 hw->media_type = e1000_media_type_copper;
4853 break;
4854 default:
4855 status = E1000_READ_REG(hw, STATUS);
4856 if (status & E1000_STATUS_TBIMODE) {
4857 hw->media_type = e1000_media_type_fiber;
4858 /* tbi_compatibility not valid on fiber */
York Sun472d5462013-04-01 11:29:11 -07004859 hw->tbi_compatibility_en = false;
Roy Zangaa070782009-07-31 13:34:02 +08004860 } else {
4861 hw->media_type = e1000_media_type_copper;
4862 }
4863 break;
4864 }
4865 }
4866}
4867
wdenk682011f2003-06-03 23:54:09 +00004868/**
4869 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4870 *
4871 * e1000_sw_init initializes the Adapter private data structure.
4872 * Fields are initialized based on PCI device information and
4873 * OS network device settings (MTU size).
4874 **/
4875
4876static int
Kyle Moffettd60626f82011-10-18 11:05:26 +00004877e1000_sw_init(struct eth_device *nic)
wdenk682011f2003-06-03 23:54:09 +00004878{
4879 struct e1000_hw *hw = (typeof(hw)) nic->priv;
4880 int result;
4881
4882 /* PCI config space info */
4883 pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4884 pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4885 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4886 &hw->subsystem_vendor_id);
4887 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4888
4889 pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4890 pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4891
4892 /* identify the MAC */
4893 result = e1000_set_mac_type(hw);
4894 if (result) {
Kyle Moffettd60626f82011-10-18 11:05:26 +00004895 E1000_ERR(hw->nic, "Unknown MAC Type\n");
wdenk682011f2003-06-03 23:54:09 +00004896 return result;
4897 }
4898
Roy Zangaa070782009-07-31 13:34:02 +08004899 switch (hw->mac_type) {
4900 default:
4901 break;
4902 case e1000_82541:
4903 case e1000_82547:
4904 case e1000_82541_rev_2:
4905 case e1000_82547_rev_2:
4906 hw->phy_init_script = 1;
4907 break;
4908 }
4909
wdenk682011f2003-06-03 23:54:09 +00004910 /* flow control settings */
4911 hw->fc_high_water = E1000_FC_HIGH_THRESH;
4912 hw->fc_low_water = E1000_FC_LOW_THRESH;
4913 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4914 hw->fc_send_xon = 1;
4915
4916 /* Media type - copper or fiber */
Marek Vasut95186062014-08-08 07:41:39 -07004917 hw->tbi_compatibility_en = true;
Roy Zangaa070782009-07-31 13:34:02 +08004918 e1000_set_media_type(hw);
wdenk682011f2003-06-03 23:54:09 +00004919
4920 if (hw->mac_type >= e1000_82543) {
4921 uint32_t status = E1000_READ_REG(hw, STATUS);
4922
4923 if (status & E1000_STATUS_TBIMODE) {
4924 DEBUGOUT("fiber interface\n");
4925 hw->media_type = e1000_media_type_fiber;
4926 } else {
4927 DEBUGOUT("copper interface\n");
4928 hw->media_type = e1000_media_type_copper;
4929 }
4930 } else {
4931 hw->media_type = e1000_media_type_fiber;
4932 }
4933
York Sun472d5462013-04-01 11:29:11 -07004934 hw->wait_autoneg_complete = true;
wdenk682011f2003-06-03 23:54:09 +00004935 if (hw->mac_type < e1000_82543)
4936 hw->report_tx_early = 0;
4937 else
4938 hw->report_tx_early = 1;
4939
wdenk682011f2003-06-03 23:54:09 +00004940 return E1000_SUCCESS;
4941}
4942
4943void
4944fill_rx(struct e1000_hw *hw)
4945{
4946 struct e1000_rx_desc *rd;
Minghuan Lian06e07f62015-01-22 13:21:54 +08004947 unsigned long flush_start, flush_end;
wdenk682011f2003-06-03 23:54:09 +00004948
4949 rx_last = rx_tail;
4950 rd = rx_base + rx_tail;
4951 rx_tail = (rx_tail + 1) % 8;
4952 memset(rd, 0, 16);
Minghuan Lian06e07f62015-01-22 13:21:54 +08004953 rd->buffer_addr = cpu_to_le64((unsigned long)packet);
Marek Vasut873e8e02014-08-08 07:41:38 -07004954
4955 /*
4956 * Make sure there are no stale data in WB over this area, which
4957 * might get written into the memory while the e1000 also writes
4958 * into the same memory area.
4959 */
Minghuan Lian06e07f62015-01-22 13:21:54 +08004960 invalidate_dcache_range((unsigned long)packet,
4961 (unsigned long)packet + 4096);
Marek Vasut873e8e02014-08-08 07:41:38 -07004962 /* Dump the DMA descriptor into RAM. */
Minghuan Lian06e07f62015-01-22 13:21:54 +08004963 flush_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
Marek Vasut873e8e02014-08-08 07:41:38 -07004964 flush_end = flush_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
4965 flush_dcache_range(flush_start, flush_end);
4966
wdenk682011f2003-06-03 23:54:09 +00004967 E1000_WRITE_REG(hw, RDT, rx_tail);
4968}
4969
4970/**
4971 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4972 * @adapter: board private structure
4973 *
4974 * Configure the Tx unit of the MAC after a reset.
4975 **/
4976
4977static void
4978e1000_configure_tx(struct e1000_hw *hw)
4979{
wdenk682011f2003-06-03 23:54:09 +00004980 unsigned long tctl;
Roy Zangaa070782009-07-31 13:34:02 +08004981 unsigned long tipg, tarc;
4982 uint32_t ipgr1, ipgr2;
wdenk682011f2003-06-03 23:54:09 +00004983
Mingkai Hu6497e372015-08-18 14:06:26 -07004984 E1000_WRITE_REG(hw, TDBAL, (unsigned long)tx_base & 0xffffffff);
4985 E1000_WRITE_REG(hw, TDBAH, (unsigned long)tx_base >> 32);
wdenk682011f2003-06-03 23:54:09 +00004986
4987 E1000_WRITE_REG(hw, TDLEN, 128);
4988
4989 /* Setup the HW Tx Head and Tail descriptor pointers */
4990 E1000_WRITE_REG(hw, TDH, 0);
4991 E1000_WRITE_REG(hw, TDT, 0);
4992 tx_tail = 0;
4993
4994 /* Set the default values for the Tx Inter Packet Gap timer */
Roy Zangaa070782009-07-31 13:34:02 +08004995 if (hw->mac_type <= e1000_82547_rev_2 &&
4996 (hw->media_type == e1000_media_type_fiber ||
4997 hw->media_type == e1000_media_type_internal_serdes))
4998 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4999 else
5000 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
5001
5002 /* Set the default values for the Tx Inter Packet Gap timer */
wdenk682011f2003-06-03 23:54:09 +00005003 switch (hw->mac_type) {
5004 case e1000_82542_rev2_0:
5005 case e1000_82542_rev2_1:
5006 tipg = DEFAULT_82542_TIPG_IPGT;
Roy Zangaa070782009-07-31 13:34:02 +08005007 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
5008 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
5009 break;
5010 case e1000_80003es2lan:
5011 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
5012 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
wdenk682011f2003-06-03 23:54:09 +00005013 break;
5014 default:
Roy Zangaa070782009-07-31 13:34:02 +08005015 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
5016 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
5017 break;
wdenk682011f2003-06-03 23:54:09 +00005018 }
Roy Zangaa070782009-07-31 13:34:02 +08005019 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
5020 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
wdenk682011f2003-06-03 23:54:09 +00005021 E1000_WRITE_REG(hw, TIPG, tipg);
wdenk682011f2003-06-03 23:54:09 +00005022 /* Program the Transmit Control Register */
5023 tctl = E1000_READ_REG(hw, TCTL);
5024 tctl &= ~E1000_TCTL_CT;
5025 tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
5026 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
Roy Zangaa070782009-07-31 13:34:02 +08005027
5028 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
5029 tarc = E1000_READ_REG(hw, TARC0);
5030 /* set the speed mode bit, we'll clear it if we're not at
5031 * gigabit link later */
5032 /* git bit can be set to 1*/
5033 } else if (hw->mac_type == e1000_80003es2lan) {
5034 tarc = E1000_READ_REG(hw, TARC0);
5035 tarc |= 1;
5036 E1000_WRITE_REG(hw, TARC0, tarc);
5037 tarc = E1000_READ_REG(hw, TARC1);
5038 tarc |= 1;
5039 E1000_WRITE_REG(hw, TARC1, tarc);
5040 }
5041
wdenk682011f2003-06-03 23:54:09 +00005042
5043 e1000_config_collision_dist(hw);
Roy Zangaa070782009-07-31 13:34:02 +08005044 /* Setup Transmit Descriptor Settings for eop descriptor */
5045 hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
wdenk682011f2003-06-03 23:54:09 +00005046
Roy Zangaa070782009-07-31 13:34:02 +08005047 /* Need to set up RS bit */
5048 if (hw->mac_type < e1000_82543)
5049 hw->txd_cmd |= E1000_TXD_CMD_RPS;
wdenk682011f2003-06-03 23:54:09 +00005050 else
Roy Zangaa070782009-07-31 13:34:02 +08005051 hw->txd_cmd |= E1000_TXD_CMD_RS;
Marek Vasut95186062014-08-08 07:41:39 -07005052
5053
5054 if (hw->mac_type == e1000_igb) {
5055 E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10);
5056
5057 uint32_t reg_txdctl = E1000_READ_REG(hw, TXDCTL);
5058 reg_txdctl |= 1 << 25;
5059 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
5060 mdelay(20);
5061 }
5062
5063
5064
Roy Zangaa070782009-07-31 13:34:02 +08005065 E1000_WRITE_REG(hw, TCTL, tctl);
Marek Vasut95186062014-08-08 07:41:39 -07005066
5067
wdenk682011f2003-06-03 23:54:09 +00005068}
5069
5070/**
5071 * e1000_setup_rctl - configure the receive control register
5072 * @adapter: Board private structure
5073 **/
5074static void
5075e1000_setup_rctl(struct e1000_hw *hw)
5076{
5077 uint32_t rctl;
5078
5079 rctl = E1000_READ_REG(hw, RCTL);
5080
5081 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
5082
Roy Zangaa070782009-07-31 13:34:02 +08005083 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
5084 | E1000_RCTL_RDMTS_HALF; /* |
5085 (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
wdenk682011f2003-06-03 23:54:09 +00005086
5087 if (hw->tbi_compatibility_on == 1)
5088 rctl |= E1000_RCTL_SBP;
5089 else
5090 rctl &= ~E1000_RCTL_SBP;
5091
5092 rctl &= ~(E1000_RCTL_SZ_4096);
wdenk682011f2003-06-03 23:54:09 +00005093 rctl |= E1000_RCTL_SZ_2048;
5094 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
wdenk682011f2003-06-03 23:54:09 +00005095 E1000_WRITE_REG(hw, RCTL, rctl);
5096}
5097
5098/**
5099 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
5100 * @adapter: board private structure
5101 *
5102 * Configure the Rx unit of the MAC after a reset.
5103 **/
5104static void
5105e1000_configure_rx(struct e1000_hw *hw)
5106{
Roy Zangaa070782009-07-31 13:34:02 +08005107 unsigned long rctl, ctrl_ext;
wdenk682011f2003-06-03 23:54:09 +00005108 rx_tail = 0;
5109 /* make sure receives are disabled while setting up the descriptors */
5110 rctl = E1000_READ_REG(hw, RCTL);
5111 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
wdenk682011f2003-06-03 23:54:09 +00005112 if (hw->mac_type >= e1000_82540) {
wdenk682011f2003-06-03 23:54:09 +00005113 /* Set the interrupt throttling rate. Value is calculated
5114 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
Wolfgang Denk1aeed8d2008-04-13 09:59:26 -07005115#define MAX_INTS_PER_SEC 8000
5116#define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
wdenk682011f2003-06-03 23:54:09 +00005117 E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
5118 }
5119
Roy Zangaa070782009-07-31 13:34:02 +08005120 if (hw->mac_type >= e1000_82571) {
5121 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
5122 /* Reset delay timers after every interrupt */
5123 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
5124 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
5125 E1000_WRITE_FLUSH(hw);
5126 }
wdenk682011f2003-06-03 23:54:09 +00005127 /* Setup the Base and Length of the Rx Descriptor Ring */
Mingkai Hu6497e372015-08-18 14:06:26 -07005128 E1000_WRITE_REG(hw, RDBAL, (unsigned long)rx_base & 0xffffffff);
5129 E1000_WRITE_REG(hw, RDBAH, (unsigned long)rx_base >> 32);
wdenk682011f2003-06-03 23:54:09 +00005130
5131 E1000_WRITE_REG(hw, RDLEN, 128);
5132
5133 /* Setup the HW Rx Head and Tail Descriptor Pointers */
5134 E1000_WRITE_REG(hw, RDH, 0);
5135 E1000_WRITE_REG(hw, RDT, 0);
wdenk682011f2003-06-03 23:54:09 +00005136 /* Enable Receives */
5137
Marek Vasut95186062014-08-08 07:41:39 -07005138 if (hw->mac_type == e1000_igb) {
5139
5140 uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL);
5141 reg_rxdctl |= 1 << 25;
5142 E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl);
5143 mdelay(20);
5144 }
5145
wdenk682011f2003-06-03 23:54:09 +00005146 E1000_WRITE_REG(hw, RCTL, rctl);
Marek Vasut95186062014-08-08 07:41:39 -07005147
wdenk682011f2003-06-03 23:54:09 +00005148 fill_rx(hw);
5149}
5150
5151/**************************************************************************
5152POLL - Wait for a frame
5153***************************************************************************/
5154static int
5155e1000_poll(struct eth_device *nic)
5156{
5157 struct e1000_hw *hw = nic->priv;
5158 struct e1000_rx_desc *rd;
Minghuan Lian06e07f62015-01-22 13:21:54 +08005159 unsigned long inval_start, inval_end;
Marek Vasut873e8e02014-08-08 07:41:38 -07005160 uint32_t len;
5161
wdenk682011f2003-06-03 23:54:09 +00005162 /* return true if there's an ethernet packet ready to read */
5163 rd = rx_base + rx_last;
Marek Vasut873e8e02014-08-08 07:41:38 -07005164
5165 /* Re-load the descriptor from RAM. */
Minghuan Lian06e07f62015-01-22 13:21:54 +08005166 inval_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
Marek Vasut873e8e02014-08-08 07:41:38 -07005167 inval_end = inval_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
5168 invalidate_dcache_range(inval_start, inval_end);
5169
wdenk682011f2003-06-03 23:54:09 +00005170 if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
5171 return 0;
Minghuan Lian5abf13e2015-03-19 09:43:51 -07005172 /* DEBUGOUT("recv: packet len=%d\n", rd->length); */
Marek Vasut873e8e02014-08-08 07:41:38 -07005173 /* Packet received, make sure the data are re-loaded from RAM. */
5174 len = le32_to_cpu(rd->length);
Minghuan Lian06e07f62015-01-22 13:21:54 +08005175 invalidate_dcache_range((unsigned long)packet,
5176 (unsigned long)packet +
5177 roundup(len, ARCH_DMA_MINALIGN));
Joe Hershberger1fd92db2015-04-08 01:41:06 -05005178 net_process_received_packet((uchar *)packet, len);
wdenk682011f2003-06-03 23:54:09 +00005179 fill_rx(hw);
5180 return 1;
5181}
5182
5183/**************************************************************************
5184TRANSMIT - Transmit a frame
5185***************************************************************************/
Marek Vasut873e8e02014-08-08 07:41:38 -07005186static int e1000_transmit(struct eth_device *nic, void *txpacket, int length)
wdenk682011f2003-06-03 23:54:09 +00005187{
Marek Vasut873e8e02014-08-08 07:41:38 -07005188 void *nv_packet = (void *)txpacket;
wdenk682011f2003-06-03 23:54:09 +00005189 struct e1000_hw *hw = nic->priv;
5190 struct e1000_tx_desc *txp;
5191 int i = 0;
Minghuan Lian06e07f62015-01-22 13:21:54 +08005192 unsigned long flush_start, flush_end;
wdenk682011f2003-06-03 23:54:09 +00005193
5194 txp = tx_base + tx_tail;
5195 tx_tail = (tx_tail + 1) % 8;
5196
Wolfgang Denk8aa858c2010-11-22 09:48:45 +01005197 txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
Roy Zangaa070782009-07-31 13:34:02 +08005198 txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
wdenk682011f2003-06-03 23:54:09 +00005199 txp->upper.data = 0;
Marek Vasut873e8e02014-08-08 07:41:38 -07005200
5201 /* Dump the packet into RAM so e1000 can pick them. */
Minghuan Lian06e07f62015-01-22 13:21:54 +08005202 flush_dcache_range((unsigned long)nv_packet,
5203 (unsigned long)nv_packet +
5204 roundup(length, ARCH_DMA_MINALIGN));
Marek Vasut873e8e02014-08-08 07:41:38 -07005205 /* Dump the descriptor into RAM as well. */
Minghuan Lian06e07f62015-01-22 13:21:54 +08005206 flush_start = ((unsigned long)txp) & ~(ARCH_DMA_MINALIGN - 1);
Marek Vasut873e8e02014-08-08 07:41:38 -07005207 flush_end = flush_start + roundup(sizeof(*txp), ARCH_DMA_MINALIGN);
5208 flush_dcache_range(flush_start, flush_end);
5209
wdenk682011f2003-06-03 23:54:09 +00005210 E1000_WRITE_REG(hw, TDT, tx_tail);
5211
Roy Zangaa070782009-07-31 13:34:02 +08005212 E1000_WRITE_FLUSH(hw);
Marek Vasut873e8e02014-08-08 07:41:38 -07005213 while (1) {
5214 invalidate_dcache_range(flush_start, flush_end);
5215 if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)
5216 break;
wdenk682011f2003-06-03 23:54:09 +00005217 if (i++ > TOUT_LOOP) {
5218 DEBUGOUT("e1000: tx timeout\n");
5219 return 0;
5220 }
5221 udelay(10); /* give the nic a chance to write to the register */
5222 }
5223 return 1;
5224}
5225
5226/*reset function*/
5227static inline int
5228e1000_reset(struct eth_device *nic)
5229{
5230 struct e1000_hw *hw = nic->priv;
5231
5232 e1000_reset_hw(hw);
5233 if (hw->mac_type >= e1000_82544) {
5234 E1000_WRITE_REG(hw, WUC, 0);
5235 }
5236 return e1000_init_hw(nic);
5237}
5238
5239/**************************************************************************
5240DISABLE - Turn off ethernet interface
5241***************************************************************************/
5242static void
5243e1000_disable(struct eth_device *nic)
5244{
5245 struct e1000_hw *hw = nic->priv;
5246
5247 /* Turn off the ethernet interface */
5248 E1000_WRITE_REG(hw, RCTL, 0);
5249 E1000_WRITE_REG(hw, TCTL, 0);
5250
5251 /* Clear the transmit ring */
5252 E1000_WRITE_REG(hw, TDH, 0);
5253 E1000_WRITE_REG(hw, TDT, 0);
5254
5255 /* Clear the receive ring */
5256 E1000_WRITE_REG(hw, RDH, 0);
5257 E1000_WRITE_REG(hw, RDT, 0);
5258
5259 /* put the card in its initial state */
5260#if 0
5261 E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
5262#endif
5263 mdelay(10);
5264
5265}
5266
5267/**************************************************************************
5268INIT - set up ethernet interface(s)
5269***************************************************************************/
5270static int
5271e1000_init(struct eth_device *nic, bd_t * bis)
5272{
5273 struct e1000_hw *hw = nic->priv;
5274 int ret_val = 0;
5275
5276 ret_val = e1000_reset(nic);
5277 if (ret_val < 0) {
5278 if ((ret_val == -E1000_ERR_NOLINK) ||
5279 (ret_val == -E1000_ERR_TIMEOUT)) {
Kyle Moffettd60626f82011-10-18 11:05:26 +00005280 E1000_ERR(hw->nic, "Valid Link not detected\n");
wdenk682011f2003-06-03 23:54:09 +00005281 } else {
Kyle Moffettd60626f82011-10-18 11:05:26 +00005282 E1000_ERR(hw->nic, "Hardware Initialization Failed\n");
wdenk682011f2003-06-03 23:54:09 +00005283 }
5284 return 0;
5285 }
5286 e1000_configure_tx(hw);
5287 e1000_setup_rctl(hw);
5288 e1000_configure_rx(hw);
5289 return 1;
5290}
5291
Roy Zangaa070782009-07-31 13:34:02 +08005292/******************************************************************************
5293 * Gets the current PCI bus type of hardware
5294 *
5295 * hw - Struct containing variables accessed by shared code
5296 *****************************************************************************/
5297void e1000_get_bus_type(struct e1000_hw *hw)
5298{
5299 uint32_t status;
5300
5301 switch (hw->mac_type) {
5302 case e1000_82542_rev2_0:
5303 case e1000_82542_rev2_1:
5304 hw->bus_type = e1000_bus_type_pci;
5305 break;
5306 case e1000_82571:
5307 case e1000_82572:
5308 case e1000_82573:
Roy Zang2c2668f2011-01-21 11:29:38 +08005309 case e1000_82574:
Roy Zangaa070782009-07-31 13:34:02 +08005310 case e1000_80003es2lan:
Roy Zangaa070782009-07-31 13:34:02 +08005311 case e1000_ich8lan:
Marek Vasut95186062014-08-08 07:41:39 -07005312 case e1000_igb:
Roy Zangaa070782009-07-31 13:34:02 +08005313 hw->bus_type = e1000_bus_type_pci_express;
5314 break;
5315 default:
5316 status = E1000_READ_REG(hw, STATUS);
5317 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5318 e1000_bus_type_pcix : e1000_bus_type_pci;
5319 break;
5320 }
5321}
5322
Kyle Moffettce5207e2011-10-18 11:05:29 +00005323/* A list of all registered e1000 devices */
5324static LIST_HEAD(e1000_hw_list);
5325
wdenk682011f2003-06-03 23:54:09 +00005326/**************************************************************************
5327PROBE - Look for an adapter, this routine's visible to the outside
5328You should omit the last argument struct pci_device * for a non-PCI NIC
5329***************************************************************************/
5330int
5331e1000_initialize(bd_t * bis)
5332{
Kyle Moffettd60626f82011-10-18 11:05:26 +00005333 unsigned int i;
wdenk682011f2003-06-03 23:54:09 +00005334 pci_dev_t devno;
wdenk682011f2003-06-03 23:54:09 +00005335
Timur Tabif81ecb52009-08-17 15:55:38 -05005336 DEBUGFUNC();
5337
Kyle Moffettd60626f82011-10-18 11:05:26 +00005338 /* Find and probe all the matching PCI devices */
5339 for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
5340 u32 val;
wdenk682011f2003-06-03 23:54:09 +00005341
Kyle Moffettd60626f82011-10-18 11:05:26 +00005342 /*
5343 * These will never get freed due to errors, this allows us to
5344 * perform SPI EEPROM programming from U-boot, for example.
5345 */
5346 struct eth_device *nic = malloc(sizeof(*nic));
5347 struct e1000_hw *hw = malloc(sizeof(*hw));
5348 if (!nic || !hw) {
5349 printf("e1000#%u: Out of Memory!\n", i);
Kumar Gala4b29bdb2010-11-12 04:13:06 -06005350 free(nic);
Kyle Moffettd60626f82011-10-18 11:05:26 +00005351 free(hw);
5352 continue;
Kumar Gala4b29bdb2010-11-12 04:13:06 -06005353 }
5354
Kyle Moffettd60626f82011-10-18 11:05:26 +00005355 /* Make sure all of the fields are initially zeroed */
Matthew McClintockf7ac99f2010-11-15 18:02:53 -06005356 memset(nic, 0, sizeof(*nic));
Kumar Gala4b29bdb2010-11-12 04:13:06 -06005357 memset(hw, 0, sizeof(*hw));
5358
Kyle Moffettd60626f82011-10-18 11:05:26 +00005359 /* Assign the passed-in values */
5360 hw->cardnum = i;
wdenk682011f2003-06-03 23:54:09 +00005361 hw->pdev = devno;
Kyle Moffettd60626f82011-10-18 11:05:26 +00005362 hw->nic = nic;
wdenk682011f2003-06-03 23:54:09 +00005363 nic->priv = hw;
wdenk682011f2003-06-03 23:54:09 +00005364
Kyle Moffettd60626f82011-10-18 11:05:26 +00005365 /* Generate a card name */
5366 sprintf(nic->name, "e1000#%u", hw->cardnum);
5367
5368 /* Print a debug message with the IO base address */
5369 pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
5370 E1000_DBG(nic, "iobase 0x%08x\n", val & 0xfffffff0);
5371
5372 /* Try to enable I/O accesses and bus-mastering */
5373 val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
5374 pci_write_config_dword(devno, PCI_COMMAND, val);
5375
5376 /* Make sure it worked */
5377 pci_read_config_dword(devno, PCI_COMMAND, &val);
5378 if (!(val & PCI_COMMAND_MEMORY)) {
5379 E1000_ERR(nic, "Can't enable I/O memory\n");
5380 continue;
5381 }
5382 if (!(val & PCI_COMMAND_MASTER)) {
5383 E1000_ERR(nic, "Can't enable bus-mastering\n");
5384 continue;
5385 }
wdenk682011f2003-06-03 23:54:09 +00005386
5387 /* Are these variables needed? */
wdenk682011f2003-06-03 23:54:09 +00005388 hw->fc = e1000_fc_default;
5389 hw->original_fc = e1000_fc_default;
wdenk682011f2003-06-03 23:54:09 +00005390 hw->autoneg_failed = 0;
Roy Zangaa070782009-07-31 13:34:02 +08005391 hw->autoneg = 1;
York Sun472d5462013-04-01 11:29:11 -07005392 hw->get_link_status = true;
Marcel Ziswilera4277202014-09-08 00:02:11 +02005393#ifndef CONFIG_E1000_NO_NVM
Marek Vasut95186062014-08-08 07:41:39 -07005394 hw->eeprom_semaphore_present = true;
Marcel Ziswilera4277202014-09-08 00:02:11 +02005395#endif
Kyle Moffettd60626f82011-10-18 11:05:26 +00005396 hw->hw_addr = pci_map_bar(devno, PCI_BASE_ADDRESS_0,
5397 PCI_REGION_MEM);
wdenk682011f2003-06-03 23:54:09 +00005398 hw->mac_type = e1000_undefined;
5399
5400 /* MAC and Phy settings */
Kyle Moffettd60626f82011-10-18 11:05:26 +00005401 if (e1000_sw_init(nic) < 0) {
5402 E1000_ERR(nic, "Software init failed\n");
5403 continue;
wdenk682011f2003-06-03 23:54:09 +00005404 }
Roy Zangaa070782009-07-31 13:34:02 +08005405 if (e1000_check_phy_reset_block(hw))
Kyle Moffettd60626f82011-10-18 11:05:26 +00005406 E1000_ERR(nic, "PHY Reset is blocked!\n");
5407
Kyle Moffettce5207e2011-10-18 11:05:29 +00005408 /* Basic init was OK, reset the hardware and allow SPI access */
Roy Zangaa070782009-07-31 13:34:02 +08005409 e1000_reset_hw(hw);
Kyle Moffettce5207e2011-10-18 11:05:29 +00005410 list_add_tail(&hw->list_node, &e1000_hw_list);
Kyle Moffettd60626f82011-10-18 11:05:26 +00005411
Rojhalat Ibrahim8712adf2013-10-07 18:30:39 +02005412#ifndef CONFIG_E1000_NO_NVM
Kyle Moffettd60626f82011-10-18 11:05:26 +00005413 /* Validate the EEPROM and get chipset information */
Stefan Roesea821d082012-09-19 15:18:52 +02005414#if !defined(CONFIG_MVBC_1G)
Roy Zangaa070782009-07-31 13:34:02 +08005415 if (e1000_init_eeprom_params(hw)) {
Kyle Moffettd60626f82011-10-18 11:05:26 +00005416 E1000_ERR(nic, "EEPROM is invalid!\n");
5417 continue;
Roy Zangaa070782009-07-31 13:34:02 +08005418 }
Marek Vasut95186062014-08-08 07:41:39 -07005419 if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) &&
5420 e1000_validate_eeprom_checksum(hw))
Kyle Moffettd60626f82011-10-18 11:05:26 +00005421 continue;
Wolfgang Denk7521af12005-10-09 01:04:33 +02005422#endif
wdenk682011f2003-06-03 23:54:09 +00005423 e1000_read_mac_addr(nic);
Rojhalat Ibrahim8712adf2013-10-07 18:30:39 +02005424#endif
Roy Zangaa070782009-07-31 13:34:02 +08005425 e1000_get_bus_type(hw);
wdenk682011f2003-06-03 23:54:09 +00005426
Rojhalat Ibrahim8712adf2013-10-07 18:30:39 +02005427#ifndef CONFIG_E1000_NO_NVM
Kyle Moffettd60626f82011-10-18 11:05:26 +00005428 printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n ",
wdenk682011f2003-06-03 23:54:09 +00005429 nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
5430 nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
Rojhalat Ibrahim8712adf2013-10-07 18:30:39 +02005431#else
5432 memset(nic->enetaddr, 0, 6);
5433 printf("e1000: no NVM\n");
5434#endif
wdenk682011f2003-06-03 23:54:09 +00005435
Kyle Moffettd60626f82011-10-18 11:05:26 +00005436 /* Set up the function pointers and register the device */
wdenk682011f2003-06-03 23:54:09 +00005437 nic->init = e1000_init;
5438 nic->recv = e1000_poll;
5439 nic->send = e1000_transmit;
5440 nic->halt = e1000_disable;
wdenk682011f2003-06-03 23:54:09 +00005441 eth_register(nic);
wdenk682011f2003-06-03 23:54:09 +00005442 }
Kyle Moffettd60626f82011-10-18 11:05:26 +00005443
5444 return i;
wdenk682011f2003-06-03 23:54:09 +00005445}
Kyle Moffettce5207e2011-10-18 11:05:29 +00005446
5447struct e1000_hw *e1000_find_card(unsigned int cardnum)
5448{
5449 struct e1000_hw *hw;
5450
5451 list_for_each_entry(hw, &e1000_hw_list, list_node)
5452 if (hw->cardnum == cardnum)
5453 return hw;
5454
5455 return NULL;
5456}
5457
5458#ifdef CONFIG_CMD_E1000
5459static int do_e1000(cmd_tbl_t *cmdtp, int flag,
5460 int argc, char * const argv[])
5461{
5462 struct e1000_hw *hw;
5463
5464 if (argc < 3) {
5465 cmd_usage(cmdtp);
5466 return 1;
5467 }
5468
5469 /* Make sure we can find the requested e1000 card */
5470 hw = e1000_find_card(simple_strtoul(argv[1], NULL, 10));
5471 if (!hw) {
5472 printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5473 return 1;
5474 }
5475
5476 if (!strcmp(argv[2], "print-mac-address")) {
5477 unsigned char *mac = hw->nic->enetaddr;
5478 printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5479 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5480 return 0;
5481 }
5482
5483#ifdef CONFIG_E1000_SPI
5484 /* Handle the "SPI" subcommand */
5485 if (!strcmp(argv[2], "spi"))
5486 return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5487#endif
5488
5489 cmd_usage(cmdtp);
5490 return 1;
5491}
5492
5493U_BOOT_CMD(
5494 e1000, 7, 0, do_e1000,
5495 "Intel e1000 controller management",
5496 /* */"<card#> print-mac-address\n"
5497#ifdef CONFIG_E1000_SPI
5498 "e1000 <card#> spi show [<offset> [<length>]]\n"
5499 "e1000 <card#> spi dump <addr> <offset> <length>\n"
5500 "e1000 <card#> spi program <addr> <offset> <length>\n"
5501 "e1000 <card#> spi checksum [update]\n"
5502#endif
5503 " - Manage the Intel E1000 PCI device"
5504);
5505#endif /* not CONFIG_CMD_E1000 */